首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
B-cell antigen receptor (BCR) stimulation induces tyrosine phosphorylation of the Shc adaptor protein and its association with Grb2. The Shc/Grb2 complex may be involved in Ras activation, since Grb2 interacts with the guanine nucleotide exchange factor Sos. We reveal here an additional complexity of the BCR-induced Shc/Grb2 complex: it contains tyrosine phosphorylated proteins of 130, 110 and 75 kDa. The 130 kDa molecule inducibly associates with Shc, while the 75 kDa protein interacts with the carboxy-terminal SH3 domain of Grb2. The 110 kDa molecule is defined as Cbl, the product of the c-cbl oncogene, which is strongly phosphorylated on tyrosine upon BCR stimulation. Cbl constitutively interacts with the SH3 domains of Grb2, with a preference for the amino-terminal domain, and is in this way recruited to Shc upon BCR stimulation. Immunodepletion studies showed that Grb2-associated Cbl can be phosphorylated by BCR-induced tyrosine kinases independent of a Shc/Grb2 interaction. This indicates that the BCR can also couple to a Grb2 complex without the involvement of Shc. Cbl not only interacts with Grb2, but also with the adaptor protein Crk. In contrast to its constitutive interaction with Grb2, tyrosine-phosphorylated Cbl only associates with Crk after BCR stimulation. In summary, we observe that the BCR activates Shc/Grb2-, Grb2- and Crk adaptor complexes of distinct composition, which may allow selective coupling to different signal transduction cascades. Cbl participates in all three adaptor complexes and is tyrosine phosphorylated upon BCR stimulation, pointing to a central role for this molecule in the regulation of antigen receptor-induced B cell responses.  相似文献   

2.
Several recent studies have demonstrated that Grb2, composed entirely of SH2 and SH3 domains, serves as an adaptor protein in tyrosine kinase signaling pathways. Cb1, the protein product of c-cbl proto-oncogene, has been reported to be phosphorylated on tyrosine residues upon T cell receptor (TCR) engagement. Here we show that in unstimulated Jurkat cells Cbl is co-immunoprecipitated with monoclonal antibody against Grb2. However, in lymphocytes activated through the TCR, Cbl loses its ability to bind to Grb2 precipitated either with anti-Grb2 antibody or with an immobilized tyrosine phosphopeptide, Y1068-P, derived from the epidermal growth factor receptor. In vitro studies confirm that the ability of Cb1 to bind to both SH3 domains of Grb2 is strongly reduced in activated T lymphocytes. Investigation of the time course of Cbl dissociation from Grb2 reveals that it is transient and correlates with the kinetics of tyrosine phosphorylation of Cbl. Moreover, Cb1 is co-immunoprecipitated with Crk, another SH2/SH3 domain-containing protein, upon TCR stimulation. Tyrosine-phosphorylated Cbl binds exclusively to the SH2 domain of Crk. These results suggest that different adaptor proteins may have different roles in the regulation of c-cbl proto-oncogene product.  相似文献   

3.
Tyrosine phosphorylation of cellular proteins is an early and an essential step in T cell receptor-mediated lymphocyte activation. Tyrosine phosphorylation of transmembrane receptor chains (such as zeta and CD3 chains) and membrane-associated proteins provides docking sites for SH2 domains of adaptor proteins and signaling enzymes, resulting in their recruitment in the vicinity of activated receptors. pp36/38 is a prominent substrate of early tyrosine phosphorylation upon stimulation through the T cell receptor. The tyrosine-phosphorylated form of pp36/38 is membrane-associated and directly interacts with phospholipase C-gamma 1 and Grb2, providing one mechanism to recruit downstream effectors to the cell membrane. Here, we demonstrate that in Jurkat T cells, pp36/38 associates with the p85 subunit of phosphatidylinositol 3-kinase (PI-3-K p85) in an activation-dependent manner. Association of pp36/38 with PI-3-K p85 was confirmed by transfection of a hemagglutinin-tagged p85 alpha cDNA into Jurkat cells followed by anti-hemagglutinin immunoprecipitation. In vitro binding experiments with glutathione S-transferase fusion proteins of PI-3-K p85 demonstrated that the SH2 domains, but not the SH3 domain, mediated binding to pp36/38. This binding was selectively abrogated by phosphopeptides that bind to p85 SH2 domains with high affinity. Filter binding assays demonstrated that association between pp36/38 and PI-3-K p85 SH2 domains was due to direct binding. These results strongly suggest the role of pp36/38 in recruiting PI-3-K to the cell membrane and further support the idea that pp36/38 is a multifunctional docking protein for SH2 domain-containing signaling proteins in T cells.  相似文献   

4.
A 62-kDa Ras GTPase-activating protein (RasGAP)-associated protein is tyrosine-phosphorylated under a variety of circumstances including growth factor stimulation and in cells transformed by activated tyrosine kinases. A cDNA for p62(dok), reported to be the RasGAP-associated 62-kDa protein, was recently cloned from Abl-transformed cells. In this study, the interactions of p62(dok) with Bcr-Abl and associated proteins were examined. In 32D myeloid cells and Rat-1 fibroblasts transformed by p210(bcr-abl), p62(dok) is tyrosine-phosphorylated and co-immunoprecipitates with Bcr-Abl, RasGAP, and CrkL, a Src homology 2 (SH2) and SH3 domain-containing adaptor protein. Tyrosine-phosphorylated p62(dok) from cells expressing p210(bcr-abl) bound directly to the SH2 domains of Abl and CrkL in a gel overlay assay. Previous work has shown that an SH2 domain deletion mutant of Bcr-Abl is defective in transforming fibroblasts but remains capable of inducing myeloid growth factor independence. In both fibroblasts and myeloid cells expressing this mutant, p62(dok) is underphosphorylated as compared with cells expressing full-length p210(bcr-abl) but remains capable of associating with Bcr-Abl. However, in a gel overlay assay, p62(dok) from cells expressing the SH2 domain deletion was incapable of associating directly with SH2 domains of Abl and CrkL. Interestingly, no direct binding between Bcr-Abl and p62(dok) could be demonstrated in a yeast two-hybrid assay. These data suggest that indirect interactions mediate the interaction between Bcr-Abl and p62(dok) and that the SH2 domain of Bcr-Abl is required for hyperphosphorylation of p62(dok). Further, hyperphosphorylation of p62(dok) correlates with the ability of Bcr-Abl to transform fibroblasts but not with the induction of growth factor independence in myeloid cells.  相似文献   

5.
The Cbl proto-oncogene product is a complex adapter protein that functions as a negative regulator of protein tyrosine kinases. It is rapidly tyrosine-phosphorylated and associates with Crk(L) and p85 phosphatidylinositol 3-kinase (PI3K) upon engagement of numerous receptors linked to tyrosine kinases. Elucidation of the mechanism(s) underlying Cbl deregulation is therefore of considerable interest. The 70Z Cbl oncoprotein shows increased baseline tyrosine phosphorylation in fibroblasts and enhances nuclear factor of activated T cells (NFAT) activity in Jurkat T cells. Its transforming ability has been proposed to relate to its increased phosphotyrosine content. We demonstrate that 70Z Cbl shows increased basal and activation-induced tyrosine phosphorylation and association with Crk(L) and p85 PI3K in Jurkat T cells. 70Z Cbl, however, retains the ability to enhance NFAT and activating protein 1 (AP1) activity in the absence of Crk(L)/p85 PI3K association. In contrast, the G306E mutation, which inactivates the phosphotyrosine binding domain of Cbl, blocks NFAT/AP1 activation by 70Z Cbl. We conclude that 70Z Cbl-induced NFAT/AP1 activation requires the phosphotyrosine binding domain but not Crk(L)/p85 PI3K association. We hypothesize that 70Z Cbl acts as a dominant negative by blocking the negative regulatory function of the Cbl phosphotyrosine binding domain on protein-tyrosine kinases.  相似文献   

6.
Shc proteins are important substrates of receptor and cytoplasmic tyrosine kinases that couple activated receptors to downstream signaling enzymes. Phosphorylation of Shc tyrosine residues 239 and 317 leads to recruitment of the Grb2-Sos complex, thus linking Shc phosphorylation to Ras activation. We have used phosphorylated peptides corresponding to the regions spanning tyrosine 239/240 and 317 of Shc in an expression library screen to identify additional downstream targets of Shc. Here we report the identification of Gads, a novel adaptor protein most similar to Grb2 and Grap that contains amino and carboxy terminal SH3 domains flanking a central SH2 domain and a 120 amino acid unique region. Gads is most highly expressed in the thymus and spleen of adult animals and in human leukemic cell lines. The binding specificity of the Gads SH2 domain is similar to Grb2 and mediates the interaction of Gads with Shc, Bcr-Abl and c-kit. Gads does not interact with Sos, Cbl or Sam68, although the isolated carboxy terminal Gads SH3 domain is able to bind these molecules in vitro. Our results suggest that the unique structure of Gads regulates its interaction with downstream SH3 domain-binding proteins and that Gads may function to couple tyrosine-phosphorylated proteins such as Shc, Bcr-Abl and activated receptor tyrosine kinases to downstream effectors distinct from Sos and Ras.  相似文献   

7.
The platelet receptor for the Fc domain of IgGs (FcgammaRIIa) triggers intracellular signaling through protein tyrosine phosphorylations leading to platelet aggregation. In this study, we focused on the adaptor protein p120(cbl) (Cbl), which became tyrosine-phosphorylated after platelet activation induced by antibodies. Cbl phosphorylation was dependent on Fc receptor engagement. An association of Cbl with the p85 subunit of phosphatidylinositol 3-kinase (PI 3-K) occurred in parallel with Cbl tyrosine phosphorylation. We showed by in vitro experiments that Cbl/p85 association was mediated by the Src homology 3 domain of p85/PI 3-K and the proline-rich region of Cbl. Inhibition of PI 3-K activity by wortmannin led to the blockade of both platelet aggregation and serotonin release mediated by FcgammaRIIa engagement, whereas it only partly inhibited those induced by thrombin. Thus, PI 3-K may play a crucial role in the initiation of platelet responses after FcgammaRIIa engagement. Our results suggest that Cbl is involved in platelet signal transduction by the recruitment of PI 3-K to the FcgammaRIIa pathway, possibly by increasing PI 3-K activity.  相似文献   

8.
Cas-L (pp105), a Crk-associated substrate (p130(Cas))-related protein, was first identified as a 105-kDa protein that is tyrosine-phosphorylated following beta1 integrin cross-linking in T cells. Cas-L contains possible multiple binding sites for the Src homology (SH) 2 domains of various signaling molecules, and appears to be involved in signal transduction through phosphorylated tyrosine-mediated protein-protein interaction. Since Cas-L is preferentially expressed in lymphocytes, it is conceivable that Cas-L plays an important role in lymphocyte-specific signals. Here, we show the involvement of Cas-L in the T cell receptor (TCR)/CD3 signaling pathway. Cas-L is transiently phosphorylated following CD3 cross-linking, and tyrosine-phosphorylated Cas-L binds to Crk and C3G. Furthermore, a Cas-L mutant that lacks the SH3 domain, the binding site for focal adhesion kinase (FAK), is also tyrosine-phosphorylated upon CD3 cross-linking, but not upon beta1 integrin crosslinking, suggesting that FAK is not involved in CD3-dependent Cas-L phosphorylation. Taken together, the present study indicates a novel signaling pathway mediated by tyrosine-phosphorylated Cas-L upon the TCR/CD3 stimulation.  相似文献   

9.
Recently c-Cbl has been reported to be phosphorylated upon CSF-1 stimulation. The product of the c-cbl proto-oncogene (c-Cbl) is a 120 kDa protein harboring several docking sites for Src homology 2 (SH2) domain containing proteins and proline-rich regions that have been shown to allow its constitutive association with the SH3 domains of Grb2. We demonstrate here that CSF-1 exposure of stable transfectant CHO cells expressing the CSF-1 receptor induced the sustained tyrosine phosphorylation of c-Cbl and its subsequent association with Crk-II and the p85 kDa subunit of the PI 3-kinase, while it constitutively associates with Grb2. We demonstrate by in vitro experiments that these associations require the SH2 domain of Crk-II and both the C- and N-terminal SH2 domains of the p85 subunit of the PI 3-kinase. cCbl is the major PI 3-kinase-containing protein in c-Fms expressing CHO cells upon CSF-1 stimulation. Thus c-Cbl behaves as a core protein, allowing the formation of a quaternary complex including, Crk-II, PI 3-kinase and Grb2. We provide evidence that this multiprotein complex can interact with the tyrosine phosphorylated CSF-1 receptor through the unoccupied SH2 domain of Grb2.  相似文献   

10.
In human T-lymphocytes the Src family protein tyrosine kinase p59(fyn) associates with three phosphoproteins of 43, 55, and 85 kDa (pp43, pp55, and pp85). Employing a GST-Fyn-Src homology 2 (SH2) domain fusion protein pp55 was purified from lysates of Jurkat T-cells. Molecular cloning of the pp55 cDNA reveals that the pp55 gene codes for a so far nondescribed polypeptide of 359 amino acids that comprises a pleckstrin homology domain, a C-terminal SH3 domain, as well as several potential tyrosine phosphorylation sites, among which one fulfills the criteria to bind Src-like SH2 domains with high affinity. Consistent with this observation, pp55 selectively binds to isolated SH2 domains of Lck, Lyn, Src, and Fyn but not to the SH2 domains of ZAP70, Syk, Shc, SLP-76, Grb2, phosphatidylinositol 3-kinase, and c-abl in vitro. Based on these properties the protein was termed SKAP55 (src kinase-associated phosphoprotein of 55 kDa). Northern blot analysis shows that SKAP55 mRNA is preferentially expressed in lymphatic tissues. SKAP55 is detected in resting human T-lymphocytes as a constitutively tyrosine phosphorylated protein that selectively interacts with p59(fyn). These data suggest that SKAP55 represents a novel adaptor protein likely involved in Fyn-mediated signaling in human T-lymphocytes.  相似文献   

11.
P120cbl, the product of the c-cbl proto-oncogene, has previously been shown to become tyrosine phosphorylated following EGF stimulation of cells, and to bind constitutively to the SH3 domain of the adaptor protein Grb2. Here we show that another adaptor protein, Crk, binds through its SH2 domain to tyrosine phosphorylated p120cbl. In addition, Crk becomes phosphorylated on tyrosine and serine following EGF treatment of PC12 and other cell lines. In unstimulated cells, while Grb2 is not bound to any tyrosine phosphoprotein, Crk is bound via its SH2 domain to tyrosine phosphorylated p130cas, the Crk-associated v-Src substrate. Following EGF treatment, Crk dissociates from p130cas, possibly due to a higher affinity of Crk SH2 for p120cbl compared with p130cas. Interaction between Grb2 and p120cbl increases threefold following EGF treatment of cells; in vitro, this induction of Grb2 association with unphosphorylated p120cbl can be mimicked by the addition of tyrosine phosphorylated Shc, suggesting a transfer of information between the SH2 and SH3 domains of Grb2. These data indicate that adaptor proteins can exchange binding partners in response to stimuli, and that different adaptor proteins can bind to the same partners by different mechanisms.  相似文献   

12.
CD28 provides a costimulatory signal that results in optimal activation of T cells. The signal transduction pathways necessary for CD28-mediated costimulation are presently unknown. Engagement of CD28 leads to its tyrosine phosphorylation and subsequent binding to Src homology 2 (SH2)-containing proteins including the p85 subunit of phosphatidylinositol 3'-kinase (PI3K); however, the contribution of PI3K to CD28-dependent costimulation remains controversial. Here we show that CD28 is capable of binding the Src homology 3 (SH3) domains of several proteins, including Grb2. The interaction between Grb2 and CD28 is mediated by the binding of Grb2-SH3 domains to the C-terminal diproline motif present in the cytoplasmic domain of CD28. While the affinity of the C-terminal SH3 domain of Grb2 for CD28 is greater than that of the N-terminal SH3 domain, optimal binding requires both SH3 domains. Ligation of CD28, but not tyrosine-phosphorylation, is required for the SH3-mediated binding of Grb2 to CD28. We propose a model whereby the association of Grb2 with CD28 occurs via an inducible SH3-mediated interaction and leads to the recruitment of tyrosine-phosphorylated proteins such as p52(shc) bound to the SH2 domain of Grb2. The inducible interaction of Grb2 to the C-terminal region of CD28 may form the basis for PI3K-independent signaling through CD28.  相似文献   

13.
Binding of IL-2 to its receptor activates several biochemical pathways, including JAK-STAT, Ras-mitogen-activated protein kinase, and phosphatidylinositol 3'-kinase (PI 3'-kinase) pathways. Recently, it has been shown that the SH2-containing phosphatase, SHP-2, becomes phosphorylated in response to IL-2 stimulation, associates with PI3'-kinase and Grb2, and can exert a positive regulatory role in IL-2 signaling. We now report the identification of a prominent 98-kDa protein (p98) found to be phosphorylated in response to IL-2 stimulation and coprecipitated with SHP-2, the p85 subunit of PI 3'-kinase and Grb2. Interestingly, whereas IL-4 is known to activate PI 3'-kinase, we did not observe any p98 phosphorylation in response to IL-4 stimulation. p98 can form a multipartite complex with all these proteins as immunodepleting with anti-p85 antiserum substantially reduced the amount of p98 immunoprecipitated by SHP-2 and Grb2; the converse was also true. Furthermore, phosphorylation of p98 did not occur in cells lacking JAK3, suggesting that it may be a JAK substrate. Finally, deglycosylation of p98 did not alter its migration, suggesting p98 is not a member of the recently described SHP substrate/signal-regulatory proteins family of transmembrane glycoproteins. Thus p98 is a prominent IL-2-dependent substrate that associates with multiple proteins involved in IL-2 signaling and may play an important role in coupling the different signal transduction pathways activated by IL-2.  相似文献   

14.
Gab1 is a member of the docking/scaffolding protein family which includes IRS-1, IRS-2, c-Cbl, p130(cas), and p62(dok). These proteins contain a variety of protein-protein interaction motifs including multiple tyrosine residues that when phosphorylated can act as binding sites for Src homology 2 (SH2) domain-containing signaling proteins. We show in the RAMOS human B cell line that Gab1 is tyrosine-phosphorylated in response to B cell antigen receptor (BCR) engagement. Moreover, tyrosine phosphorylation of Gab1 correlated with the binding of several SH2-containing signaling proteins to Gab1 including Shc, Grb2, phosphatidylinositol 3-kinase, and the SHP-2 tyrosine phosphatase. Far Western analysis showed that the SH2 domains of Shc, SHP-2, and the p85 subunit of phosphatidylinositol 3-kinase could bind directly to tyrosine-phosphorylated Gab1 isolated from activated RAMOS cells. In contrast, the Grb2 SH2 domain did not bind directly to Gab1 but instead to the Shc and SHP-2 associated with Gab1. We also show that Gab1 is present in the membrane-enriched particulate fraction of RAMOS cells and that Gab1/signaling protein complexes are found in this fraction after BCR engagement. Thus, tyrosine-phosphorylated Gab1 may recruit cytosolic signaling proteins to cellular membranes where they can act on membrane-bound targets. This may be a critical step in the activation of multiple BCR signaling pathways.  相似文献   

15.
The FLT3 receptor tyrosine kinase and its ligand, FL, play an important role in early hematopoietic development. We have found that CBLB, a recently characterized molecule closely related to the CBL protooncogene product, is phosphorylated on tyrosine(s) following FL treatment of JEA2 human pro-B cells and THP1 monocytic cells. Treatment of JEA2 cells with interleukin (IL)-7 induces CBLB phosphorylation as well. FL and IL-7, respectively, induce and increase association of tyrosine-phosphorylated SHC and the p85 subunit of phosphatidylinositol 3'-kinase with CBLB. In these cells, CBLB constitutively binds the GRB2 adaptor predominantly through its N-terminal SH3 domain, to form a complex that is distinct from the GRB2.CBL and GRB2.SOS1 complexes. Together with the fact that CBLB is consistently found in blast cells from acute leukemias and in peripheral blood mononuclear cells, this suggests that CBLB has a role in tyrosine kinase-regulated signaling pathways in many hematolymphoid cells.  相似文献   

16.
B cell antigen receptor (BCR)-mediated signal transduction controls B cell proliferation and differentiation. The BCR activates Ras, presumably by the formation of a Shc-Grb2 adaptor complex, which recruits the Grb2-associated guanine nucleotide exchange factor Sos to the plasma membrane. In order to reveal additional BCR-induced signaling events involving the Grb2 adaptor, we undertook the isolation of Grb2-binding proteins. Using the yeast two-hybrid system and bacterial fusion proteins, Vav and C3G were identified as Grb2 binders. Vav is a putative nucleotide exchange factor and a target for BCR-induced tyrosine phosphorylation. C3G exerts nucleotide exchange activity on the Ras-related Rap1 protein. While Sos binds to both Grb2 Src homology-3 (SH3) domains, Vav was found to associate selectively with the carboxyl-terminal SH3 domain, while C3G bound selectively to the amino-terminal SH3 domain of bacterially expressed Grb2. Despite the association of Vav with Grb2 in vitro, we could not demonstrate an interaction between endogenous Vav and Grb2 molecules in primary B cells. Instead, Vav was found to inducibly associate with the Grb2-related adaptor protein Crk upon BCR stimulation. C3G did not bind to either Grb2, Shc, or Crk in vivo. Instead, C3G was found in association with the Crk-L adaptor, both before and after BCR stimulation. We show that Crk-L also participates in BCR signaling, since it inducibly interacts with tyrosine-phosphorylated Cbl. We conclude that, in addition to Sos, Vav and C3G play a role in BCR-mediated signal transduction. These guanine nucleotide exchange factors selectively associate with Grb2, Crk, and Crk-L, respectively, which may serve to direct them to different target molecules. Since Cbl binds to Grb2, Crk, as well as Crk-L, we hypothesize that Cbl may affect the function of all three exchangers.  相似文献   

17.
18.
19.
The closely related proto-oncogene proteins CrkII and CrkL consist of one SH2 and two SH3 domains and share 60% overall homology with the highest identity within their functional domains. In this study we show that CrkL and CrkII may play overlapping but different roles in insulin-like growth factor (IGF)-I receptor-mediated signal transduction. While both proteins are substrates involved in IGF-I receptor signaling, they apparently demonstrate important different properties and different biological responses. Evidence supporting this hypothesis includes (a) the oncogenic potential of CrkL versus the absence of this potential in CrkII overexpressing cell lines, (b) the inhibition of IGF-I-dependent cell cycle progression by overexpression of CrkII, and (c) the differential regulation of the phosphorylation status of selective proteins in CrkII and CrkL overexpressing cell lines. In addition we demonstrate the specific association of CrkL and CrkII with the newly characterized IRS-4 protein, again in a differential manner. Whereas CrkL strongly interacts with IRS-4 via its SH2 and N-terminal SH3 domains, CrkII interacts only via its SH2 domain, possibly explaining the unstable nature of IRS-4-CrkII association. The results obtained allow us to propose a unique mechanism of CrkL and CrkII tyrosine phosphorylation in response to IGF-I stimulation. Thus these highly homologous proteins apparently possess structural features that allow for the differential association of each protein with different effector molecules, thereby activating different signaling pathways and resulting in unique biological roles of these proteins.  相似文献   

20.
Previously we cloned a novel adaptor protein, APS (adaptor molecules containing PH and SH2 domains) which was tyrosine phosphorylated in response to c-kit or B cell receptor stimulation. Here we report that APS was expressed in some human osteosarcoma cell lines, markedly so in SaOS-2 cells, and was tyrosine-phosphorylated in response to several growth factors, including platelet derived growth factor (PDGF), insulin-like growth factor (IGF), and granulocyte-macrophage colony stimulating factor (GM-CSF). Ectopic expression of the wild type APS, but not C-terminal truncated APS, in NIH3T3 fibroblasts suppressed PDGF-induced MAP kinase (Erk2) activation, c-fos and c-myc induction as well as cell proliferation. In vitro binding experiments suggest that APS bound to the beta type PDGF receptor, mainly via phosphotyrosine 1021 (pY1021). Indeed, tyrosine phosphorylation of PLC-gamma, which has been demonstrated to bind to pY1021, but not that of PI3 kinase and associated proteins, was reduced in APS transformants. PDGF induced phosphorylation of the tyrosine residue of APS close to the C-terminal end. In vitro and in vivo binding experiments indicate that the tyrosine phosphorylated C-terminal region of APS bound to c-Cbl, which has been shown to be a negative regulator of tyrosine kinases. Since coexpression of c-Cbl with wild type APS, but not C-terminal truncated APS, synergistically inhibited PDGF-induced c-fos promoter activation, c-Cbl could be a mechanism of inhibitory action of APS on PDGF receptor signaling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号