首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The first-pass clearance of dietary N-nitrosodimethylamine (NDMA) by the liver is the most important factor in the pharmacokinetics of this carcinogen in the rat, but is less important in the pharmacokinetics of N-nitrosodiethylamine (NDEA). The reason for the difference in clearance of these two nitrosamines is not known. These experiments were carried out to see whether the general characteristics of the clearance of these two carcinogens in vivo could be reproduced in the perfused liver, and whether the clearance could be correlated with the Michaelis-Menten parameters Km and Vmax for their metabolism. If this could be done one would be able to predict the possible extent of first-pass clearance of nitrosamines in man from measurement of Km and Vmax for nitrosamine metabolism by the human liver. The Km (22 microM) and Vmax (10.2 and 13.4 nmol/g liver/min) for the metabolism of NDMA by slices from two human livers, the inhibition of that metabolism by ethanol (Ki 0.5 microM), and the rate of N-7 methylation of DNA when slices are incubated with NDMA, were measured. These results are similar to those reported previously with rat liver. The Km (27 microM) for the metabolism of NDEA by rat liver slices and the inhibition of that metabolism by ethanol (Ki 1 microM) were estimated from the rate of ethylation of the DNA of the slices. The clearance of both these nitrosamines by the perfused rat liver was measured, and the results appeared to parallel those in vivo with a striking difference between the clearance of NDMA and NDEA. The maximal rate of clearance of NDMA was 11.2 nmol/g liver/min and of NDEA 8.9 nmol/g liver/min, similar to the Vmax for metabolism of NDMA by liver slices and to the estimated maximal rate of liver metabolism of both nitrosamines in the living rat. However, although the Km for metabolism of these two nitrosamines by liver slices is similar (about 25 microM), the logarithmic mean sinusoidal concentration [see Bass and Keiding, Biochem Pharmacol 37: 1425-1431, 1988] giving half maximal clearance during perfusion (the equivalent to Km) was 2.3 microM for NDMA and 10.6 microM for NDEA. The almost 5-fold difference between these two values is the basis for the difference between the clearance of the two nitrosamines.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

2.
PURPOSE: To compare the activity of the CYP3A enzyme expressed by TC7, a cell culture model of the intestinal epithelial cell, to the activity of human intestinal CYP3A4, using terfenadine as a substrate. METHODS: The metabolism of terfenadine was investigated in intact cells and microsomal preparations from TC7, human intestine, and liver. The effect of two CYP3A inhibitors, ketoconazole and troleandomycin (TAO), on the metabolism of terfenadine was also examined. RESULTS: Only hydroxy-terfenadine was detected in TC7 microsomal incubations. In contrast, azacyclonol and hydroxy-terfenadine were detected in human intestinal and hepatic microsomal incubations. The Km values for hydroxy-terfenadine formation in TC7 cells, intestine and liver microsomes were 1.91, 2.5, and 1.8, microM respectively. The corresponding Vmax values were 2.11, 61.0, and 370 pmol/min/mg protein. Km values for azacyclonol in intestinal and hepatic samples were 1.44 and 0.82 microM and the corresponding Vmax values were 14 and 60 pmol/min/mg protein. The formation of hydroxy-terfenadine was inhibited by ketoconazole and TAO in human intestine and TC7 cell microsomes. The Km and Vmax values for terfenadine metabolism in intact TC7 cells were similar to those from TC7 cell microsomes. CONCLUSIONS: Our results indicate that TC7 cells are a potentially useful alternative model for studies of CYP3A mediated drug metabolism. The CYP3A expressed by TC7 cells is not CYP3A4, but probably CYP3A5, making this cell line suitable for studies of colonic drug transport and metabolism.  相似文献   

3.
Epinastine is a non-sedative second-generation antiallergic drug, like terfenadine. In the present study, the metabolism of epinastine in human liver microsomes was investigated and compared with that of terfenadine. Terfenadine was extensively metabolized to terfenadine acid with a Km value of 1.78 microM, a Vmax value of 173.8 pmol/min/mg and a metabolic clearance (Vmax/Km) of 103.9. Epinastine, in contrast, was poorly metabolized by microsomes from the same source with a high Km value of 232 microM. Metabolic clearance of epinastine was only 0.832, which was lower by three orders of magnitude than that of terfenadine. Studies with microsomes expressing recombinant cytochrome P450 (CYP) species revealed that the CYP isoforms responsible for epinastine metabolism are CYP3A4, 2D6 and (to a minor extent) 2B6. Epinastine and terfenadine had no effect on CYP1A2 (theophylline 1-demethylation), 2C8/9 (tolbutamide hydroxylation) or 2E1 (chlorzoxazone 6-hydroxylation) activity, but weakly inhibited CYP2D6 (debrisoquine 4-hydroxylation) activity. CYP3A4 (testosterone 6 beta-hydroxylation) activity was strongly inhibited by terfenadine with a Ki value of 25 microM, whereas epinastine had no effect at up to 100 microM. Thus, epinastine is very poorly metabolized compared to terfenadine in human liver microsomes and does not inhibit CYP3A4 activity in vitro, unlike terfenadine.  相似文献   

4.
The relationships between phenytoin dose, pharmacokinetic variables, patient data, and serum phenytoin concentrations were studied. One hundred sixty-eight adult epileptic patients who were receiving phenytoin were randomly selected and studied retrospectively. The method of Ludden et al. or a Bayesian forecasting technique was employed to estimate the patients' pharmacokinetic values for maximum rate of drug metabolism (Vmax) and the Michaelis-Menten constant (Km). Resulting steady-state serum concentrations were estimated. The daily doses of phenytoin necessary to produce steady-state serum phenytoin concentrations of 10 and 20 micrograms/ml were also determined in patients whose values were definable. Analysis of variance was used to test possible correlations between patient demographic data, pharmacokinetic values, and doses. The majority of patients (85.6%) failed to achieve concentrations between 10 and 20 micrograms/ml when receiving phenytoin sodium 300 mg daily. Patients receiving more than one phenytoin dosage regimen had significant but weak correlations between Vmax and Km. The data suggest that low Km and Vmax values occur concurrently. Initial phenytoin dose based on patients' weights or body surface areas may be useful in determining initial dosage requirements, but estimated pharmacokinetic values for Vmax and Km provide the best guide for dosage adjustment.  相似文献   

5.
AIMS: Clozapine (CLZ), an atypical neuroleptic with a high risk of causing agranulocytosis, is metabolized in the liver to desmethylclozapine (DCLZ) and clozapine N-oxide (CLZ-NO). This study investigated the involvement of different CYP isoforms in the formation of these two metabolites. METHODS: Human liver microsomal incubations, chemical inhibitors, specific antibodies, and different cytochrome P450 expression systems were used. RESULTS: Km and Vmax values determined in human liver microsomes were lower for the demethylation (61 +/- 21 microM, 159 +/- 42 pmol min(-1) mg protein(-1) mean +/- s.d.; n = 4), than for the N-oxidation of CLZ (308 +/- 1.5 microM, 456 +/- 167 pmol min(-1) mg protein(-1); n = 3). Formation of DCLZ was inhibited by fluvoxamine (53 +/- 28% at 10 microM), triacetyloleandomycin (33 +/- 15% at 10 microM), and ketoconazole (51 +/- 28% at 2 microM) and by antibodies against CYP1A2 and CYP3A4. CLZ-NO formation was inhibited by triacetyloleandomycin (34 +/- 16% at 10 microM) and ketoconazole (51 +/- 13% at 2 microM), and by antibodies against CYP3A4. There was a significant correlation between CYP3A content and DCLZ formation in microsomes from 15 human livers (r=0.67; P=0.04). A high but not significant correlation coefficient was found for CYP3A content and CLZ-NO formation (r=0.59; P=0.09). Using expression systems it was shown that CYP1A2 and CYP3A4 formed DCLZ and CLZ-NO. Km and Vmax values were lower in the CYP1A2 expression system compared to CYP3A4 for both metabolic reactions. CONCLUSIONS: It is concluded that CYP1A2 and CYP3A4 are involved in the demethylation of CLZ and CYP3A4 in the N-oxidation of CLZ. Close monitoring of CLZ plasma levels is recommended in patients treated at the same time with other drugs affecting these two enzymes.  相似文献   

6.
The objective of the present study was to estimate the maximal velocity (Vmax) and Michaelis affinity constant (Km) for the oxidation of pyrene to 1-hydroxypyrene using rat liver post-mitochondrial fractions. The approach involved the determination of the concentrations of 1-hydroxypyrene formed during 5 min incubations of pyrene (initial concentrations: 0.0025-0.5 microM), and correcting for the rate of 1-hydroxypyrene disappearance (2.16 x 10(-5) per (mg protein/l)/min) during the incubation period. The Vmax and Km for pyrene metabolism in the rat corresponded to 0.0577 +/- 0.0108 micromol/min per g liver and 27.73 +/- 13.54 microM, respectively. The intrinsic clearance (CL(int)) of pyrene in the rat estimated in the present study (0.041-0.111 l/min per kg) was within the range of the previously reported CL(int) in humans (0.037-0.125 l/min per kg). The results of this study suggest that CL(int) of pyrene in humans can be predicted from such data obtained in the rat.  相似文献   

7.
Arylamine N-acetyltransferase (NAT) activities with p-aminobenzoic acid and 2-aminofluorene were determined in Helicobacter pylori, a gram-negative rod bacteria collected from peptic ulcer patients. The NAT activity was determined using a acetyl CoA recycling assay and HPLC. Cytosols or suspensions of H. pylori with and without selected concentrations of emodin co-treatment showed different percentages of 2-aminofluorene and p-aminobenzoic acid acetylation. The data indicate that there were decreased NAT activity associated with increased emodin in H. pylori cytosols. As 400 microns of emodin can obviously inhibit NAT activity both in vitro and in vivo (inhibition rate 90% and 93% for 2-aminofluorene and p-aminobenzoic acid in vitro, and 90% and 92%, respectively, for both substrate in vivo). For in vitro examination, the apparent values of Km and Vmax were 3.12 +/- 0.38 mM and 15.20 +/- 3.16 nmol/min/mg protein for 2-aminofluorene, and 0.56 +/- 0.12 mM and 0.74 +/- 0.09 nmol/min mg protein for p-aminobenzoic acid. However, when emodin was added to the reaction mixtures, the values of apparent Km and Vmax were 2.40 +/- 0.32 mM and 10.62 +/- 0.04 nmol/min/mg protein for 2-aminofluorene, and 0.23 +/- 0.02 mM and 0.62 +/- 0.08 nmol/min/mg protein for p-aminobenzoic acid. For in vivo examination, the apparent Km and Vmax were 0.82 +/- 0.18 mM and 0.92 +/- 0.21 nmol/min/10 x 10(10) colony forming units (CFU) for 2-aminofluorene, and 0.78 +/- 0.14 mM and 0.52 +/- 0.06 nmol/min/ 10 x 10(10) (CFU) for p-aminobenzoic acid. However, when emodin was added to the reaction mixtures, the values of apparent Km and Vmax were 0.50 +/- 0.08 mM and 0.62 +/- 0.22 nmol/min/ 10 x 10(10) (CFU) for 2-aminofluorene, and 0.52 +/- 0.21 mM and 0.26 +/- 0.04 nmol/min/ 10 x 10(10) (CFU) for p-aminobenzoic acid. This report is the first finding of emodin inhibition of arylamine N-acetyltransferase activity in a strain of H. pylori.  相似文献   

8.
The furan dicarboxylic acid, 3-carboxy-4-methyl-5-propyl-2-furanpropanoic acid (5-propyl FPA), accumulates in uremic plasma and inhibits the binding of various drugs and marker ligands that are organic acids. 5-Propyl FPA is excreted unchanged in human urine and active tubular secretion is likely to be involved because of its high affinity for albumin. The uptake of 5-propyl FPA by rat kidney slices has been measured and compared with that of p-aminohippurate (PAH). The mean (+/- S.D.) slice/medium ratio for uptake of 5-propyl FPA (76 microM) was 22.7 +/- 2.6 (n = 11) and for PAH (75 microM) was 15.9 +/- 3.2 (n = 9) after incubation for 90 min at 25 degrees C. 5-Propyl FPA (149-829 microM) inhibited the uptake of PAH (77 microM) in a concentration-dependent manner, and likewise, PAH (150-830 microM) inhibited the uptake of 5-propyl FPA (77 microM). The mean apparent Km and Vmax values for the uptake of 5-propyl FPA were 194 +/- 125 microM and 55 +/- 28 nmol/g kidney/min, respectively, and 487 +/- 179 and 99 +/- 46 nmol/g kidney/min, respectively, for PAH. The kinetics of inhibition of uptake of PAH by 5-propyl FPA were mainly competitive. 5-Propyl FPA is thus likely to undergo active tubular secretion in a similar way to PAH, and this furan dicarboxylic acid, therefore, has the potential to inhibit the renal excretion of various drugs, drug conjugates and other endogenous organic acids.  相似文献   

9.
Arteether (AE) is primarily deethylated to dihydroqinghaosu (DQHS) in rats and humans. Conversion of AE to DQHS was impaired in microsomes from rats infected with Plasmodium berghei. The Km for AE was 175.1 +/- 49.1 and 124.4 +/- 115.1 mumol/l, and Vmax was 2.24 +/- 0.45 and 1.22 +/- 0.67 nmol AE formed/mg protein/min in control and infected microsomes (p < 0.05), respectively. Calculated intrinsic clearance (CLint = initial Vmax/Km) for AE was only 4% lower in infected microsomes. Apparent pharmacokinetic parameter estimates for AE using the isolated perfused rat liver demonstrated no differences (p > 0.05) in volume of distribution, clearance, and half-life between normal and infected animals. Malaria infection resulted in decreased biliary excretion of free AE and DQHS. The majority of AE is eliminated via biliary excretion of conjugated DQHS, which is approximately 500-fold higher than free DQHS and 75-fold higher than free AE on a molar basis.  相似文献   

10.
Using human liver microsomes (HLMs) and recombinant human cytochrome P450 (CYP450) isoforms, we identified the major route of pimozide metabolism, the CYP450 isoforms involved, and documented the inhibitory effect of pimozide on CYP450 isoforms. Pimozide was predominantly N-dealkylated to 1,3-dihydro-1-(4-piperidinyl)-2H-benzimidazol-2-one (DHPBI). The formation rate of DHPBI showed biphasic kinetics in HLMs, which suggests the participation of at least two activities. These were characterized as high-affinity (K(m1) and Vmax1) and low-affinity (K(m2) and Vmax2) components. The ratio of Vmax1 (14 pmol/min/mg protein)/K(m1) (0.73 microM) was 5.2 times higher than the ratio of Vmax2 (244 pmol/min/mg protein)/K(m2) (34 microM). K(m2) was 91 times higher than K(m1). The formation rate of DHPBI from 25 microM pimozide in nine human livers correlated significantly with the catalytic activity of CYP3A (Spearman r = 0.79, P = .028), but not with other isoforms. Potent inhibition of DHPBI formation from 10 microM pimozide was observed with ketoconazole (88%), troleandomycin (79%), furafylline (48%) and a combination of furafylline and ketoconazole (96%). Recombinant human CYP3A4 catalyzed DHPBI formation from 10 microM pimozide at the highest rate (V = 2.2 +/- 0.89 pmol/min/pmol P450) followed by CYP1A2 (V = 0.23 +/- 0.08 pmol/min/pmol P450), but other isoforms tested did not. The K(m) values derived with recombinant CYP3A4 and CYP1A2 were 5.7 microM and 36.1 microM, respectively. Pimozide itself was a potent inhibitor of CYP2D6 in HLMs when preincubated for 15 min (Ki = 0.75 +/- 0.98 microM) and a moderate inhibitor of CYP3A (Ki = 76.7 +/- 34.5 microM), with no significant effect on other isoforms tested. Our results suggest that pimozide metabolism is catalyzed mainly by CYP3A, but CYP1A2 also contributes. Pimozide metabolism is likely to be subject to interindividual variability in CYP3A and CYP1A2 expression and to drug interactions involving these isoforms. Pimozide itself may inhibit the metabolism of drugs that are substrates of CYP2D6.  相似文献   

11.
In the present study, we expressed human flavin-containing monooxygenase 1 (FMO1), FMO3, FMO4t (truncated), and FMO5 in the baculovirus expression vector system at levels of 0.6 to 2.4 nmol FMO/mg of membrane protein. These four isoforms, as well as purified rabbit FMO2, and eleven heterologously expressed human P450 isoforms were examined for their capacity to metabolize trimethylamine (TMA) to its N-oxide (TMAO), using a new, specific HPLC method with radiochemical detection. Human FMO3 was by far the most active isoform, exhibiting a turnover number of 30 nmol TMAO/nmol FMO3/min at pH 7.4 and 0.5 mM TMA. None of the other monooxygenases formed TMAO at rates greater than 1 nmol/nmol FMO/min under these conditions. Human fetal liver, adult liver, kidney and intestine microsomes were screened for TMA oxidation, and only human adult liver microsomes provided substantial TMAO-formation (range 2.9 to 9.1 nmol TMAO/mg protein/min, N = 5). Kinetic studies of TMAO formation by recombinant human FMO3, employing three different analytical methods, resulted in a Km of 28 +/- 1 microM and a Vmax of 36.3 +/- 5.7 nmol TMAO/nmol FMO3/min. The Km determined in human liver microsomes ranged from 13.0 to 54.8 microM. Therefore, at physiological pH, human FMO3 is a very specific and efficient TMA N-oxygenase, and is likely responsible for the metabolic clearance of TMA in vivo in humans. In addition, this specificity provides a good in vitro probe for the determination of FMO3-mediated activity in human tissues, by analyzing TMAO formation at pH 7.4 with TMA concentrations not higher than 0.5 mM.  相似文献   

12.
1. The in vitro metabolism of 3,3',4,4'-tetrachloro-[14C]-biphenyl ([14C]-TCB) by hepatic microsomes from the Wistar rat was investigated with liver microsomes from the male, pregnant female and foetus. 2. Three hydroxylated metabolites (4-OH-3,3',4,5'-tetrachlorobiphenyl, 5-OH-3,3',4,4'-tetrachlorobiphenyl, and 6-OH-3,3',4,4'-tetrachlorobiphenyl) were identified by hplc and gc-ms after incubations of liver microsomes from the beta-naphthoflavone-pretreated male rat and TCB-treated pregnant rat. No metabolites of [14C]-TCB were found after incubation with foetal liver microsomes from dams pretreated with [14C]-TCB. The results indicate that the in vivo accumulation of 4-OH-tetraCB in the foetal compartment is probably due to transplacental transport rather than the formation of this metabolite in the foetus. 3. Pretreatment of the male rat with beta-naphthoflavone substantially induced the formation of hydroxylated metabolites, but pretreatment with phenobarbital and dexamethasone was without effect. Based on in vitro incubations of liver microsomes from the beta-naphthoflavone pretreated male rat, an apparent Km and Vmax of 4.5 microM and 240 pmol/mg protein/min respectively was determined for the metabolism of [14C]-TCB. The formation of phenolic metabolites of [14C]-TCB was most likely dependent on P4501A induction.  相似文献   

13.
(+)-cis-3,5-dimethyl-2-(3-pyridyl)thiazolidin-4-one hydrochloride (SM-12502) was oxidized by human liver microsomes to produce the S-oxide as a sole metabolite. Indirect evidence suggested that the S-oxidation was catalyzed by cytochrome P450 (CYP). Eadie-Hofstee plots showed biphasic pattern, suggesting that at least two enzymes were involved in the S-oxidation in human liver microsomes. Kinetic parameters of the S-oxidase with high-affinity showed Km and Vmax values of 20.9 +/- 4.4 microM and 0.111 +/- 0.051 nmol/min/mg microsomal protein, respectively. The S-oxidase activity was inhibited by coumarin and anti-CYP2A antibody. Among the contents of forms of CYP 20 samples of human liver microsomes, the content of CYP2A6 correlated with S-oxidase activity measured with 50 microM SM-12502 (r = .808, P < .0005). A close correlation (r = .908, P < .0001) was observed between activities of SM-12502 S-oxidase and coumarin 7-hydroxylase. Microsomes from genetically engineered human B-lymphoblastoid cells expressing CYP2A6 metabolized SM-12502 to the S-oxide efficiently. The results indicate that CYP2A6 isozyme is a major form of CYP responsible for the S-oxidation of SM-12502 in human liver microsomes. Thus, SM-12502 will be a useful tool in further research to analyze a human genetic polymorphism of CYP2A6.  相似文献   

14.
Liver slice cultures from humans, dogs, and rats were used to investigate the biotransformation of the dopaminergic ergot agonist CQA 206-291 and to predict pharmacokinetic values for hepatic intrinsic clearance and plasma clearance. CQA 206-291 was extensively metabolized in the liver slice cultures and in vivo. The HPLC metabolite patterns from the liver slice cultures were similar for all three species, indicating the occurrence of the same metabolic pathways for CQA 206-291 biotransformation. The rate of formation of CQ 32-084, a pharmacologically active N-deethylated metabolite, exceeded that of metabolite d, a primary metabolite, by 1.4 fold in human liver slices, and by 1.7 fold in rat liver slices. In dog liver slice cultures, metabolite d formation exceeded CQ 32-084 formation by 1.3 fold and was formed at a statistically significantly greater rate (3 fold) than in either human or rat liver slices. The metabolism of ergots like CQA 206-291 by human fetal liver was also demonstrated in this study. However, the prominent metabolite from fetal and adult human liver microsomes was metabolite d with minor amounts of CQ 32-089 being formed. A major route of excretion for the metabolites of CQA 206-291 is the kidney, yet the kidney does not contribute to the metabolism of CQA 206-291. Kidney slices derived from humans, rats, and dogs did not metabolize CQA 206-291 within 24 hr. CQA 206-291 intrinsic clearance was derived from the half-life of parent drug disappearance in the liver slice and hepatocyte cultures, and from the ratio of Vmax/Km of human and rat liver microsomes.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
We studied the effect of a number of amino acids on uptake of L-triiodothyronine (T3) in the human choriocarcinoma cell line, JAR. Tryptophan inhibited saturable T3 uptake by about 57% without any significant effect on the non-saturable uptake. Michaelis constant (Km) for T3 uptake was 1.06 +/- 0.15 microM (n = 15) with the corresponding maximum velocity (Vmax) of 24.2 +/- 3.1 pmol/min/mg cellular protein. For tryptophan uptake the Km was 1.31 +/- 0.26 microM (n = 7) and Vmax was 166.4 +/- 35.7 pmol/min/mg protein. The kinetic parameters for both uptake processes were similar to those reported in normal placenta. Uptake of T3 was inhibited by tryptophan but not phenylalanine, but tryptophan uptake was inhibited both by T3 and phenylalanine. Inhibition of T3 uptake by tryptophan was dose dependent, with an inhibition constant (Ki) of 2.9 +/- 0.5 mM. Similarly, tryptophan uptake was inhibited by T3 and phenylalanine in a dose dependent way with Ki values of 4.9 +/- 0.5 microM and 15.6 +/- 4.8 microM respectively. Km for T3 uptake was significantly increased to 1.86 +/- 0.42 microM (n = 4) in the presence of 3 mM unlabelled tryptophan and, similarly, Km for tryptophan uptake was significantly increased to 9.91 +/- 2.57 microM (n = 3) in the presence of 5 microM unlabelled T3. Efflux of T3 was progressively inhibited by increasing concentrations of both ligands, i.e. was saturable. We conclude that there is mutual competitive inhibition between uptake systems for T3 and tryptophan in JAR cells, but the kinetic parameters of cross-inhibition of uptake by the substrates suggest that the carriers are distinct. T3 may be transported in JAR cells by at least two transport systems with differing substrate specificities. We also demonstrated the presence of a saturable membrane carrier mediating the efflux of T3 from the cells which was subject to trans-inhibition by T3 and tryptophan.  相似文献   

16.
4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) is a potent tobacco-specific carcinogen in animals. Our previous studies indicated that there are differences between rodents and humans for the enzymes involved in the activation of NNK. To determine if the patas monkey is a better animal model for the activation of NNK in humans, we investigated the metabolism of NNK in patas monkey lung and liver microsomes and characterized the enzymes involved in the activation. In lung microsomes, the formation of 4-oxo-1-(3-pyridyl)-1-butanone (keto aldehyde), 4-(methylnitrosamino)-1-(3-pyridyl-N-oxide)-1-butanone (NNK-N-oxide), 4-hydroxy-1-(3-pyridyl)-1-butanone (keto alcohol), and 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL) was observed, displaying apparent Km values of 10.3, 5.4, 4.9, and 902 microM, respectively. NNK metabolism in liver microsomes resulted in the formation of keto aldehyde, keto alcohol, and NNAL, displaying apparent Km values of 8.1, 8.2, and 474 microM, respectively. The low Km values for NNK oxidation in the patas monkey lung and liver microsomes are different from those in human lung and liver microsomes showing Km values of 400-653 microM, although loss of low Km forms from human tissue as a result of disease, surgery or anesthesia cannot be ruled out. Carbon monoxide (90%) significantly inhibited NNK metabolism in the patas monkey lung and liver microsomes by 38-66% and 82-91%, respectively. Nordihydroguaiaretic acid (a lipoxygenase inhibitor) and aspirin (a cyclooxygenase inhibitor) decreased the rate of formation of keto aldehyde and keto alcohol by 10-20 % in the monkey lung microsomes. Alpha-Napthoflavone and coumarin markedly decreased the oxidation of NNK in monkey lung and liver microsomes, suggesting the involvement of P450s 1A and 2A6. An antibody against human P450 2A6 decreased the oxidation of NNK by 12-16% and 22-24% in the patas monkey lung and liver microsomes, respectively. These results are comparable to that obtained with human lung and liver microsomes. Coumarin hydroxylation was observed in the patas monkey lung and liver microsomes at a rate of 16 and 4000 pmol/min/mg protein, respectively, which was 5-fold higher than human lung and liver microsomes, respectively. Immunoblot analysis demonstrated that the P450 2A level in the individual patas monkey liver microsomal sample was 6-fold greater than in an individual human liver microsomal sample. Phenethyl isothiocyanate, an inhibitor of NNK activation in rodents and humans, decreased NNK oxidation in the monkey lung and liver microsomes displaying inhibitor concentration resulting in 50% inhibition of the activity (IC50) values of 0.28-0.8 microM and 4.2-6.8 microM, respectively. The results demonstrate the similarities and differences between species in the metabolic activation of NNK. The patas monkey microsomes appear to more closely resemble human microsomes than mouse or rat enzymes and may better reflect the activation of NNK in humans.  相似文献   

17.
Anandamide (arachidonylethanolamide; AnNH) has important neuromodulatory and immunomodulatory activities. This lipid is rapidly taken up and hydrolyzed to arachidonate and ethanolamine in many organisms. As yet, AnNH inactivation has not been studied in humans. Here, a human brain fatty-acid amide hydrolase (FAAH) has been characterized as a single protein of 67 kDa with a pI of 7.6, showing apparent Km and Vmax values for AnNH of 2.0 +/- 0.2 microM and 800 +/- 75 pmol.min-1.mg of protein-1, respectively. The optimum pH and temperature for AnNH hydrolysis were 9.0 and 37 degreesC, respectively, and the activation energy of the reaction was 43.5 +/- 4.5 kJ.mol-1. Hydro(pero)xides derived from AnNH or its linoleoyl analogues by lipoxygenase action were competitive inhibitors of human brain FAAH, with apparent Ki values in the low micromolar range. One of these compounds, linoleoylethanolamide is the first natural inhibitor (Ki = 9.0 +/- 0.9 microM) of FAAH as yet discovered. An FAAH activity sharing several biochemical properties with the human brain enzyme was demonstrated in human neuroblastoma CHP100 and lymphoma U937 cells. Both cell lines have a high affinity transporter for AnNH, which had apparent Km and Vmax values for AnNH of 0.20 +/- 0.02 microM and 30 +/- 3 pmol.min-1.mg of protein-1 (CHP100 cells) and 0.13 +/- 0.01 microM and 140 +/- 15 pmol.min-1.mg of protein-1 (U937 cells), respectively. The AnNH carrier of both cell lines was activated up to 170% of the control by nitric oxide.  相似文献   

18.
In cultured chromaffin cells and plasma membrane vesicles from chromaffin tissue, the transport of D-[3H]adenosine followed Michaelis-Menten saturation kinetics, with Km values of 1.5 +/- 0.3 microM and 1.9 +/- 0.2 microM, respectively. The transport of the isomer, L-[3H]adenosine, showed sigmoidal kinetics in both preparations. In plasma membrane vesicles the S0.5 was 2.5 +/- 0.2 microM with a Hill coefficient of 2.8 and the Vmax value of 0.26 +/- 0.01 pmol s-1 (mg of protein)-1. In cultured chromaffin cells the kinetic parameters for L-[3H]adenosine were S0.5 = 6.2 +/- 0.2 microM and a Vmax 19.7 +/- 0.5 pmol/min per 10(6) cells, with a pronounced positive cooperativity. The Hill coefficient was 4.9. The transport of the L-isomer in cultured cells followed Michaelis-Menten kinetics at the lowest concentrations employed, below 2 microM. On the basis of these results, we propose a kinetic model whereby the adenosine transporter functions mnemonically.  相似文献   

19.
Comparison of 7-hydroxylation of coumarin, a CYP2A6 substrate, in human and African green and cynomolgus monkey liver microsomes was made by means of an HPLC assay with UV detection. In human liver microsomes, the Km and Vmax values for the metabolic conversion were 2.1 microM and 0.79 nmol/mg/min, respectively. While African green monkey showed Km and Vmax values of 2.7 microM and 0.52 nmol/mg/min, which were similar to human, higher Km and Vmax values were found in cynomolgus monkey. Coumarin 7-hydroxylation in human and African green monkey was selectively inhibited by methoxsalen and pilocarpine (CYP2A6 inhibitors) but not by other inhibitors, i.e. alpha-naphthoflavone (CYP1A1), orphenadrine (CYP2B6), sulfaphenazole (CYP2C9), quinidine (CYP2D6) and ketoconazole (CYP3A4). Immunoinhibition results supported CYP2A6 involvement in human and its homolog in monkey in coumarin 7-hydroxylation, as only anti-CYP2A6, but not CYP2B1, CYP2C13, CYP2D6, CYP2E1 or CYP3A antibodies, inhibited this conversion. African green monkey was found to be similar to human in catalytic activity of coumarin 7-hydroxylation and response to CYP2A6 inhibitors or antibody inhibition. However, the monkey CYP2A6 is not identical to the human in that Ki values were different, and differences were observed with some CYP2A6 inhibitors, such as nicotine and methoxsalen, suggesting that, under some circumstances, studies of nicotine kinetics and drug taking behavior in monkey may not be comparable to human.  相似文献   

20.
1. The metabolism of gliclazide to hydroxygliclazide has been investigated in Sprague-Dawley rat liver microsomes. 2. The kinetics of hydroxygliclazide formation are consistent with Michaelis-Menten kinetics (mean (+/- SD, n = 3) apparent K(m) and Vmax = 256 +/- 27 microM and 1.85 +/- 0.10 nmol/ min/mg respectively). 3. Tolbutamide competitively inhibited hydroxygliclazide formation (Ki = 840 microM) and gliclazide competitively inhibited hydroxytolbutamide formation (Ki = 240 microM) with Ki similar to K(m). Therefore gliclazide and tolbutamide may be metabolized by the same enzyme in the rat. In nine livers the formation of hydroxygliclazide correlated with the formation of hydroxytolbutamide (rs = 0.82, p < 0.01). 4. Diclofenac (Ki = 64 microM), phenytoin (Ki = 38 microM), mephenytoin (Ki = 66 microM), glibenclamide (Ki = 14 microM) and glipizide (Ki = 189 microM) were fully competitive inhibitors of gliclazide hydroxylation. The rank order of Ki constants differed for gliclazide and tolbutamide suggesting that gliclazide and tolbutamide hydroxylases are not identical enzymes. 5. Quinine (Ki = 0.3 microM) and quinidine (Ki = 4.3 microM) were partially competitive inhibitors of hydroxygliclazide formation. Hydroxylation of gliclazide was related to the activity of CYP2D1 as assessed by dextrorphan production from dextromethorphan (rs = 0.83, p = 0.01). 6. In the rat gliclazide is metabolized to hydroxygliclazide by at least two cytochrome P450 isoforms, including tolbutamide hydroxylase and 2D1, which have similar affinities for gliclazide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号