首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Contraction and intracellular calcium ([Ca2+]i) transients were recorded using a video edge detector and fluorescence spectrophotometry, respectively, in rat ventricular myocytes at 22-24 degreesC stimulated at a frequency of 1 Hz. Application of the F-actin disrupter cytochalasin-D (Cyt-D) caused a large reduction in the amplitude of contraction and a small increase in the [Ca2+]i transient. These responses began within a few seconds of application and were complete after 2 min of exposure. Phase-plane relationships of contraction and [Ca2+]i were consistent with cytochalasin-D causing a decrease in myofilament responsiveness to Ca2+.  相似文献   

2.
Intracellular calcium ([Ca2+]i) and hydrogen ion concentrations (pHi) are important regulators of cell function. Those ions also may interact and it is important, therefore, to measure their concentrations simultaneously. In the present studies we used a system developed for that purpose, a fluorescent emission ratio technique for simultaneous analysis of calcium (Indo-1) and pH (SNARF-1) in single cells at video rates, and determined if arginine vasopressin (AVP, 12.5 mumol/l) evoked [Ca2+]i and pHi signals interact in MDCK cells. We also employed a simple system for analysing the side specific (basolateral or apical) application of agonist to polarized cell layers on permeable membranes. AVP is found to evoke simultaneous changes in both pHi and [Ca2+]i. Basolateral application induced transient acidification, followed by partial recovery, and a [Ca2+]i transient with kinetic pattern similar to that of the pHi. Apical application also caused a mirror image pHi and [Ca2+]i pattern but of smaller magnitude (no peak). Selective removal of extracellular calcium ([Ca2+]e) or sodium ([Na+]e) dissociated the pHi and [Ca2+]i responses in both cases. Na+e removal abolished the pHi changes, but not the [Ca2+]i transients. [Ca2+]e removal abolished the [Ca2+]i changes and reduced, but did not abolish, the pHi responses. Thus, AVP induces pHi changes which are modified by calcium while calcium signalling is not modified by changes in pHi.  相似文献   

3.
Intracellular calcium ion ([Ca2+]i) transients were measured in voltage-clamped rat cardiac myocytes with fura-2 or furaptra to quantitate rapid changes in [Ca2+]i. Patch electrode solutions contained the K+ salt of fura-2 (50 microM) or furaptra (300 microM). With identical experimental conditions, peak amplitude of stimulated [Ca2+]i transients in furaptra-loaded myocytes was 4- to 6-fold greater than that in fura-2-loaded cells. To determine the reason for this discrepancy, intracellular fura-2 Ca2+ buffering, kinetics of Ca2+ binding, and optical properties were examined. Decreasing cellular fura-2 concentration by lowering electrode fura-2 concentration 5-fold, decreased the difference between the amplitudes of [Ca2+]i transients in fura-2 and furaptra-loaded myocytes by twofold. Thus, fura-2 buffers [Ca2+]i under these conditions; however, Ca2+ buffering is not the only factor that explains the different amplitudes of the [Ca2+]i transients measured with these indicators. From the temporal comparison of the [Ca2+]i transients measured with fura-2 and furaptra, the apparent reverse rate constant for Ca2+ binding of fura-2 was at least 65s-1, much faster than previously reported in skeletal muscle fibers. These binding kinetics do not explain the difference in the size of the [Ca2+]i transients reported by fura-2 and furaptra. Parameters for fura-2 calibration, Rmin, Rmax, and beta, were obtained in salt solutions (in vitro) and in myocytes exposed to the Ca2+ ionophore, 4-Br A23187, in EGTA-buffered solutions (in situ). Calibration of fura-2 fluorescence signals with these in situ parameters yielded [Ca2+]i transients whose peak amplitude was 50-100% larger than those calculated with in vitro parameters. Thus, in vitro calibration of fura-2 fluorescence significantly underestimates the amplitude of the [Ca2+]i transient. These data suggest that the difference in amplitude of [Ca2+]i transients in fura-2 and furaptra-loaded myocytes is due, in part, to Ca2+ buffering by fura-2 and use of in vitro calibration parameters.  相似文献   

4.
To investigate Ca2+ handling in compensated hypertrophied cardiomyocytes, we measured Ca2+ transients and contraction of hypertrophied rat left ventricular myocytes induced by aortic constriction (AC). The fluorescence ratio (I405/I480) after indo-1/AM loading and circumferential length were simultaneously measured in isolated myocytes. The amplitude of Ca2+ transients (Ca-Amp) was higher in rats with AC than in sham-operated rats (Sham) (0.25 +/- 0.08 vs 0.17 +/- 0.05). There was a positive correlation between Ca-Amp and fractional shortening (FS) in both AC and Sham rats, whereas the ratio of FS/Ca-Amp was smaller in AC rats. These observations suggest that compensated hypertrophied cardiomyocytes exhibit an adaptive increase in Ca-Amp, associated with reduced myofilament responsiveness to an increase in Ca2+. Isoproterenol and forskolin increased Ca-Amp and FS, and decreased time to 50% decline of Ca2+ transients. Although myocytes from AC rats exhibited reduced responsiveness to isoproterenol, responses to forskolin did not differ between the 2 groups. The reduced beta-adrenergic response in Ca2+ handling was probably due to altered beta-adrenoceptor numbers, G-protein function and/or their coupling process.  相似文献   

5.
BACKGROUND: Adrenomedullin (AM) is a potent vasodilator peptide. AM-induced vasodilatation is mediated by an increase of NO as well as cAMP. Both AM and binding sites for this peptide have been found in cardiac tissue, indicating the possible existence of an autocrine or paracrine system of AM in the heart. METHODS AND RESULTS: Myocytes were isolated by use of retrograde coronary perfusion with physiological solution containing collagenase and hyaluronidase from adult rabbit ventricles. Contraction of cardiac myocytes was traced with a video motion detector, and [Ca2+]i was measured with indo 1 at 37 degrees C. The Ica was measured with a whole-cell patch clamp at 23 degrees C. AM and calcitonin gene-related peptide (CGRP), another member of the same peptide family, showed a concentration-dependent negative inotropic effect (10(-7) mol/L AM: contraction amplitude, 64 +/- 7% of control; [Ca2+]i, 52 +/- 5% of control; n = 10; 10(-6) mol/L CGRP: contraction amplitude, 64 +/- 25%; [Ca2+]i, 70 +/- 3%; n = 5; mean +/- SD). Ica was decreased to 60 +/- 39% by superfusion with AM after the cessation of NG-monomethyl-L-arginine (L-NMMA), an NO synthase inhibitor. Pretreatment with L-NMMA (10 mumol/L) abolished the negative inotropic effect of AM, whereas switching from AM+L-NMMA to AM+L-arginine (1 mmol/L) restored it. Superfusion with 8-bromo-cGMP also showed a negative inotropic effect. AM significantly increased the intracellular content of cGMP, a second messenger of NO, but not that of cAMP. AM (10 nmol/L) blunted the effect of 1 mumol/L forskolin. CONCLUSIONS: AM has a negative inotropic effect and decreased both [Ca2+]i and Ica, with these effects being at least party mediated via the L-arginine-NO pathway in adult rabbit ventricular myocytes.  相似文献   

6.
The effect of secondary, tertiary and quaternary methyl- and ethylamines on intracellular pH (pHi) and intracellular Ca2+ activity ([Ca2+]i) of HT29 cells was investigated microspectrofluorimetrically using pH- and Ca2+- sensitive fluorescent indicators, [i.e. 2', 7'-biscarboxyethyl-5(6)-carboxyfluorescein (BCECF) and fura-2 respectively]. Membrane voltage (Vm) was studied by the patch-clamp technique. Secondary and tertiary amines led to a rapid and stable concentration-dependent alkalinization which was independent of their pKa value. Trimethylamine (20 mmol/l) increased pHi by 0.78 +/- 0.03 pH units (n = 9) and pH remained stable for the application time. Removal led to an undershoot of pHi and a slow and incomplete recovery: pHi stayed 0.26 +/- 0.06 pH units more acid than the resting value. The quaternary amines, tetramethyl- and tetraethylamine were without influence on pHi. All tested secondary and tertiary amines (dimethyl-, diethyl-, trimethyl-, and triethyl-amine) induced a [Ca2+]i transient which reached a peak value within 10-25 s and then slowly declined to a [Ca2+]i plateau. The initial Delta[Ca2+]i induced by trimethylamine (20 mmol/l) was 160 +/- 15 nmol/l (n = 17). The [Ca2+]i peak was independent of the Ca2+ activity in the bath solution, but the [Ca2+]i plateau was significantly lower under Ca2+-free conditions and could be immediately interrupted by application of CO2 (10%; n = 6), a manoeuvre to acidify pHi in HT29 cells. Emptying of the carbachol- or neurotensin-sensitive intracellular Ca2+ stores completely abolished this [Ca2+]i transient. Tetramethylamine led to higher [Ca2+]i changes than the other amines tested and only this transient could be completely blocked by atropine (10(-6) mol/l). Trimethylamine (20 mmol/l) hyperpolarized Vm by 22.5 +/- 3.7 mV (n = 16) and increased the whole-cell conductance by 2.3 +/- 0.5 nS (n = 16). We conclude that secondary and tertiary amines induce stable alkaline pHi changes, release Ca2+ from intracellular, inositol-1,4, 5-trisphosphate-sensitive Ca2+ stores and increase Ca2+ influx into HT29 cells. The latter may be related to both the store depletion and the hyperpolarization.  相似文献   

7.
We measured [Ca2+]i and [Na+]i in isolated transgenic (TG) mouse myocytes overexpressing the Na+-Ca2+ exchanger and in wild-type (WT) myocytes. In TG myocytes, the peak systolic level and amplitude of electrically stimulated (ES) [Ca2+]i transients (0.25 Hz) were not significantly different from those in WT myocytes, but the time to peak [Ca2+]i was significantly prolonged. The decline of ES [Ca2+]i transients was significantly accelerated in TG myocytes. The decline of a long-duration (4-s) caffeine-induced [Ca2+]i transient was markedly faster in TG myocytes, and [Na+]i was identical in TG and WT myocytes, indicating that the overexpressed Na+-Ca2+ exchanger is functionally active. The decline of a short-duration (100-ms) caffeine-induced [Ca2+]i transient in 0 Na+/0 Ca2+ solution did not differ between the two groups, suggesting that the sarcoplasmic reticulum (SR) Ca2+-ATPase function is not altered by overexpression of the Na+-Ca2+ exchanger. There was no difference in L-type Ca2+ current density in WT and TG myocytes. However, the sensitivity of ES [Ca2+]i transients to nifedipine was reduced in TG myocytes. This maintenance of [Ca2+]i transients in nifedipine was inhibited by Ni2+ and required SR Ca2+ content, consistent with enhanced Ca2+ influx by reverse Na+-Ca2+ exchange, and the resulting Ca2+-induced Ca2+ release from SR. The rate of rise of [Ca2+]i transients in nifedipine in TG myocytes was much slower than when both the L-type Ca2+ current and the Na+-Ca2+ exchange current function together. In TG myocytes, action potential amplitude and action potential duration at 50% repolarization were reduced, and action potential duration at 90% repolarization was increased, relative to WT myocytes. These data suggest that under these conditions, overexpression of the Na+-Ca2+ exchanger in TG myocytes accelerates the decline of [Ca2+]i during relaxation, indicating enhanced forward Na+-Ca2+ exchanger function. Increased Ca2+ influx also appears to occur, consistent with enhanced reverse function. These findings provide support for the physiological importance of both these modes of Na+-Ca2+ exchange.  相似文献   

8.
The mechanisms, by which the P2 receptor agonists adenosine 5'-triphosphate (ATP) and uridine 5'-triphosphate (UTP) evoke an increase in the free cytosolic calcium concentration ([Ca2+]i) and in intracellular pH (pHi), have been investigated in Ehrlich ascites tumor cells. The increase in [Ca2+]i evoked by ATP or UTP is abolished after depletion of intracellular Ca2+ stores with thapsigargin in Ca2+-free medium, and is inhibited by U73122, an inhibitor of phospholipase C (PLC), indicating that the increase in [Ca2+]i is primarily due to release from intracellular, Ins(1,4,5)P3-sensitive Ca2+ stores. ATP also activates a capacitative Ca2+-entry pathway. ATP as well as UTP evokes a biphasic change in pHi, consisting of an initial acidification followed by alkalinization. Suramin and 4,4'-diisothiocyano-2,2'-stilbene-disulfonic acid (DIDS) inhibit the biphasic change in pHi, apparently by acting as antagonists at P2 receptors. The alkalinization evoked by the P2 receptor agonists is found to be due to activation of a 5'-(N-ethyl-N-isopropyl)amiloride (EIPA)-sensitive Na+/H+ exchanger. ATP and UTP elicit rapid cell shrinkage, presumably due to activation of Ca2+ sensitive K+ and Cl- efflux pathways. Preventing cell shrinkage, either by incubating the cells at high extracellular K+ concentration, or by adding the K+-channel blocker, charybdotoxin, does not affect the increase in [Ca2+]i, but abolishes the activation of the Na+/H+ exchanger, indicating that activation of the Na+/H+ exchanger is secondary to the Ca2+-induced cell shrinkage.  相似文献   

9.
Rises of intracellular Ca2+ ([Ca2+]i) are key signals for cell division, differentiation, and maturation. Similarly, they are likely to be important for the unique processes of meiosis and spermatogenesis, carried out exclusively by male germ cells. In addition, elevations of [Ca2+]i and intracellular pH (pHi) in mature sperm trigger at least two events obligatory for fertilization: capacitation and acrosome reaction. Evidence implicates the activity of Ca2+ channels modulated by pHi in the origin of these Ca2+ elevations, but their nature remains unexplored, in part because work in individual spermatozoa are hampered by formidable experimental difficulties. Recently, late spermatogenic cells have emerged as a model system for studying aspects relevant for sperm physiology, such as plasmalemmal ion fluxes. Here we describe the first study on the influence of controlled intracellular alkalinization on [Ca2+]i on identified spermatogenic cells from mouse adult testes. In BCECF [(2',7')-bis(carboxymethyl)- (5, 6)-carboxyfluorescein]-AM-loaded spermatogenic cells, a brief (30-60 s) application of 25 mM NH4Cl increased pHi by approximately 1.3 U from a resting pHi approximately 6.65. A steady pHi plateau was maintained during NH4Cl application, with little or no rebound acidification. In fura-2-AM-loaded cells, alkalinization induced a biphasic response composed of an initial [Ca2+]i drop followed by a two- to threefold rise. Maneuvers that inhibit either Ca2+ influx or intracellular Ca2+ release demonstrated that the majority of the Ca2+ rise results from plasma membrane Ca2+ influx, although a small component likely to result from intracellular Ca2+ release was occasionally observed. Ca2+ transients potentiated with repeated NH4Cl applications, gradually obliterating the initial [Ca2+]i drop. The pH-sensitive Ca2+ permeation pathway allows the passage of other divalents (Sr2+, Ba2+, and Mn2+) and is blocked by inorganic Ca2+ channel blockers (Ni2+ and Cd2+), but not by the organic blocker nifedipine. The magnitude of these Ca2+ transients increased as maturation advanced, with the largest responses being recorded in testicular sperm. By extrapolation, these findings suggest that the pH-dependent Ca2+ influx pathway could play significant roles in mature sperm physiology. Its pharmacology and ion selectivity suggests that it corresponds to an ion channel different from the voltage-gated T-type Ca2+ channel also present in spermatogenic cells. We postulate that the Ca2+ permeation pathway regulated by pHi, if present in mature sperm, may be responsible for the dihydropyridine-insensitive Ca2+ influx required for initiating the acrosome reaction and perhaps other important sperm functions.  相似文献   

10.
BACKGROUND: The cellular mechanisms that mediate the cardiodepressant effects of intravenous anesthetic agents remain undefined. The objective of this study was to elucidate the direct effects of propofol and ketamine on cardiac excitation-contraction coupling by simultaneously measuring intracellular calcium concentration ([Ca2+]i) and shortening in individual, field-stimulated ventricular myocytes. METHODS: Freshly isolated rat ventricular myocytes were loaded with the Ca2+ indicator, fura-2, and placed on the stage of an inverted fluorescence microscope in a temperature-regulated bath. [Ca2+]i and myocyte shortening (video edge detection) were monitored simultaneously in individual cells that were field-stimulated at 0.3 Hz. RESULTS: Baseline [Ca2+]i (mean +/- SEM) was 80 +/- 12 nM, and resting cell length was 112 +/- 2 microm. Field stimulation increased [Ca2+]i to 350 +/- 23 nM, and the myocytes shortened by 10% of diastolic cell length. Both intravenous anesthetic agents caused dose-dependent decreases in peak [Ca2+]i and shortening. At 300 microM, propofol prolonged time to peak concentration and time to 50% recovery for [Ca2+]i and shortening. In contrast, changes in time to peak concentration and time to 50% recovery in response to ketamine were observed only at the highest concentrations. Neither agent altered the amount of Ca2+ released from intracellular stores in response to caffeine. Propofol but not ketamine, however, caused a leftward shift in the dose-response curve to extracellular Ca2+ for shortening, with no concomitant effect on peak [Ca2+]i. CONCLUSIONS: These results indicate that both intravenous anesthetic agents have a direct negative inotropic effect, which is mediated by a decrease in the availability of [Ca2+]i. Propofol but not ketamine may also alter sarcoplasmic reticulum Ca2+ handling and increase myofilament Ca2+ sensitivity. The effects of propofol and ketamine are primarily apparent at supraclinical concentrations, however.  相似文献   

11.
We studied the effects of felodipine (a second-generation dihydropyridine Ca2+ channel blocker) on excitation-contraction coupling (E-C coupling) in single isolated guinea-pig ventricular myocytes, using the whole-cell perforated patch-clamp technique or the Ca indicator, indo-1. Felodipine inhibited both L-type Ca2+ channel currents (ICa) and cell contractions in a concentration-dependent manner (10 pM to 100 nM) when we used a holding potential of -80 mV or -40 mV. The potency of felodipine was sharply dependent on a holding potential. Namely, use of a more depolarized holding potential markedly increased the potency of felodipine for inhibition of ICa and cell contraction. Next we current-clamped cells and obtained the resting membrane potential of -82 +/- 8 mV. When cells were current-injected at 0.1 Hz, exposure to 10 nM felodipine slightly but significantly diminished the amplitude of cell contractions (7.2 +/- 1.6 to 6.7 +/- 1.7 microns, P < 0.05) within 10 min. When cells were field stimulated, exposure of cells to 10 nM felodipine also slightly diminished the amplitude of cell shortening (5.1 +/- 2.0 to 4.6 +/- 1.9 microns, P < 0.05) and [Ca2+]i transients. We observed clear voltage-dependent blockade of E-C coupling by felodipine in ventricular myocytes. Thus, therapeutic concentrations (1-10 nM) of felodipine could inhibit E-C coupling in depolarized ventricular myocytes, which might simulate an ischemic or failing heart.  相似文献   

12.
Because glycolysis is thought to be important for maintenance of cellular ion homeostasis, the aim of the present study was to examine the role of glycolysis in the control of cytosolic calcium ([Ca2+]i) and cell shortening during conditions of increased calcium influx. Thus, [Ca2+]i and unloaded cell shortening were measured in fura-2/AM loaded rat ventricular myocytes. All cells were superfused with Tyrode's solution containing glucose and pyruvate (to preserve oxidative metabolism), and glycolysis was inhibited by iodoacetate (IAA, 100 microM). Calcium influx was increased, secondary to an increase in intracellular sodium, by addition of veratrine (1 microgram/ml), or directly by either elevating [Ca2+]o from 2 to 5 mM or by exposing the cells to isoproterenol (1 to 100 nm). Veratrine exposure caused a time-dependent increase in both diastolic and systolic [Ca2+]i that resulted in cellular calcium overload and hypercontraction. The rate of increase in [Ca2+]i was more rapid in IAA-treated than in untreated myocytes, leading to a 13+/-3 v 5+/-2% increase (P<0.05) in diastolic [Ca2+]i after 5 min of exposure. The corresponding increases in systolic [Ca2+]i were 43+/-6 and 24+/-5% (P<0.05). Elevated [Ca2+]o resulted in increased [Ca2+]i transient amplitudes and cell shortening. These responses were each attenuated by inhibiting glycolysis, so that the increase was 38+/-5 v 68+/-9% ([Ca2+]i transient amplitude, P<0.05) and 41+/-11 v 91+/-18% (cell shortening, P<0.05). Inhibition of glycolysis did not, however, affect the increase in calcium transient or cell shortening during addition of isoproterenol. We conclude that glycolysis plays an essential role in the maintenance of intracellular calcium homeostasis during severe calcium overload. Glycolysis was also essential for signalling the inotropic effect that accompanied elevation in extracellular calcium, while the changes in intracellular calcium following administration of isoproterenol were not influenced by glycolysis in the present model.  相似文献   

13.
We measured the effect of high PCO (500-550 Torr) on the pHi and [Ca2+]i in cultured glomus cells of adult rat carotid body (CB) as a test of the two models currently proposed for the mechanism of CB chemoreception. The metabolic model postulates that the rise in glomus cell [Ca2+]i, the initiating reaction in the signalling pathway leading to chemosensory neural discharge, is due to [Ca2+] release from intracellular Ca2+ stores. The membrane potential model postulates that the rise in [Ca2+]i comes from influx of extracellular Ca2+ through voltage-dependent Ca2+ channels (VDCC) of the L-type. High PCO did not change pHi at PO2 of 120-135 Torr, showing that CO-induced changes in [Ca2+]i are not due to changes in pHi. High PCO caused a highly significant rise in [Ca2+]i from 90+/-12 nM to 675+/-65 nM, both in the absence and in the presence of 200 microM CdCl2, a potent blocker of L-type VDCCs. This result is fully consistent with release of Ca2+ from glomus cell intracellular stores according to metabolic model, but inconsistent with influx of extracellular Ca2+ through VDCCs according to the membrane potential model.  相似文献   

14.
To study the effects of stretch on the function of rat left atrium, we recorded contraction force, calcium transients, and intracellular action potentials (APs) during stretch manipulations. The stretch of the atrium was controlled by intra-atrial pressure. The Frank-Starling behavior of the atrium was manifested as a biphasic increase of the contraction force after increasing the stretch level. The development of the contraction force after step increase of the stretch (intra-atrial pressure from 1 to 3 mm Hg) was accompanied by the increase in the amplitude of the calcium transients (P<0.05, n=4) and decrease in the time constant of the Ca2+ transient decay. The APs of the individual myocytes were also affected by stretch; the duration of the AP was decreased at positive voltages (AP duration at 15% repolarization level, P<0.001; n=13) and increased at negative voltages (AP duration at 90% repolarization level, P<0. 01; n=13). To study the mechanisms causing these changes we developed a mathematical model describing [Ca2+]i and electrical behavior of single rat atrial myocytes. Stretch was simulated in the model by increasing the troponin (TnC) sensitivity and/or applying a stretch-activated (SA) calcium influx. We mimicked the Ca2+ influx by introducing a nonselective cationic conductance, the SA channels, into the membrane. Neither of the 2 plausible mechanosensors (TnC or SA channels) alone could produce similar changes in the Ca2+ transients or APs as seen in the experiments. The model simulated the effects of stretch seen in experiments best when both the TnC affinity and the SA conductance activation were applied simultaneously. The SA channel activation led to gradual augmentation of Ca2+ transients, which modulated the APs through increased Na+/Ca2+-exchanger inward current. The role of TnC affinity change was to modulate the Ca2+ transients, stabilize the diastolic [Ca2+]i, and presumably to produce the immediate increase of the contraction force after stretch seen in experiments. Furthermore, we found that the same mechanism that caused the normal physiological responses to stretch could also generate arrhythmogenic afterpotentials at high stretch levels in the model.  相似文献   

15.
The direct inotropic effect of angiotensin II on the myocardium is still controversial and little information exists as to its potential modification by heart disorders. Therefore, this study performed simultaneous measurements of isometric force and intracellular Ca2+ concentrations ([Ca2+]i) in left ventricular papillary muscles from sham-operated and aortic-banded rats at 10 weeks post-surgery. Angiotensin II (10(-6) M) induced a reduction of peak systolic [Ca2+]i (0.56 +/- 0.03 to 0.48 +/- 0.04 microM; P<0.05) and a parallel but insignificant diminution of developed tension (10.5 +/- 1.3 to 9.6 +/- 0.8 mN/mm2) in normal papillary muscles from sham-operated animals. Hypertrophied papillary muscles from aortic-banded rats demonstrated a significant decline in both peak systolic [Ca2+]i (0.51 +/- 0.02 to 0.44 +/- 0.01 microM; P<0.05) and developed tension (8.4 +/- 1.1 to 6.8 +/- 1.7 mN/mm2; P<0.05) after addition of angiotensin II. The time courses of the mechanical contraction and the intracellular Ca2+ signal were prolonged by angiotension II in both groups. Isoproterenol dose-dependently increased developed tension and peak systolic [Ca2+]i in papillary muscles from sham-operated rats. In contrast, the positive inotropic response to isoproterenol was markedly reduced in hypertrophied muscles despite a seemingly unimpaired increase in peak systolic [Ca2+]i. Pretreatment with angiotensin II (10(-6) M) resulted in a significant attenuation of the systolic [Ca2+]i response to isoproterenol stimulation in both normal and hypertrophied papillary muscles. Neither the bradykinin B2 antagonist icatibent (10(-6) M) nor the nitric oxide (NO) inhibitor L-NMMA (10(-6) M) abolished the depressant effects of angiotension II. Thus, ANG II induces a parallel decline of the mechanical performance and Ca2+ availability in rat myocardium. These effects are more distinct in hypertrophied than in normal muscle and become accentuated during beta-adrenergic stimulation. The underlying mechanism is not associated with the NO pathway but might involve a negative functional coupling between the angiotensin and beta-adrenergic-receptor complex.  相似文献   

16.
We have tested the hypothesis that thyroid state may influence both the flow of cellular Ca2+ and the myofilament response to Ca2+ by effects on intracellular pH (pHi) and Na+ (Nai+). Single cardiac myocytes isolated from hypothyroid, euthyroid and hyperthyroid animals were loaded with fura-2/AM (Cai2+ probe), BCECF/AM (pHi probe) or SBFI/AM (Nai+ probe). Compared with hypothyroid animals, myocytes isolated from hyperthyroid rat hearts demonstrated a significant: (1) increase in extent of shortening; (2) decrease in the time to peak contraction; (3) increase in the peak amplitude of the fura-2 fluorescence ratio; (4) decrease in pHi (DeltapHi=0. 19+/-0.05); and (5) increase in Nai+ (DeltaNai+=2.88+/-0.55 mM). We have also compared pHi in Langendorff perfused hypo- and hyperthyroid rat hearts using NMR. We have found that hyperthyroid hearts are 0.15+/-0.03 pH units more acidic than hypothyroid hearts. Analysis of mRNA levels demonstrated that hyperthyroidism increased expression of both the Na+/Ca2+ exchanger and Na+/H+ antiporter, and decreased expression of Na+ channel mRNAs. These changes appear partially responsible for the observed changes in Nai+ and pHi. Our results provide the first evidence that changes in cardiac contractility associated with altered thyroid state not only involve effects on Ca2+, but may also involve changes in the response of the myofilaments to Cai2+mediated by altered pHi and Nai+.  相似文献   

17.
The effects of tri-n-butyltin chloride (TBT) on ionic homeostasis on isolated trout hepatocytes were investigated by flow cytometry (FCM), using the Ca(2+)-sensitive and pH-sensitive fluorescent probes Indo-1 and SNARF-1, respectively. Cell viability was monitored concurrently. Treatment of hepatocytes with 1 and 5 microM TBT caused a rapid and sustained elevation of cytosolic free Ca2+ concentration [Ca2+]i and an important cytoplasmic acidification. These changes were dependent upon TBT concentration and were maintained over 60 min, the maximum exposure period investigated. At 0.5 microM TBT, there was a slight but not significant increase in [Ca2+]i and a significant reduction in intracellular pH (pHi) only after 60 min of exposure. A rise in [Ca2+]i and cytoplasmic acidification were observed before loss of viability was detectable. Experiments carried out in Ca(2+)-free medium suggest that TBT mainly mobilizes Ca2+ from intracellular stores in trout hepatocytes. The cytoplasmic acidification following TBT exposure seems to be caused by the combination of intracellular Ca2+ mobilization and by direct action of TBT. The present results suggest that ionic homeostasis perturbations could be early events in the mechanism of cell injury by TBT.  相似文献   

18.
The role of sodium-calcium exchanger in calcium homeostasis in Bergmann glial cells in situ was investigated by monitoring cytoplasmic calcium ([Ca2+]i) and sodium ([Na+]i) concentrations. The [Ca2+]i and [Na+]i transients were measured either separately by using fluorescent indicators fura-2 and SBFI, respectively, or simultaneously using the indicators fluo-3 and SBFI. Since the removal of extracellular Na+ induced a relatively small (approximately 50 nM) elevation of [Ca2+]i, the Na+/Ca2+ exchanger seems to play a minor role in regulation of resting [Ca2+]i. In contrast, kainate-triggered [Ca2+]i increase was significantly suppressed by lowering of the extracellular Na+ concentration ([Na+]o). In addition, manipulations with [Na+]o dramatically affected the recovery of the kainate-induced [Ca2+]i transients. Simultaneous recordings of [Ca2+]i and [Na+]i revealed that kainate-evoked [Ca2+]i transients were accompanied with an increase in [Na+]i. Moreover, kainate induced significantly larger [Ca2+]i and smaller [Na+]i transients under current-clamp conditions as compared to those recorded when the membrane voltage was clamped at -70 mV. The above results demonstrate that the Na(+)-Ca2+ exchanger is operative in Bergmann glial cells in situ and is able to modulate dynamically the amplitude and kinetics of [Ca2+]i signals associated with an activation of ionotropic glutamate receptors.  相似文献   

19.
BACKGROUND: We assessed the role of extracellular signal-regulated kinases (ERKs) in Ang II-stimulated contraction and associated signaling pathways in vascular smooth muscle cells (VSMCs) from human small arteries. METHODS AND RESULTS: VSMCs derived from resistance arteries (<300 microm in diameter) from subcutaneous gluteal biopsies of healthy subjects (n=8) were used to assess Ang II-stimulated [Ca2+]i, pHi, and contractile responses. [Ca2+]i and pHi were measured with fura 2-AM and BCECF-AM, respectively, and contraction was measured photomicroscopically in cells grown on Matrigel matrix. To determine whether tyrosine kinases and ERKs influence Ang II-stimulated responses, cells were pretreated with 10(-5) mol/L tyrphostin A-23 (tyrosine kinase inhibitor) and PD98059 (MEK inhibitor). Ang II-stimulated MEK activity was determined by tyrosine phosphorylation of ERKs. The angiotensin receptor subtypes (AT1 and AT2) were assessed with [Sar1,Ile8]Ang II (a nonselective subtype antagonist), losartan (a selective AT1 antagonist), and PD123319 (a selective AT2 antagonist). Ang II dose-dependently increased [Ca2+]i (pD2=8.4+/-0.36, Emax=541+/-55 nmol/L), pHi (pD2=9. 4+/-0.29, Emax=7.19+/-0.01), and contraction (pD2=9.2+/-0.21, Emax=36+/-2.2%). Ang II induced rapid tyrosine phosphorylation of ERKs, which was inhibited by PD98059. Tyrphostin A-23 and PD98059 attenuated (P<0.05) Ang II-stimulated second messengers, and PD98059 reduced Ang II-induced contraction by >50%. [Sar1,Ile8]Ang II and losartan, but not PD123319, blocked Ang II-stimulated responses. CONCLUSIONS: These data demonstrate that in VSMCs from human peripheral resistance arteries, functional Ang II receptors of the AT1 subtype are coupled to signaling cascades involving Ca2+ and pHi pathways that are partially dependent on tyrosine kinases and ERKs. ERKs, the signaling cascades characteristically associated with cell growth, may play an important role in Ang II-stimulated contraction of human VSMCs.  相似文献   

20.
New advances in sex preselection   总被引:1,自引:0,他引:1  
The effects of peroxynitrite (ONOO-) on cultured cardiac myocytes were examined by simultaneous measurements of intracellular Ca2+ ([Ca2+]i) and contractile function. On exposure to 0.2 mM ONOO-, [Ca2+]i increased to beyond the systolic level within 5 min with a concomitant decrease in spontaneous contraction of myocytes followed by complete arrest. Addition of a L-type Ca2+ channel blocker or removal of extracellular Ca2+ prevented the ONOO(-)-induced increase in [Ca2+]i, indicating that the increase in [Ca2+]i was caused by the enhanced influx of Ca2+ through the plasma membrane and not by the enhanced release from sarcoplasmic reticulum (SR). Plasma membrane fluidity and concentration of the thiobarbiturate acid-reactive substance (TBARS) in the cells remained unchanged by the ONOO- treatment. The complete cessation of contraction of myocytes persisted even under the massive increase in [Ca2+]i, which was induced by an additional saponin (5 microM) treatment. In conclusion, ONOO- increases [Ca2+]i in myocytes through disturbance of Ca2+ transport systems in the plasma membrane and impairs contractile protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号