首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper details an improvement in the properties of poly(ethylene terephthalate) (PET) with respect to its use in petroleum engineering by incorporating uniform (monodisperse; 35 to 380 nm) silica (SiO2) particles and polystyrene? SiO2 core–shell particles by melt mixing. The resulting high‐performance nanocomposite (SNPET) films are presented. The results of contact angle and water absorption tests showed that the contact angle of the amorphous SNPET films increased from 72° to 118.5° as the core–shell particle load increased from 0 to 6.0 wt%. The contact angle reached 128.0° when the films were annealed. Decreasing the SiO2 particle size demonstrably improved the SNPET film hydrophobicity and lowered the water diffusion coefficient, i.e. SiO2 particles of 35 nm in size gave the greatest enhancement of water barrier properties. Results of transmission electron microscopy, scanning electron microscopy, atomic force microscopy and optical measurements showed the homogeneous particle dispersion and nanostructure in the SNPET films. Their transparency and haziness increased as the particle size decreased. Use of such core–shell structures meant that the uniform (monodisperse) SiO2 particles could be dispersed homogeneously in PET, and effectively improved the surface, thermal and crystallization behavior of SNPET films to produce materials with high barrier stability against water. Copyright © 2010 Society of Chemical Industry  相似文献   

2.
The growth process of mullite in a porcelain stoneware body has been studied under isoconversional, isokinetic relationship and invariant kinetic parameters. Activation energy for mullite crystallisation of over 589–628 kJ mol−1 and a Ln A over 50–59 min−1 was obtained. The model was Johnson–Melh–Avrami with n = 1.5. The model chosen implies quick nucleation and subsequent one or three-dimensional growth. Isoconversional methods show an independent activation energy variation in mid range conversion degrees. Lower and higher conversion degrees show different reactions in mullite formation. Results obtained with the methods employed here are in agreement with a previous paper where the Kissinger non-isothermal method and Ligero et al. approximation were applied.  相似文献   

3.
Poly(ethylene sebacate) (PESeb) and PESeb/silica nanocomposites (PESeb/SiO2) were prepared by in situ polymerization from the direct esterification of ethylene glycol with sebacic acid in the presence of proper amounts of silica nanoparticles. The non-isothermal crystallization behavior of PESeb/SiO2 nanocomposites has been studied using different theoretical equations such as Avrami, Ozawa and combined Avrami and Ozawa equations. It is found that the addition of nanoparticles of SiO2 influenced the mechanism of nucleation and the growth of PESeb crystallites. Also, the nanocomposites show a higher Avrami value than the neat PESeb, implying a more complex crystallization configuration. Moreover, the combined Avrami and Ozawa equation can successfully describe the crystallization model under the non-isothermal crystallization. The crystallization activation energies, E a, calculated from “Kissinger’s equation” have shown that the synthesized PESeb/SiO2 nanocomposites have lower energy than the neat PESeb, reflecting the much lower energy barrier for the rapid heterogeneous nucleation.  相似文献   

4.
The thermal decomposition of kaolin with high-content of the medium ordered kaolinite was studied by Effluent Gas Analysis (EGA) under non-isothermal conditions. This technique enables to distinguish two overlaying processes during the thermal decomposition of kaolin: oxidation of organic compounds and dehydroxylation. The kinetic of non-isothermal dehydroxylation of kaolinite is controlled by the rate of the third-order reaction. For the given reaction mechanism, the overall activation energy (EA) and pre-exponential (frequency) factor (A) values are 242 kJ mol1 and 2.21 × 108 s1, respectively.  相似文献   

5.
The thermal decomposition of kaolinite was studied by differential thermogravimetry (DTG) technique under non-isothermal conditions. Samples of industrially treated (washed) kaolin with high content of the medium ordered kaolinite were calcined using a heating rate from 1 to 40 K min− 1. The apparent activation energy and frequency factor for the dehydroxylation of kaolinite was evaluated by Kissinger method as 195 ± 2 kJ × mol− 1 and (8.58 ± 0.33) × 1014 s− 1, respectively. Avrami exponent of the process was estimated using Kissinger empirical kinetic models and Carne equation.  相似文献   

6.
A novel hybrid material silica gel chemically modified by diethylenetriaminemethylenephosphonic acid GH-D-P has been developed and characterized. The results of the adsorption thermodynamics and kinetics of the as-synthesized GH-D-P for Au(III) showed that this high efficient inorganic–organic hybrid adsorbent had good adsorption capacity for Au(III), and the best interpretation for the experimental data was given by the Langmuir isotherm equation, the maximum adsorption capacity for Au(III) is 357.14 mg/g at 35 °C. Moreover, the study indicated the adsorption kinetics of GH-D-P could be modeled by the pseudo-second-order rate equation wonderfully, and the adsorption thermodynamic parameters ΔG, ΔH and ΔS were −20.43 kJ mol−1, 9.17 kJ mol−1, and 96.24 J K−1 mol−1, respectively. Therefore, the high adsorption capacity make this hybrid material have significant potential for Au(III) uptake from aqueous solutions using adsorption method.  相似文献   

7.
The propagation and termination rate coefficients for bulk polymerization of the butyl acrylate dimer (BA dimer) are determined by pulsed laser techniques. The rate coefficient for propagation, kp, is deduced for temperatures from 20 to 90 °C via the pulsed laser polymerization-size exclusion chromatography (PLP-SEC) method at pulse repetition rates between 1 and 10 Hz. The Arrhenius parameters were found to be: EA(kp) = (34.2 ± 1.0) kJ mol−1 and A(kp)/L mol−1 s−1 = (1.08 ± 0.49) × 107 L mol−1 s−1. The termination rate coefficient, kt, has been measured via SP-PLP-ESR, single pulse-pulsed laser polymerization in conjunction with time-resolved electron spin resonance detection of radical concentration. The resulting Arrhenius parameters as deduced from the temperature range −15 to +30 °C are: EA(〈kt〉) = (22.8 ± 3.7) kJ mol−1 and log(A/L mol−1 s−1) = 10.6 ± 1. The chain-length dependence of kt was studied at 30 °C. For short chains a significant dependence was found which may be represented by an exponent α = 0.79 in the power-law expression kt(i) = kt0i−α.  相似文献   

8.
Boleslav Taraba 《Fuel》2010,89(11):3598-3601
Subaquatic oxidation of two bituminous coals by water-dissolved oxygen was investigated using batch reactor equipped with membrane oxygen sensor. Effects of time, temperature and coal grain size were studied as basic parameters influencing the oxidation process. Obtained results showed the subaquatic coal oxidation can be considered as interaction of the first reaction order with respect to oxygen. From temperature dependence of oxidation rate, activation energies = 72 ± 4 kJ mol−1 and/or 50 ± 4 kJ mol−1 were calculated. For the samples, oxygen consumption RO2 was found to be in the range of 2 × 10−7 mol O2 kg−1 s−1 to 6 × 10−7 mol O2 kg−1 s−1, such values being quite comparable with RO2 for aerial oxidation of bituminous coals.  相似文献   

9.
Chemical anchoring of silica nanoparticles onto polyaniline (PANI) chains was conducted through electro-co-polymerization of aniline and N-substituted aniline grafted on surfaces of silica nanoparticles. The grafting of N-substituted aniline on surfaces of silica nanoparticles were realized through hydrolysis of triethoxysilylmethyl N-substituted aniline (ND42) and the following condensation reaction with silanol groups on surfaces of SiO2. Organic-inorganic interactions between PANI and SiO2 involved in electro-co-polymerization process pushed the polymer chains apart and so facilitated the 1D growth of the polymer. Hence, the obtained hybrid film PANI/ND42-SiO2 displayed nano-fibrous morphologies (ca. 50 nm in diameter). Consequently, PANI/ND42-SiO2 exhibited an average specific capacitance of 380 F g−1, ca. 40% higher than that of PANI/SiO2 (276 F g−1). The hybrid film also showed improved cyclic stability.  相似文献   

10.
A self-assembled bilayer lipid-like membrane (BLM) supported on glassy carbon electrode (GCE) was fabricated using 5,5-ditetradecyl-2-(2-trimethyl-ammonioethyl)-1,3-dioxane bromide (DTDB) for epinephrine (EP) determination in the presence of ascorbic acid (AA). This modified electrode (DTDB/GCE) has strong membrane adsorption accumulation and electrocatalytic ability toward EP and AA. The oxidation of EP was controlled by double step adsorption accumulation process of the DTDB-BLM. The parameters of fitted Langmuir isotherm Γmax, BADS, and ΔGADS values were determined as 1.0×10−11 mol cm−2, 2.04×106 dm3 mol−1, and −45.17 kJ mol−1 for the fist step for EP concentration less than 1 mM, and 4.92×10−11 mol cm−2, 7.35×104 dm3 mol−1, and −37.1 kJ mol−1 for the second step for EP concentration higher than 1 μM. The DPV peaks for EP and AA oxidations were appeared at 0.220 and 0.085 V versus SCE, respectively, allowing the determination of EP in the presence of high concentration of AA. The advantage of DTDB-BLM was demonstrated experimentally in comparison with other three BLMs, and attributed to the dioxane group as well as the suitable length of the carbon chain of DTDB molecule. The current response of the DTDB/GCE was fast and reproducible, suitable for the electrochemical sensing in flow-injection systems. A linear range of 1×10−8 to 1×10−4 M EP was preliminary obtained using a simple setup.  相似文献   

11.
This work is devoted to the kinetic study of densification and grain growth of LaPO4 ceramics. By sintering at a temperature close to 1500 °C, densification rate can reach up to 98% of the theoretical density and grain growth can be controlled in the range 0.6–4 μm. Isothermal shrinkage measurements carried out by dilatometry revealed that densification occurs by lattice diffusion from the grain boundary to the neck. The activation energy for densification (ED) is evaluated as 480 ± 4 kJ mol−1. Grain growth is governed by lattice diffusion controlled pore drag and the activation energy (EG) is found to be 603 ± 2 kJ mol−1. The pore mobility is so low that grain growth only occurs for almost fully dense materials.  相似文献   

12.
Crystallization kinetics and morphology of poly(trimethylene terephthalate)   总被引:1,自引:0,他引:1  
In this work, the isothermal crystallization kinetics of polytrimethylene terephthalate (PTT) was first investigated from two temperature limits of melt and glass states. For the isothermal melt crystallization, the values of Avrami exponent varied between 2 and 3 with changing crystallization temperature, indicating the mixed growth and nucleation mechanisms. Meanwhile, the cold crystallization with an Avrami exponent of 5 indicated a character of three-dimensional solid sheaf growth with athermal nucleation. Through the analysis of secondary nucleation theory, the classical regime I→II and regime II→III transitions occurred at the temperatures of 488 and 468 K, respectively. The average work of chain folding for nucleation was ca. 6.5 kcal mol−1, and the maximum crystallization rate was found to be located at ca. 415 K. The crystallite morphologies of PTT from melt and cold crystallization exhibited typical negative spherulite and sheaf-like crystallite, respectively. Moreover, the regime I→II→III transition was accompanied by a morphological transition from axialite-like or elliptical-shaped structure to banded spherulite and then non-banded spherulite, indicating that the formation of banded spherulite is very sensitive to regime behavior of nucleation.  相似文献   

13.
Poly(l-lactide) (PLLA) polymers having terminal n-alkyl groups with a wide variety of lengths (C0–C22) were synthesized by ring-opening polymerization of l-lactide in the presence of coinitiators of l-lactic acid (C0), 1-hexanol (C6), 1-dodecanol (C12), and 1-docosanol (C22) and their segmental mobility and non-isothermal and isothermal crystallization behavior were investigated by differential scanning calorimetry (DSC) and wide-angle X-ray diffractometry (WAXD). Glass transition and cold crystallization temperatures of melt-quenched samples during heating decreased with an increase in the length of terminal n-alkyl groups. The enhanced PLLA segmental mobility and hydrophobic interaction-based accelerated PLLA nucleation by the presence of terminal long n-alkyl groups should have caused the accelerated non-isothermal and isothermal crystallization of PLLA segments traced by cold crystallization temperature during heating and by radial growth rate of spherulites, respectively. The crystallization accelerating effect became higher with the length of terminal n-alkyl groups. The effects of the length of terminal n-alkyl group on the crystalline growth mechanism of PLLA at the lowest crystallizable temperature was insignificant, whereas the effects of the length of terminal n-alkyl group on the nucleation mechanism of PLLA chains were significant and insignificant for PLLA having Mn of 6–7 × 103 of 2 × 104 g mol−1, respectively. WAXD measurements revealed that the transition crystallization temperature at which crystalline modification changes from δ-form to α-form was affected by the length of terminal n-alkyl group for PLLA having Mn of 6–7 × 103 g mol−1, but was not altered by the length of terminal n-alkyl group for PLLA having Mn of 2 × 104 g mol−1.  相似文献   

14.
The corrosion inhibition characteristics of non-ionic surfactants of the TRITON-X series, known as TRITON-X-100 and TRITON-X-405, on stainless steel (SS) type X4Cr13 in sulphuric acid were investigated by potentiodynamic polarisation measurements. It was found that these surfactants act as good inhibitors of the corrosion of stainless steel in 2 mol L−1 H2SO4 solution, but the inhibition efficiency strongly depends on the electrode potential. The polarisation data showed that the non-ionic surfactants used in this study acted as mixed-type inhibitors and adsorb on the stainless steel surface, in agreement with the Flory-Huggins adsorption isotherm. Calculated ΔGads values are −57.79 kJ mol−1 for TRITON-X-100, and −87.5 kJ mol−1 for TRITON-X-405. From the molecular structure it can be supposed that these surfactants adsorb on the metal surface through two lone pairs of electrons on the oxygen atoms of the hydrophilic head group, suggesting a chemisorption mechanism.  相似文献   

15.
F. Burel  A. Feldman  C. Bunel 《Polymer》2005,46(1):15-25
The reaction between a hydrogenated hydroxyl-functionalized polyisoprene (H-HTPI) and isophorone diisocyanate isocyanurate (I-IPDI) is followed by using direct FTIR spectroscopy. The reaction kinetics is studied using a simple model taking into consideration the I-IPDI structure. The rates of individual isocyanate groups are described by a second order equation. Influence of dibutyltin dilaurate (DBTL) concentration and temperature on selectivity, defined as the ratio between the rate constant of secondary isocyanate group and the rate constant of the primary isocyanate group, is investigated. It is observed that selectivity decreases when temperature or DBTL concentration increases. Eyring parameters are determined for the catalyzed [ΔH*=77/35 (kJ mol−1), ΔS*=12/−100 (J mol−1 K−1)] and uncatalyzed reactions [ΔH*=48/43 (kJ mol−1), ΔS*=−179/−167 (J mol−1 K−1)] primary and secondary isocyanate groups being differentiated.  相似文献   

16.
Hydrophilic fumed silica (SiO2)/polyacrylonitrile (PAN) composite electrolyte membranes were prepared by electrospinning composite solutions of SiO2 and PAN in N,N-dimethylformamide (DMF). Among electrospinning solutions with various SiO2 contents, the 12 wt% SiO2 in PAN solution has highest zeta potential (−40.82 mV), and exhibits the best dispersibility of SiO2 particles. The resultant 12 wt% SiO2/PAN nanofiber membrane has the smallest average fiber diameter, highest porosity, and largest specific surface area. In addition, this membrane has a three-dimensional network structure, which is fully interconnected with combined mesopores and macropores because of a good SiO2 dispersion. Composite electrolyte membranes were prepared by soaking these porous nanofiber membranes in 1 M lithium hexafluorophosphate (LiPF6) in ethylene carbonate (EC)/dimethyl carbonate (DMC) (1:1 vol%). It is found that 12 wt% SiO2/PAN electrolyte membrane has the highest conductivity (1.1 × 10−2 S cm−1) due to the large liquid electrolyte uptake (about 490%). In addition, the electrochemical performance of composite electrolyte membranes is also improved after the introduction of SiO2. For initial cycle, 12 wt% SiO2/PAN composite electrolyte membrane delivers the discharge capacity of 139 mAh g−1 as 98% of theoretical value, and still retains a high value of 127 mAh g−1 as 89% at 150th cycle, which is significantly higher that of pure PAN nanofiber-based electrolyte membranes.  相似文献   

17.
In the present study, the sintering behavior of a commercial nano alumina powder with an initial particle size of 100 nm was investigated. The shrinkage response of the powder formed by pressure filtration (PF) during non-isothermal sintering was measured in a laser assisted dilatometer at three different heating rates of 2, 10 and 25 °C min−1 up to 1400 °C. In order to calculate the activation energy of sintering, constant rate of heating (CRH) was employed and the activation energy was found to be 608 ± 20 kJ mol−1 for iso-density method. The heating rate was demonstrated to have a vital role on densification behavior and final grain size. The mean grain size of the full dense specimens decreased from 875 to 443 nm when the heating rate increased from 2 to 25 °C min−1.  相似文献   

18.
This study investigated the effect of a specific adsorption ion, copper (II) ion, on the kinetics of the charge transfer reaction at a LiMn2O4 thin film electrode/aqueous solution (1 mol dm−3 LiNO3) interface. The zeta potential of LiMn2O4 particles showed a negative value in 1 × 10−2 mol dm−3 LiNO3 aqueous solution, while it was measured as positive in the presence of 1 × 10−2 mol dm−3 Cu(NO3)2 in the solution. The presence of copper (II) ions in the solution increased the charge transfer resistance, and CV measurement revealed that the lithium insertion/extraction reaction was retarded by the presence of small amount of copper (II) ions. The activation energy for the charge transfer reaction in the solution with Cu(NO3)2 was estimated to be 35 kJ mol−1, which was ca. 10 kJ mol−1 larger than that observed in the solution without Cu(NO3)2. These results suggest that the interaction between the lithium ion and electrode surface is a factor in the kinetics of charge transfer reaction.  相似文献   

19.
Santosh D. Wanjale 《Polymer》2006,47(18):6414-6421
Poly(1-butene)/MWCNT nanocomposites were prepared by simple melt processing technique. Crystallization, crystal-to-crystal phase transformation and spherulitic morphology were studied using differential scanning calorimetry (DSC), wide angle X-ray diffraction (WAXD) and optical microscopy (OM). The non-isothermal crystallization exhibited higher values of Zt derived from Avrami theory and lower values of F(T) obtained from Avrami-Ozawa analysis, while the isothermal crystallization revealed a significant increase in crystallization temperatures and lower crystallization half times compared to pristine PB. The observed changes in the crystallization kinetics were ascribed to the enhanced nucleation of PB in the presence of MWCNT. The nucleating activity calculated from the non-isothermal crystallization data revealed that the MWCNTs provide an active surface for the nucleation of PB. The optical micrographs exhibited significantly smaller crystallites with disordered morphology for the nanocomposites compared to the well defined spherulitic morphology for pristine PB. The rate of phase transformation from kinetically favored tetragonal to thermodynamically stable hexagonal form was noticeably enhanced as evidenced by the reduction in the half time for phase transformation from 58 h to 25 h for PB reinforced with 7% MWCNT.  相似文献   

20.
W.B. Utomo 《Electrochimica acta》2006,51(16):3338-3345
The corrosion of titanium in H2SO4 electrolytes (0.001-1.0 M) at temperatures from ambient to 98 °C has been investigated using steady-state polarization measurements. Four distinct regions of behaviour were identified, namely active corrosion, the active-passive transition, passive region and the dielectric breakdown region. The active corrosion and active-passive transition were characterized by anodic peak current (im) and voltage (Em), which in turn were found to vary with the experimental conditions, i.e., d(log?(im))/dpH=−0.8±0.1 and dEm/dpH which was −71 mV at 98 °C, −58 mV at 80 °C and −28 mV at 60 °C. The activation energy for titanium corrosion, determined from temperature studies, was found to be 67.7 kJ mol−1 in 0.1 M H2SO4 and 56.7 kJ mol−1 in 1.0 M H2SO4. The dielectric breakdown voltage (Ed) of the passive TiO2 film was found to vary depending on how much TiO2 was present. The inclusion of Mn2+ into the H2SO4 electrolyte, as is done during the commercial electrodeposition of manganese dioxide, resulted in a decrease in titanium corrosion current, possibly due to Mn2+ adsorption limiting electrolyte access to the substrate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号