首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Thiobacillus ferrooxidans strain NASF-1 grown aerobically in an Fe2+ (3%)-medium produces hydrogen sulfide (H2S) from elemental sulfur under anaerobic conditions with argon gas at pH 7.5. Sulfur reductase, which catalyzes the reduction of elemental sulfur (S0) with NAD(P)H as an electron donor to produce hydrogen sulfide (H2S) under anaerobic conditions, was purified 69-fold after 35-65% ammonium sulfate precipitation and Q-Sepharose FF, Phenyl-Toyopearl 650 ML, and Blue Sepharose FF column chromatography, with a specific activity of 57.6 U (mg protein)(-1). The purified enzyme was quite labile under aerobic conditions, but comparatively stable in the presence of sodium hydrosulfite and under anaerobic conditions, especially under hydrogen gas conditions. The purified enzyme showed both sulfur reductase and hydrogenase activities. Both activities had an optimum pH of 9.0. Sulfur reductase has an apparent molecular weight of 120,000 Da, and is composed of three different subunits (M(r) 54,000 Da (alpha), 36,000 Da (beta), and 35,000 Da (gamma)), as estimated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. This is the first report on the purification of sulfur reductase from a mesophilic and obligate chemolithotrophic iron-oxidizing bacterium.  相似文献   

2.
Thirty-six strains of iron-oxidizing bacteria were isolated from corroded concrete samples obtained at eight sewage treatment plants in Japan. All of the strains isolated grew autotrophically in ferrous sulfate (3.0%), elemental sulfur (1.0%) and FeS (1.0%) media (pH 1.5). Washed intact cells of the 36 isolates had activities to oxidize both ferrous iron and elemental sulfur. Strain SNA-5, a representative of the isolated strains, was a gram-negative, rod-shaped bacterium (0.5-0.6x0.9-1.5 microm). The mean G+C content of its DNA was 55.9 mol%. The pH and temperature optima for growth were 1.5 and 30 degrees C, and the bacterium had activity to assimilate 14CO2 into the cells when ferrous iron or elemental sulfur was used as a sole source of energy. These results suggest that SNA-5 is Thiobacillus ferrooxidans strain. The pHs and numbers of iron-oxidizing bacteria in corroded concrete samples obtained by boring to depths of 0-1, 1-3, and 3-5 cm below the concrete surface were respectively 1.4, 1.7, and 2.0, and 1.2 x 10(8), 5 x 10(7), and 5 x 10(6) cells/g concrete. The degree of corrosion in the sample obtained nearest to the surface was more severe than in the deeper samples. The findings indicated that the levels of acidification and corrosion of the concrete structure corresponded with the number of iron-oxidizing bacteria in a concrete sample. Sulfuric acid produced by the chemolithoautotrophic sulfur-oxidizing bacterium Thiobacillus thiooxidansis known to induce concrete corrosion. Since not only T. thiooxidans but also T. ferrooxidans can oxidize reduced sulfur compounds and produce sulfuric acid, the results strongly suggest that T. ferrooxidans as well as T. thiooxidans is involved in concrete corrosion.  相似文献   

3.
The anaerobic oxidation of dissolved H2S to elemental sulfur was studied at 23 degrees C and pH 6.5+/-0.3 in continuous culture of the phototrophic green sulfur bacterium Prosthecochloris aestuarii. The number of cells formed in the cultures was proportional to the amount of H2S oxidized, and the growth yield was independent of light intensity. The specific growth rate was significantly dependent on the dissolved H2S concentration and light intensity. The kinetic data were analyzed with a rate expression as a function of each rate-limiting factor. Under illumination by white fluorescent lamps, the specific oxidation rate of P. aestuarii reached a maximum of 2.02 x 10(-14) mol-H2S.h(-1).cell(-1) when the dissolved H2S concentration was 2.1 mM at 5000 lx. Simultaneous use of near infrared LED (light-emitting diode) and white fluorescent lamps provided a 35% increase in the maximum specific H2S oxidation rate.  相似文献   

4.
Chromate (CrVI) reduction by sulfide was conducted in anaerobic batch experimental systems. The molar ratio of the reduced CrVI to the oxidized S(-II) was 1:1.5 during the reaction, suggesting that the product of sulfide oxidation was elemental sulfur. Under the anaerobic condition, the reaction was pseudo first order initially with respect to CrVI, but the rate was dramatically accelerated at the later stage of the reaction. The rate acceleration was due to catalysis by elemental sulfur nanoparticles; dissolved species such as monomeric elemental sulfur and polysulfides appeared to be ineffective catalysts. Elemental sulfur nanoparticles were capable of adsorbing sulfide and such adsorbed sulfide exhibited much higher reactivity toward CrVI reduction than the aqueous-phase sulfide, resulting in the observed rate acceleration. Kinetic data under various reactant concentrations can be represented by the following empirical kinetic equation: -d[CrVI]/dt = k1 [CrVI][H2S]0.63 + k3[CrVI][triple bond S--SH]0.57. The first term on the right-hand side corresponds to the noncatalytic pathway, with k1 = 1.0 x 10(-3) (microM)(-0.63) min(-1) at pH 7.60 and 8.2 x 10(-5) (microM)-0.63 min(-1) at pH 8.10. The second term, k3[CrVI][triple bond S--SH]b, is the catalytic term with [triple bond S--SH] representing the adsorbed concentration of sulfide on the elemental sulfur nanoparticles (microM). The catalytic term is more important at the later stage of the reaction, as indicated by the observed kinetics and the enhancement of the reaction rate by externally added elemental sulfur nanoparticles. At pH 8.10, k3 = 0.0057 (microM)(-0.57) min(-1).  相似文献   

5.
Toxic H2S gas is an important industrial pollutant that is applied to biofiltration. Here, we examined the effects of factors such as inlet concentration and space velocity on the removal efficiency of a bacterial strain capable of tolerating high sulfate concentrations and low pH conditions. We examined three strains of Acidithiobacillus thiooxidans known to have sulfur-oxidizing activity, and identified strain AZ11 as having the highest tolerance for sulfate. A. thiooxidans AZ11 could grow at pH 0.2 in the presence of 74 g l(-1) sulfate, the final oxidation product of elemental sulfur, in the culture broth. Under these conditions, the specific sulfur oxidation rate was 2.9 g-S g-DCW (dry cell weight)(-1) d(-1). The maximum specific sulfur oxidation rate of A. thiooxidans AZ11 was 21.2 g-S g-DCW(-1) d(-1), which was observed in the presence of 4.2 g-SO4(2-) l(-1) and pH 1.5, in the culture medium. To test the effects of various factors on biofiltration by this strain, A. thiooxidans AZ11 was inoculated into a porous ceramic biofilter. First, a maximum inlet loading of 670 g-S m(-3) h(-1) was applied with a constant space velocity (SV) of 200 h(-1) (residence time, 18 s) and the inlet concentration of H2S was experimentally increased from 200 ppmv to 2200 ppmv. Under these conditions, less than 0.1 ppmv H2S was detected at the biofilter outlet. When the inlet H2S was maintained at a constant concentration of 200 ppmv and the SV was increased from 200 h(-1) to 400 h(-1) (residence time, 9 s), an H2S removal of 99.9% was obtained. However, H2S removal efficiencies decreased to 98% and 94% when the SV was set to 500 h(-1) (residence time, 7.2 s) and 600 h(-1) (residence time, 6 s), respectively. The critical elimination capacity guaranteeing 96% removal of the inlet H2S was determined to be 160 g-S m(-3) h(-1) at a space velocity of 600 h(-1). Collectively, these findings show for the first time that a sulfur oxidizing bacterium has a high sulfate tolerance and a high sulfur oxidizing activity below pH 1.  相似文献   

6.
Gold is commonly liberated from sulfide minerals by chemical and biological oxidation. Although these technologies are successful, they are costly and produce acidic waste streams. Removal of mineral-sulfur to overcome the mineralogical barrier could also be done by bioreduction, producing hydrogen sulfide (H(2)S). To make the sulfur within these minerals available for bioreduction, the use of partial bio-oxidation as a pretreatment to oxidize the sulfides to elemental sulfur was investigated in gas lift loop reactor experiments. Experiments at 35 °C using a refractory concentrate showed that at pH 2 arsenopyrite is preferentially partially oxidized over pyrite and that elemental sulfur can be subsequently converted into H(2)S at pH 5 via bioreduction using H(2) gas. A single partial bio-oxidation/bioreduction treatment increased the gold recovery of the concentrate from 6% to 39%. As elemental sulfur seems to inhibit further oxidation by covering the mineral surface, several treatments may be required to reach a gold recovery >90%. Depending on the number of treatments this method could be an interesting alternative to bio-oxidation.  相似文献   

7.
The growth inhibition of Moorella sp. HUC22-1 by undissociated acetic acid was analyzed using a non-competitive inhibition model coupled with a pH inhibition model. In the cells grown on H2 and CO2, the inhibition constant, K(p) of the undissociated acetic acid was 6.2 mM (164 mM as the total acetate at pH 6.2, pKa = 4.795, 55 degrees C), which was 1.5-fold higher than that obtained in cells grown on fructose. When a pH-controlled batch culture was performed using a fermentor at pH 6.2 with H2 and CO2, a maximum of 0.92 g/l of dry cell weight and 339 mM of acetate were produced after 220 h, which were 4.4- and 6.8-fold higher than those produced in the pH-uncontrolled batch culture, respectively. In order to reduce acetate inhibition in the culture medium, a repeated batch culture with cell recycling was performed at a constant pH with H2 and CO2. At a pH of 6.2, the total acetate production reached 840 mmol/l-reactor with 4.7 mmol/l-reactor of total ethanol production after 420 h. When the culture pH was maintained at 5.8, which was the optimum for ethanol production, the total ethanol production reached 15.4 mmol/l-reactor after 430 h, although the total acetate production was decreased to 675 mmol/l-reactor.  相似文献   

8.
We examined processes regulating reduced inorganic sulfur (RIS) speciation in drain sediments from coastal acid sulfate soil (ASS) landscapes. Pore water sulfide was undetectable or present at low levels (0.6-18.8 microM), consistent with FeS(s) precipitation in the presence of high concentrations of Fe2+ (generally >2 mM). Acid-volatile sulfide (AVS), with concentrations up to 1019 micromol g(-1), comprised a major proportion of RIS. The AVS to pyrite-S ratios were up to 2.6 in sediment profiles containing abundant reactive Fe (up to approximately 4000 micromol g(-1)). Such high AVS:pyrite-S ratios are indicative of inefficient conversion of FeS(s) to pyrite. This may be due to low pore water sulfide levels causing slow rates of pyrite formation via the polysulfide and H2S oxidation pathways. Overall, RIS speciation in ASS-associated drain sediments is unique and is largely regulated by abundant reactive Fe.  相似文献   

9.
A tungsten-binding protein was purified from a plasma membrane preparation of the iron-oxidizing bacterium, Acidithiobacillus ferrooxidans AP19-3 in an electrophoretically homogenous state. The protein was composed of two subunits with apparent molecular masses of 12 and 20.7 kDa. The molecular mass of the native protein was estimated to be 26.4 kDa in the presence of 1.5% 1-o-octyl-D -glucopyranoside (OGL), indicating that the native tungsten-binding protein is a heterodimeric protein. The amounts of tungsten bound to 1 mg of plasma membranes of A. ferrooxidans AP19-3 and the purified tungsten-binding protein at pH 3.0 were 191 and 1506 mug, respectively. In contrast, the amounts of tungsten bound to 1 mg of albumin, aldolase, catalase, chymotrypsinogen A, ferritin, and ferredoxin at pH 3.0 were 13.1, 18.6, 12.8, 16.6, 11.4, and 6.1 mug, respectively. Incubation of the tungsten-binding protein for 1 h with 10 mM Na(2)WO(4) plus 10 mM metal ion, such as NaVO(3), Na(2)MoO(4), CuSO(4), NiSO(4), MnSO(4), CoSO(4), or CdCl(2), did not markedly affect the amount of tungsten bound to the tungsten-binding protein, suggesting that the protein specifically binds tungsten.  相似文献   

10.
In a biotechnological process for hydrogen sulfide (H2S) removal from gas streams, operating at natronophilic conditions, formation of thiosulfate (S2O3(2-)) is unfavorable, as it leads to a reduced sulfur production. Thiosulfate formation was studied in gas-lift bioreactors, using natronophilic biomass at [Na+] + [K+] = 2 mol L(-1). The results show that at sulfur producing conditions, selectivity for S2O3(2-) formation mainly depends on the equilibrium between free sulfide (HS(-)) and polysulfide (Sx(2-)), which can be controlled via the pH. At pH 8.6, 21% of the total dissolved sulfide is present as Sx(2-) and selectivity for S2O3(2-) formation is 3.9-5.5%. At pH 10, 87% of the total dissolved sulfide is present as Sx(2-) and 20-22% of the supplied H2S is converted to S2O3(2-), independent of the H2S loading rate. Based on results of bioreactor experiments and biomass activity tests, a mechanistic model is proposed to describe the relation between S2O3(2-) formation and pH.  相似文献   

11.
The iron-oxidizing bacterium Acidithiobacillus ferrooxidans SUG 2-2 is markedly resistant to mercuric chloride and can volatilize mercury (Hg0) from mercuric ion (Hg2+) under acidic conditions. To develop a microbial technique to volatilize and recover mercury from acidic and organic compound-containing mercury wastewater, which is usually produced in the course of everyday laboratory work in Okayama University, the effects of organic and inorganic chemicals on the mercury volatilization activity of A. ferrooxidans cells were studied. Among 55 chemicals tested, the mercury volatilization from a reaction mixture (pH 2.5) containing resting cells of SUG 2-2 (1 mg of protein) and mercury chloride (14 nmol) was strongly inhibited by AgNO3 (0.05 mM), K2CrO7 (1.0 mM), cysteine (1.0 mM), trichloroethylene (1 microM), and commercially produced detergents (0.05%). However, the strong inhibition by trichloroethylene and detergents was not observed when these organic compounds were chemically decomposed using Fenton's method before the treatment of the wastewater with SUG 2-2 cells. When 20 ml of water acidified with sulfuric acid (pH 2.5) containing ferrous sulfate (3%), diluted mercury wastewater (17.5 nmol of Hg2+) and SUG 2-2 cells (0.05 mg of protein) were incubated for 10 d at 30 degrees C, 47% of the total mercury in the wastewater was volatilized and recovered into a trapping reagent for metal mercury. However, when the organic compounds in the mercury wastewater were decomposed using Fenton's method and then treated with A. ferrooxidans cells, approximately 100% of the total mercury in the wastewater was volatilized and recovered.  相似文献   

12.
Saccharomyces cerevisiae showed an ultradian respiratory oscillation during aerobic continuous culture. Analysis of the off-gas revealed that hydrogen sulphide production also oscillated. Production was first detected at the onset of low respiration and reached a maximum (1.5 microM) prior to minimum respiratory activity. Then H(2)S concentration fell rapidly to below 0.2 microM before the onset of high respiration. Injection of respiratory oscillation perturbation agents, such as glutathione (50 microM), NaNO(2) (50 microM) or acetaldehyde (4.5 mM),() transiently increased H(2)S production above 6 microM. The synchronization properties of H(2)S were analysed to reveal that changes of oscillation period and amplitude were dependent on H(2)S concentration in culture. It is concluded that H(2)S produced during oscillation produces population synchrony by respiratory chain inhibition.  相似文献   

13.
Iron oxyhydroxides as the efficient scavengers for heavy metals have been extensively investigated in iron-rich acid sulfate waters in the presence of Acidithiobacillus ferrooxidans (A. ferrooxidans, an especially important chemolithoautotroph for bioleaching and desulfurization of coal). In this study, we observed the morphology and elemental composition of cells in stationary phase and examined the dynamic variation of iron oxyhydroxides produced in cultures of A. ferrooxidans incubated in modified 9K medium initially including 0.15 M of ferrous iron, in the absence/presence of 0.2 M of chloride (NaCl/FeCl(2)). Results showed that chloride acclimation had little effect on cellular morphology and elemental uptake that was mainly related to culture medium. Furthermore, schwertmannite with the typical morphology of aggregated spheres covered by some "pincushions" was precipitated first in bacterial cultures in the favorable pH range of 2.9 ± 0.1 to 2.6 ± 0.1. Some of schwertmannite could be transformed to lozenge-shaped jarosite, due to a successively decreasing of pH values. However, the jarosite transformation represented a lag period of 5 and 4 days in the chloride-rich cultures with sulfate at a low level, compared to the cultures with sulfate at a high level, which could be attributed to the influence of sulfate requirement and chloride acclimation.  相似文献   

14.
Wastewater from petroleum refining may contain a number of undesirable contaminants including sulfides, phenolic compounds, and ammonia. The concentrations of these compounds must be reduced to acceptable levels before discharge. Sulfur formation and the effect of selected phenolic compounds on the sulfide oxidation were studied in autotrophic aerobic cultures. A recirculation reactor system was implemented to improve the elemental sulfur recovery. The relation between oxygen and sulfide was determined calculating the O2/S2- loading rates (Q(O2)/Q(S)2- = Rmt), which adequately defined the operation conditions to control the sulfide oxidation. Sulfur-producing steady states were achieved at Rmt ranging from 0.5 to 1.5. The maximum sulfur formation occurred at Rmt of 0.5 where 85% of the total sulfur added to the reactor as sulfide was transformed to elemental sulfur and 90% of it was recovered from the bottom of the reactor. Sulfide was completely oxidized to sulfate (Rmt of 2) in a stirred tank reactor, even when a mixture of phenolic compounds was present in the medium. Microcosm experiments showed that carbon dioxide production increased in the presence of the phenols, suggesting that these compounds were oxidized and that they may have been used as carbon and energy source by heterotrophic microorganisms present in the consortium.  相似文献   

15.
To develop a new process for removing high-concentration SO2 from industrial flue gases, the carbothermal reduction of SO2 by oil-sand fluid coke at 700 degrees C was investigated by varying the inlet concentration of either O2 or H2O. Concentrations of O2 and H2O ranged from 0 to 20% and from 0 to 30%, respectively, in a stream of SO2 (18%) with the balance helium. Addition of O2 and H2O was found to enhance SO2 reduction. The enhancement was attributed to the reducing gases, CO and H2, produced by solid-gas reactions between carbon and O2 or H2O. The effects of O2 and H2O on sulfur yield, however, were bifacial: adding O2 and/or H2O increased the sulfur yield when SO2 conversion was incomplete, otherwise, it decreased the sulfur yield through the formation of sulfides such as H2S. The results of a thermodynamic analysis were in a good agreementwith the experimental results, suggesting that gas-solid reactions were slow enough to allow gas-phase equilibrium. This study indicates that carbon, such as oil-sand fluid coke, can be utilized to remove SO2 in flue gases containing O2/H2O and to convert it to elemental sulfur.  相似文献   

16.
Experiments and reaction equilibrium calculations were carried out for the SO2 gas and oilsands fluid coke system. The goal was to develop a coke-based sulfur-producing flue gas desulfurization (SP-FGD) process that removes SO2 from flue gases and converts it into elemental sulfur. The conversion of SO2 to elemental sulfur proceeded efficiently at temperatures higher than 600 degrees C, and the sulfur yield reached a maximum (> 95%) at about 700 degrees C. An increase of temperature beyond 700 degrees C enhanced the reduction of product elemental sulfur, resulting in the formation of reduced sulfur species (COS and CS2), which lowered the sulfur yield at 900 degrees C to 90%. Although equilibrium calculations suggest that a lower temperature favors the conversion of SO2 as well as the yield of elemental sulfur, experiments showed no formation of elemental sulfur at 600 degrees C and below, likely due to hindered kinetics. Faster reduction of SO2 was observed at a higher temperature in the range of 700-1000 degrees C. A complete conversion of SO2 was achieved in about 8 s at 700 degrees C. Prolonging the product gas--coke contact, the yield of elemental sulfur decreased due to the formation of COS and CS2 while the SO2 conversion remained complete. Equilibrium calculations suggest that the ultimate yield of elemental sulfur maximizes at the C/SO2 ratio of 1, which represents the stoichiometry of SO2 + C-->CO2 + S. For the C/SO2 ratio < 1, equilibrium calculations predict elemental sulfur and CO2 being major products, suggesting that SO2 + C-->CO2 + S is the predominant reaction if SO2 is in excess. Experiments revealed that elemental sulfur and CO2 were only major products if the conversion of SO2 was incomplete, which is in agreement with the result of the equilibrium modeling.  相似文献   

17.
The present paper discusses H2S removal by a new generation of sewage-sludge-derived materials which are characterized by their outstanding textural properties when compared to previous materials obtained by pyrolysis and/or activation of similar precursors. Alkaline hydroxide activation was used to prepare adsorbents/catalysts covering a wide range of porosities (SBET values from 10 to 1300 m2 g(-1)). Our results outline that textural properties are important for H2S abatement. However, not only highly porous sorbents, but also a high metallic content and a basic pH of these materials are required to achieve good performances. Proper combinations of textural properties and alkalinity render superior performances with retention values (x/M) as high as 456 mg of H2S removed per g of material. These retention capacities outperform previously published data for sewage-sludge derived materials and those achieved with commercial materials (including some activated carbons). Sulfur titration shows that most H2S is removed in the form of elemental sulfur, especially in the sewage/NaOH materials.  相似文献   

18.
Sulfur is almost insoluble in water at ambient temperatures, and therefore polysulfide (Sn2−) has been considered as a possible intermediate that is used directly by bacteria in sulfur respiration. Sulfur-reducing reductases have been purified and characterized from a few sulfur reducers. However, polysulfide reduction has only been confirmed in Wolinella succinogenes. In our previous study, the direct production of hydrogen sulfide from polysulfide was confirmed by an enrichment culture obtained from natural samples under sulfate-reducing conditions. The present study attempted to isolate and identify polysulfide-reducing bacteria from the enrichment cultures. Almost all the isolated strains were classified into the genus Clostridium, based on 16S rRNA gene sequence analysis. The isolates, and some closely related strains, were able to reduce polysulfide to hydrogen sulfide. During production of 1 mol of hydrogen sulfide, approximately 2 mol of lactate was converted to acetate. Thus, dissimilatory polysulfide reduction occurred using lactate as an electron donor. The ability to reduce elemental sulfur was also examined with the isolates and the related strains. Although elemental sulfur reducing strains can reduce polysulfides, not all polysulfide-reducing strains can reduce elemental sulfur. These results demonstrate that the conversion of elemental sulfur to polysulfide seems to be important in the reduction process of sulfur.  相似文献   

19.
H2S dissolved in water can be converted to elementary sulfur or sulfate by the photosynthetic bacterium Chlorobium thiosulfatophilum. The effects of the light/dark cycle on cell growth and the rate of sulfide removal were investigated to develop an appropriate fermentation strategy. Dark fermentation was also studied without addition of H2S and CO2 as electron and carbon sources. Average specific growth rates of bacterial cultures with a continuous supply of H2S and CO2 both in light and dark conditions were occurred in the range of 0.008 to 0.009 h(-1), indicating little dependence on the light/dark cycle, but about 25% of the growth rate that was occurred only in the presence of light. Average H2S removal capacities for cultures grown under the light/dark cycles of 14/10 , 12/12 , and 9/15 h, respectively, with a continuous supply of feed gases, were 0.08, 0.07, and 0.04 micromol H2S.min(-1)/mg protein.l(-1) in the dark, and was slightly less than those in the light. H2S removal capacity with variation of the light/dark cycle was about 30-60% of that obtained in the continuously illuminated cultures. ATP concentration in the dark decreased from 0.43 to 0.37 mg ATP.mg protein(-1) as the daily dark duration decreased from 15 to 10 h. The production rate for lactic acid from a culture grown without a supply of mixtures of H2S and CO2 gases was 0.218 g lactic acid.l(-1).h(-1), much more than that grown with a supply of feed gas mixtures. Time-averaged concentrations of lactic acid produced overall during the light and dark periods were 13.7 g lactic acid.l(-1) during the light/dark cycle of 14/10 h without a supply of feed gas, and 3.1 and 2.4 g lactic acid.l(-1) during the cycles of 9/15 and 14/10 h, respectively, with a supply of feed gas.  相似文献   

20.
The role of dissolved oxygen (DO2) on the oxidation of hydrosulfide ions (HS-; C(HS-)0 = 50-150 micromol/L) into polysulfides (S(n)2-; n = 2-9), colloidal sulfur, and oxysulfur species with iron(III) trans-1,2-diaminocyclohexanetetraacetate (iron(III)-cdta; C(Fe(III)0 = 50-300 micromol/L) complexes in alkaline solutions (pH 9-10.2) was investigated at 25 +/- 1 degree C. At higher pH, oxygen was seen to slow down the hydrosulfide conversion rate. For instance, the HS- half-life was 24.8 min in a DO2-saturated iron(III)-cdta solution compared to 11.3 min in the corresponding anoxic solution (pH 10.2, C(HS-)0 = 80 micromol/L, C(Fe(III))0 = 200 micromol/L). In anoxia, HS- oligomerizes into chain-like polysulfides which behave as autocatalysts on the HS- conversion rates. The presence of DO2 disrupts the HS- oligomerization process by generating thiosulfate precursors from polysulfides, a pathway that impedes the HS- uptake. At lower alkaline pH where the hydroxide-free Fe(3+)cdta(4-) is the prevailing iron(III)-cdta species, the "iron(II)-cdta + DO2" oxidative reaction becomes crucial. Oxidative regeneration of iron(III) as Fe(3+)cdta(4-) (being more reactive than Fe(3+)OH(-)cdta(4-)) offsets to some extent the restrictive role of oxygen on the accumulation of polysulfides. Thiosulfate and sulfate were the main end-products for the current experimental conditions to the detriment of colloidal sulfur, which did not form in DO2-saturated solutions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号