首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Guo-Jian Wang  Yao Wang  Lin Liu  Jun Qiu  Yan Li 《Polymer》2007,48(3):728-733
Water-soluble single-walled carbon nanotubes (SWNTs) were synthesized by grafting poly(acrylamide) (PAM) from the surface of SWNT via reversible addition-fragmentation chain transfer (RAFT) polymerization. The RAFT agents were covalently attached to the SWNTs by functionalizing SWNTs with in situ generated diazonium compounds. The product was characterized by means of FT-IR, Raman, 1H NMR, TGA and TEM. The results showed that PAM chains had successfully grafted from SWNT by RAFT polymerization. The amount of PAM grown from SWNT increased with the polymerization time. The acrylamide conversion increased linearly with the polymerization time, indicating the “living” characteristics of the RAFT polymerization. TEM was utilized to image PAM-g-SWNT, showing relatively uniform polymer coatings present on the surface of individual, debundled nanotubes.  相似文献   

2.
Water‐soluble multi‐walled carbon nanotubes (MWNTs) were prepared via surface‐initiated atom transfer radical polymerization (ATRP) of 2‐(methacryloyloxy) ethyl phosphorylcholine (MPC) from carbon nanotubes (CNTs). The success of the surface functionalization of MWNTs with poly(2‐(methacryloyloxy) ethyl phosphorylcholine) (pMPC) was ascertained using fourier transform infrared spectrophotometry (FTIR), thermogravimetric analysis (TGA), hydrogen nuclear magnetic resonance (1H‐NMR), and transmission electron microscopy (TEM). Different from the results of the previous work, in our work, we demonstrate that the amount of pMPC on CNTs can be easily regulated by ATRP approach. In addition, from TGA results, a linear relationship between the weight loss fraction of MWNT‐pMPC and the weight of MPC fed and as high as 48.1% weight loss of MWNT‐pMPC (MWNTs grafted by pMPC) are observed. Through TEM, the core‐shell structure of MWNT‐pMPC is clearly observed, which is also different from the previous report. The pMPC‐modified MWNTs are highly soluble, which can also resist pH and saline concentration changes and remain stable in physiological environment. PMPC‐modified MWNT does not significantly affect the blood coagulation as demonstrated in plasma recalcification time (PRT) test. These highly soluble MWNTs are expected to enable their wide use in biomedical areas. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

3.
Hao Kong  Chao Gao  Deyue Yan 《Polymer》2005,46(8):2472-2485
Two kinds of polyelectrolyte: polyacrylic acid (PAA) and poly(sodium 4-styrenesulfonate) (PSS), were grafted onto the convex surfaces of multiwalled carbon nanotubes (MWNTs) by surface-initiating ATRP (atom transfer radical polymerization) from the initiating sites previously anchored onto the convex surfaces of MWNTs. The grafted polyelectrolyte can be efficiently quantified by the feed ratio of monomer to MWNT-based macroinitiator, and the maximum amount of grafted polymer is higher than 55 wt%. The polyelectrolyte-coated MWNTs resembled core-shell structures justified by the TEM images of the samples obtained, which provided direct evidence for the covalent modification of MWNT. FTIR, 1H NMR and TGA were used to determine the chemical structure of the resulting products. Comparison of UV-Vis spectra demonstrated that the products were water-soluble, and that PSS was more effective for improving the water solubility of carbon nanotubes. Using the polyelectrolyte- and carboxylic acid-functionalized MWNTs as templates, and poly(2-(N,N-dimethylaminoethyl) methacrylate (PDMAEMA)/hyperbranched polysulfone amine (HPSA) and PSS as polycation and polyanion, respectively, layer-by-layer (LbL) electrostatic self-assembly was conducted in order to explore the application of the functionalized nanotubes. It was found that the functionalized MWNTs have a high efficiency for loading polyelectrolytes by the LbL approach (the adsorbed polymer quantity is higher than 10 wt% in one assembling step). TEM observations showed that the assembled polymer shell on the MWNT surfaces was very even and flat.  相似文献   

4.
The novel hybrid polyoxazoline‐grafted multiwalled carbon nanotubes (POZO‐grafted MWNTs) were synthesized by the reaction of partially hydrolyzed polyoxazolines (Hydrolyzed‐POZO) and MWNTs having carboxylic acid groups (MWNT‐COOH) in the presence of DCC as a condensing agent. Hydrolyzed‐POZO (degree of hydrolysis, 20.2 mol % by 1H‐NMR) were produced from the hydrolysis of polyoxazolines in an aqueous NaOH solution at reflux for 72 h. MWNT‐COOH were prepared by acid treatment of pristine MWNTs. The composition, structure, thermal property, and surface morphology of the novel hybrid POZO‐grafted MWNTs were fully characterized by FT‐IR, Raman, 1H‐NMR, DSC, TGA, SEM, and TEM. The obtained POZO‐grafted MWNTs are well soluble in various organic solvents and water. It was observed that the glass transition temperature (Tg) of POZO‐grafted MWNTs was lower than that of Hydrolyzed‐POZO due to the absence of hydrogen bonding interactions between Hydrolyzed‐POZO itself caused by the incorporation with MWNTs. It was also found that Hydrolyzed‐POZO was homogeneously attached to the surfaces of MWNTs through the “grafting‐to” method. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

5.
Multiwalled carbon nanotubes (MWNT) were functionalized with segmented polyurethanes (PU) by the “grafting to” approach. Raman and X‐ray photoelectron spectroscopy (XPS) spectra show that the sidewalls of MWNTs have been functionalized with acid treatment, and the amount of COOH increases with increasing acid treatment time. FTIR and X‐ray diffraction (XRD) spectra confirm that PU is covalently attached to the sidewalls of MWNTs by esterification reaction. Similar to the parent PU, the functionalized carbon nanotube samples are soluble in highly polar solvents, such as dimethyl sulfoxide (DMSO) and N,N‐dimethylformamide (DMF). The functionalized acid amount and the grafted PU amount were determined by thermogravimetric analyses (TGA). Comparative studies, based on SEM images between the PU‐functionalized and chemically defunctionalized MWNT samples, also reveal the covalent coating character. Dynamic mechanical analysis (DMA) of nanocomposite films prepared from PU and PU‐functionalized MWNTs show enhanced mechanical properties and increased soft segment Tg. Tensile properties indicate that PU‐functionalized MWNTs are effective reinforcing fillers for the polyurethane matrix. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

6.
Chemical reactions under microwave irradiation can be very efficient, with a significant shortening of reaction time. Few studies have reported the use of microwaves to functionalize carbon nanotubes. In the work reported, a new method of formulating functionalized multi‐walled carbon nanotubes (MWNTs) was developed by covalent grafting of polyamide 6 (PA6) chains onto the carbon nanotubes assisted by microwave irradiation. PA6 chains were grafted onto acidified MWNTs through condensation reaction between the carboxylic groups of the MWNTs and the terminal amine groups of PA6 using microwave radiation heating. The functionalized carbon nanotubes (MWNT‐g‐PA6) were characterized systematically using infrared and Raman spectroscopy, transmission electron microscopy (TEM) and thermogravimetric analysis (TGA). TEM showed that the surface of the MWNTs was covered with a layer of PA6. TGA results indicated that the MWNT‐g‐PA6 contained about 47 wt% of polymer. A novel, convenient and efficient functionalization approach is reported, involving covalently grafting PA6 chains onto MWNTs assisted by microwave irradiation. Copyright © 2010 Society of Chemical Industry  相似文献   

7.
The synthesized flame retardant 9,10‐dihydro‐9‐oxa‐10‐phosphaphanthrene‐10‐oxide/vinyl methyl dimethoxysilane (DV) was used to modify multiwalled carbon nanotubes (MWNTs). The results of FTIR, 1H‐NMR, and TGA measurements show that DV has been covalently grafted onto the surfaces of MWNTs, and the MWNTs‐g‐DV is obtained successfully. Transmission electron microscopy images show that a core‐shell nanostructure appears with MWNTs as the core and the DV thin layers as the shell, and the modified MWNTs with DV can achieve better dispersion than unmodified MWNTs in EVM matrix. Thermogravimetric analysis and cone calorimeter tests indicate that the thermal stability and flame retardant are improved for the presence of the MWNTs in EVM matrix. Moreover, the improvement is more evident for EVM/MWNTs‐g‐DV composite compared to unmodified MWNTs‐based composite, which can be attributed to the better dispersion of the DV‐modified MWNTs and to the chemical structure of the combustion residue. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

8.
Chin-San Wu  Hsin-Tzu Liao 《Polymer》2007,48(15):4449-4458
In this study, polylactide/multi-walled carbon nanotubes (PLA/MWNTs) hybrids were prepared by means of a melt blending method. To enhance the compatibility between PLA and MWNTs, the acrylic acid grafted polylactide (PLA-g-AA) and the multihydroxyl-functionalized MWNTs (MWNTs-OH) were used to replace PLA and MWNTs, respectively. The crude MWNTs were chemically oxidized by a mixture of H2SO4 and HNO3 and then reacted with thionyl chloride to functionalize them with chlorocarbonyl groups (MWNTs-COCl). The MWNTs-OH was finally obtained by the reaction of MWNTs-COCl and 1,6-hexanediol. The resulting products have been characterized by FTIR, 13C solid-state NMR, TGA, DMA, SEM, TEM, and Instron mechanical tester. Due to the formation of ester groups through the reaction between carboxylic acid groups of PLA-g-AA and hydroxyl groups of MWNTs-OH, results demonstrated dramatic enhancement in thermal and mechanical properties of PLA, for example, 77 °C increase in initial decomposition temperature with the addition of only 1 wt%. Based on the result of thermal and mechanical examinations, it was found that the optimal amount of MWNTs-OH was 1 wt% because excess MWNTs-OH caused separation of the organic and inorganic phases and lowered their compatibility.  相似文献   

9.
An intumescent flame‐retardant, hex(4‐carboxylphenoxy) cyclotriphosphazene (HCPCP) was synthesized and covalently grafted on to the surface of multiwalled carbon nanotubes (MWNTs) to obtain MWNT‐HCPCP. MWNT/epoxy resin (EP) and MWNT‐HCPCP/ EP nanocomposites were prepared via thermal curing. Transmission electron microscopy results showed that a core–shell structure with MWNTs as the hard core and HCPCP as the soft shell were formed after HCPCP (10 wt%) were attached to the MWNTs. The results of flammability tests showed an increased limited oxygen index value for MWNT‐HCPCP/EP nanocomposites. The mechanical properties including tensile strength and elongation were both dramatically improved due to the better dispersion of MWNT‐HCPCP in the EP matrix. The grafting of HCPCP can improve both the dispersion of nanotubes in polymer matrix and flame retardancy of the nanocomposites. POLYM. COMPOS., 35:2187–2193, 2014. © 2014 Society of Plastics Engineers  相似文献   

10.
Tzong-Ming Wu  Yen-Wen Lin 《Polymer》2006,47(10):3576-3582
This study reports the synthesis of doped polyaniline in its emeraldine salt form (PANI-ES) with carboxylic acid and acylchloride groups contained multi-walled carbon nanotubes (designated as c-MWNTs and a-MWNTs) by in situ polymerization. Both Raman spectra and HRTEM images indicate that carboxylic acid and acylchloride groups formed at both ends and on the sidewalls of the MWNTs. Based on the π-π* electron interaction between aniline monomers and functionalized MWNT and hydrogen bonding interaction between the amino groups of aniline monomers and the carboxylic acid/acylchloride groups of functionalized MWNT, aniline molecules were adsorbed and polymerized on the surface of MWNTs. Structural analysis by FESEM and HRTEM showed that PANI-ES/c-MWNT and PANI-ES/a-MWNT composites are core (c-MWNT or a-MWNT)- shell (doped-PANI-ES) tubular structures with diameters of several tens to hundreds of nanometers, depending on the PANI content. The conductivities of 0.5 wt% functionalized MWNT containing PANI-ES/c-MWNT and PANI-ES/a-MWNT composites are 60-70% higher than that of PANI without MWNT.  相似文献   

11.
This work aims at preparing and characterizing poly(butyl acrylate) (PBA)—laponite (LRD) nanocomposite nanoparticles and nanocomposite core (PBA‐LRD)‐shell poly(methyl methacrylate) (PMMA) nanoparticles, on the one hand, and the morphology and properties of poly(lactic acid) (PLA)‐based blends containing PBA‐LRD nanocomposite nanoparticles or (PBA‐LRD)/PMMA core–shell nanoparticles as the dispersed phase, on the other hand. The PBA and (PBA‐LRD)/PMMA nanoparticles were synthesized by miniemulsion or emulsion polymerization using LRD platelets modified by 3‐methacryloxypropyltrimethoxysilane (MPTMS). The grafting of MPTMS onto the LRD surfaces was characterized qualitatively using FTIR and quantitatively using thermogravimetric analysis (TGA). The amounts of LRD in the PBA‐LRD nanocomposites were characterized by TGA. The PBA/PMMA core–shell particles were analyzed by 1H‐NMR. Their morphology was confirmed by SEM and TEM. Mechanical properties of (PBA‐LRD)/PLA blends and (PBA‐LRD)/PMMA/PLA ones were tested and compared with those of the pure PLA, showing that core–shell particles allowed increasing impact strength of the PLA while minimizing loss in Young modulus and tensile strength. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

12.
A fascinating nanoobject, diblock polymer brushes with a hard core of multiwalled carbon nanotubes (MWNTs) and a relatively soft shell of poly(methylmethacrylate)-block-polystyrene (PMMA-b-PS), was easily constructed by in situ reversible addition fragmentation chain transfer polymerization (RAFT) of methylmethacrylate followed by styrene (St) on the modified convex surfaces of MWNTs (MWNT-PMMA). The structure and morphology of the hybrid nanomaterials were characterized by FTIR, TEM, SEM, NMR, DSC and TGA. The results showed that both styrene and acrylate type monomers can be easily initiated and then propagated on the MWNT sidewalls via the in situ RAFT approach, and the length of the PS blocks increases with increasing St:MWNT-PMMA weight feed ratio.  相似文献   

13.
Biodegradable poly (lactic acid) (PLA)/poly (butyleneadipate-co-butyleneterephthalate) (PBAT)/multi-walled carbon nanotube (MWNT) polymer blend nanocomposites were prepared by using a laboratory-scale twin-screw extruder. Fractured surface morphology of the polymer blend/MWNT nanocomposites were examined via SEM. Furthermore, cross sectioned samples obtained using an ultramicrotome was observed via TEM. In addition, effects of both MWNT reinforcement and phase affinity of MWNT on thermal and rheological properties of the PLA/PBAT blends were investigated by TGA and rotational rheometer. Immiscible PLA/PBAT blend with MWNT nanocomposites showed two-step thermal degradation. The onset temperature of thermal degradation started in the PLA much earlier than in the PBAT. Nonetheless, based on TGA data, it was found that the MWNT enhanced thermal property of the PLA/PBAT blend/MWNT nanocomposites. Rheological properties revealed that both shear and complex viscosities showed unique shear thinning behavior due to selectively localized MWNT dispersion state.  相似文献   

14.
李嘉博  胡晓东  李光磊  张辉 《当代化工》2011,40(4):340-343,346
采用原位聚合法制备了碳纳米管/聚苯胺复合材料,然后通过氯磺化及水解处理得到碳纳米管/磺化聚苯胺复合材料,产物在水中具有较好的分散稳定性,为两者的应用开辟了新领域.采用红外光谱(FT-IR),扫描电镜(SEM)对产物进行分析,结果表明,碳纳米管和苯胺质量比为4:1时,聚苯胺在碳纳米管表面的包覆效果最好.碳纳米管与聚苯胺及...  相似文献   

15.
Tzong-Ming Wu  Yen-Wen Lin 《Carbon》2005,43(4):734-740
This study describes the synthesis of doped polyaniline in its emeraldine salt form (PANI-ES) with carboxylic groups containing multi-walled carbon nanotubes (c-MWNTs) via in situ polymerization. Both Raman and FTIR spectra indicate that carboxylic acid groups formed at both ends and on the sidewalls of the MWNTs. Based on the π-π* electron interaction between aniline monomers and MWNT and hydrogen bonding interaction between the amino groups of aniline monomers and the carboxylic acid group of c-MWNT, aniline molecules were adsorbed and polymerized on the surface of MWNTs. Structural analysis using FESEM and HRTEM showed that PANI-ES/c-MWNT composites are core (c-MWNT)-shell (doped-PANI-ES) tubular structures with diameters of several tens to hundreds of nanometers, depending on the PANI content. The conductivities of these PANI-ES/c-MWNT composites are 50-70% higher than those of PANI without MWNT.  相似文献   

16.
A novel oligomeric phosphorous–nitrogen‐containing intumescent flame retardant poly (2,6‐diaminopyridine spirocyclic pentaerythritol bisphosphonate) (PDSPB) is synthesized, and subsequently multiwalled carbon nanotube (MWNT)‐grafted oligomeric intumescent flame retardant, MWNT‐g‐PDSPB, is fabricated via chemical grafting reaction and characterized. The grafting reaction was characterized by FTIR, NMR, and XPS. After high‐density PDSPB (88 wt%) were attached to the MWNTs, core‐shell nanostructures with MWNTs as the hard core and PDSPB as the soft shell were formed. The resultant MWNT‐g‐PDSPB was soluble and stable in polar solvents, such as DMF and DMSO. MWNT‐g‐PDSPB has excellent thermal stability and charring ability. The TEM results showed that the functionalized MWNTs could achieve better dispersion in poly(ethylene vinyl acetate) (EVA) matrix. The residue char of MWNT‐g‐PDSPB is as high as 70 wt%, and the grafting of intumescent flame retardant of PDSPB can improve both the dispersion of MWNTs in polymer matrix and flame retardancy of the nanocomposites. POLYM. COMPOS., 2013. © 2012 Society of Plastics Engineers  相似文献   

17.
Polycitric acid was conjugated onto the surface of carbon nanotubes (CNTs), and hybrid nanomaterials containing CNT axis and polycitric acid branches that were highly soluble in aqueous solutions were synthesized. In this work, pristine MWCNTs were opened and functionalized through treatment with acid, then polycitric acid was covalently grafted onto their surface by the “grafting from” approach based on polycondensation of citric acid in the melting state. The chemical structure, morphology, thermal properties and size of MWCNT-g-PCA hybrid materials were investigated by IR, 13C NMR, 1H NMR, TEM, TGA, DSC and DLS. To investigate the biocompatibility of the synthesized hybrid nanomaterials and their potential applications for future nanomedicine, short-term in vitro cytotoxicity and hemocompatibility tests were conducted on HT1080 cell line (human fibrosarcoma). Based on the results of the in vitro cytotoxicity tests and hemolysis assay, no adverse effect was observed on the HT1080 cell and also on red blood cells up to 1 mg/mL concentration. It appeared that the changes in the conformation, shape and dispersity of CNTs, induced by the conjugated hyperbranched polymers, were the main factors that affected the toxicity of CNTs and also their interaction with the cell membranes. Interestingly, the results of the cytotoxicity tests were in agreement with our previous work, carbon nanotubes-graft-polyglycerol, proving that hyperbranched polymers conjugated onto the surface of CNTs dominated their physiochemical properties and therefore their interactions with the cell membranes.  相似文献   

18.
Thomas Périé  Ludwik Leibler 《Polymer》2011,52(14):3065-3073
We report a versatile method to achieve strong and tough structured composites by the use of ABC block terpolymers. First, multi-walled carbon nanotubes (MWNT) have been dispersed in solution by poly(styrene-block-butadiene-block-methyl methacrylate) (SBM). The influence of the solvent quality and the block molecular weights have been optimized to obtain long time stability of MWNT suspensions. Electron microscopy observations of the solution show specific localization of the SB blocks close to the nanotubes. Secondly, SBM loaded with 25wt% of MWNT was obtained from solvent cast of the stable suspensions. Composites have been prepared by melt-blending this masterbatch with polyvinylidene difluoride (PVDF). Thanks to compatibility of PVDF and PMMA blocks, the composite is structured exhibiting a mesoscopic dispersion of SBM core shell particles and with SBM copolymers coating carbon nanotubes (CNT). Tensile tests show the toughening of the nanostructured composites.  相似文献   

19.
A novel, cost-effective, easy and single-step process for the synthesis of large quantities of magnetic metal-encapsulated multi-walled carbon nanobeads (MWNB) and multi-walled carbon nanotubes (MWNT) using catalytic chemical vapour deposition of methane over Mischmetal-based AB3 alloy hydride catalyst is presented. The growth mechanism of metal-encapsulated MWNB and MWNT has been discussed based on the catalytically controlled root-growth mode. These carbon nanostructures have been characterized using scanning electron microscopy (SEM), transmission electron microscopy (TEM and HRTEM), energy dispersive analysis of X-ray (EDAX) and thermogravimetric analysis (TGA). Magnetic properties of metal-filled nanobeads have been studied using PAR vibrating sample magnetometer up to a magnetic field of 10 kOe, and the results have been compared with those of metal-filled MWNT.  相似文献   

20.
Zhong Xie  Qing Wang  Xiaoyun Liu  Zhewen Han 《Polymer》2011,52(23):5271-5276
This article reports the synthesis of poly(2,5-benzoxazole)/multiwalled carbon nanotubes (ABPBO/MWNT) composites by in situ polycondensation and their chemical and physical properties. The functional groups yielded from the surface modification of MWNTs by hydrochloric acids have been demonstrated to participate in the polymerization and thus led to the composites with homogenous dispersion of carbon nanotubes. The chemical structures and morphology of the afforded polymer composites have been fully characterized by FTIR, WAXD, UV-vis, TGA and SEM. The ABPBO/MWNT composites exhibit excellent thermal stability and greatly improved mechanical properties. The tensile modulus and tensile strength of the composites are 47% and 83%, respectively, higher than those of the polymer matrix. The dielectric constant of the composites is also significantly enhanced from 4 of the polymer matrix to 65 with the incorporation of 5 wt% MWNTs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号