首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The swelling behaviors of poly(acrylamide) (PAAm)/clay nanocomposite hydrogels (hereinafter abbreviated as NC gels) in acrylamide (AAm) aqueous solution have been investigated. As‐prepared PAAm/clay hydrogels (S‐M gels) were posttreated by immersing them in AAm aqueous solution. It was found that the swelling ratio of the NC gels increased greatly when the concentration of the solution is below a critical concentration (c*), whereas the gels were disintegrated in the solution when the concentration of the solution is above the c*. Some disc‐like particles were found in the AAm solution accompanying with the unusual swelling behaviors. This unusual swelling behavior is resulted from the change of network structure of the NC gels in AAm aqueous solution, which was further convinced by transmission electron microscopy and element analyses. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

2.
Nanocomposite hydrogels were prepared by free‐radical polymerization of the monomers acrylamide (AAm), N,N‐dimethylacrylamide (DMA), and N‐isopropylacrylamide (NIPA) in aqueous clay dispersions at 21°C. Laponite XLS was used as clay nanoparticles in the hydrogel preparation. The hydrogels based on DMA or NIPA monomers exhibit much larger moduli of elasticity compared with the hydrogels based on AAm monomer. Calculations using the theory of rubber elasticity reveal that, in DMA‐clay or NIPA‐clay nanocomposites, both the effective crosslink density of the hydrogels and the functionality of the clay particles rapidly increase with increasing amount of Laponite up to 10% (w/v). The results suggest that DMA‐clay and NIPA‐clay attractive interactions are stronger than AAm‐clay interactions due to the formation of multiple layers on the nanoparticles through hydrophobic associations. It was also shown that, although the nanocomposite hydrogels do not dissolve in good solvents such as water, they dissolve in dilute aqueous solutions of acetone or poly(ethylene oxide) of molecular weight 10,000 g/mol, demonstrating the physical nature of the crosslink points. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

3.
In this study, a novel semi-interpenetrating network (semi-IPN’s) hydrogel, composed of acrylamide (AAm) with N-vinylimidazole (NVI) as comonomer, with poly (ethylene glycol)(PEG) and a multifunctional crosslinker such as trimethylolpropane triacrylate (TMPTA) was prepared. Highly swollen poly (AAm/NVI) hydrogels and semi-IPN’s were synthesized by free radical solution polymerization. Swelling experiments were performed in water at 25°C, gravimetrically. The influence of NVI and PEG content in hydrogels were examined. Poly (AAm/NVI) and poly (AAm/NVI/PEG) hydrogels showed large extents of swelling in aqueous media the swelling being highly dependent on the chemical composition of the hydrogels. Swelling ratio of poly (AAm/NVI) hydrogels and poly (AAm/NVI/PEG) hydrogels was shown 7.16–39.85. Diffusion behavior was investigated. Water diffusion into hydrogels was found to be non-Fickian in character. This study has given the quantitative information on the swelling characteristic of poly (AAm/NVI) hydrogel and semi-IPN’s as water absorbent in many potential applications.  相似文献   

4.
Semi-IPN hydrogels based gelatin (GEL) and/or poly (ethylene glycol) (PEG) were prepared with acrylamide (AAm) and 4-styrenesulfonic acid sodium salt, (SSS) as a water adsorbent for cationic dye (methyl violet, MV) sorption. For this, chemically crosslinked copolymer of AAm/SSS copolymer with GEL and/or PEG were prepared by polymerization of aqueous solution of AAm and SSS using ammonium persulfate (APS)/N,N,N′,N′-tetramethylethylenediamine (TEMED) as redox initiating pair in presence of poly(ethylene glycol)diacrylate (PEGDA) as crosslinker. FT-IR analysis was used to identify the presence of different repeating units in the semi-IPNs. Surface morphology was characterized by scanning electron microscopy (SEM). Some swelling and diffusion characteristics were calculated for different semi-IPNs and hydrogels prepared under various formulations. Water uptake, and dye sorption properties of the crosslinked polymeric systems such as AAm/SSS, AAm/GEL/SSS, AAm/PEG/SSS and AAm/GEL/PEG/SSS hydrogel systems were investigated as a function of chemical composition of the hydrogels. MV have used in sorption studies.  相似文献   

5.
A series of pH‐thermoreversible hydrogels that exhibited volume phase transition was synthesized by various molar ratios of N‐isopropylacrylamide (NIPAAm), acrylamide (AAm), and 2‐hydroxyethyl methacrylate (HEMA). The influence of environmental conditions such as temperature and pH value on the swelling behavior of these copolymeric gels was investigated. Results showed that the hydrogels exhibited different equilibrium swelling ratios in different pH solutions. Amide groups could be hydrolyzed to form negatively charged carboxylate ion groups in their hydrophilic polymeric network in response to an external pH variation. The pH sensitivities of these gels also depended on the AAm content in the copolymeric gels; thus the greater the AAm content, the higher the pH sensitivity. These hydrogels, based on a temperature‐sensitive hydrogel, demonstrated a significant change of equilibrium swelling in aqueous media between a highly solvated, swollen gel state and a dehydrated network response to small variations of temperature. pH‐thermoreversible hydrogels were used for a study of the release of a model drug, caffeine, with changes in temperature. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 71: 221–231, 1999  相似文献   

6.
Vildan OzturkOguz Okay 《Polymer》2002,43(18):5017-5026
A series of temperature sensitive hydrogels was prepared by free-radical crosslinking copolymerization of N-t-butylacrylamide (TBA) and acrylamide in methanol. N,N′-methylenebis(acrylamide) was used as the crosslinker. It was shown that the swelling behavior of the hydrogels can be controlled by changing the amount of TBA units in the network chains. Hydrogels immersed in dimethylsulfoxide (DMSO)-water mixtures exhibited reentrant swelling behavior, in which the gels first deswell then reswell if the DMSO content of the solvent mixture is continuously increased. In water over the temperature range of 2-64 °C, hydrogels with less than 40[percnt] TBA by mole were in a swollen state while those with TBA contents higher than 60[percnt] were in a collapsed state. Hydrogels with 40-60[percnt] TBA exhibited swelling-deswelling transition in water depending on the temperature. The temperature interval for the deswelling transition of 60[percnt] TBA gel was found to be in the range from 10 to 28 °C, while for the 40[percnt] TBA gel, the deswelling started at about 20 °C and continued until the onset of the hydrolysis of the network chains at around 64 °C. It was shown that the Flory-Rehner theory of swelling equilibrium provides a satisfactory agreement to the experimental swelling data of the hydrogels, provided that the sensitive dependence of the χ parameter on both temperature and polymer concentration is taken into account.  相似文献   

7.
Nickel ions were imprinted in the prepared acrylamide/citric acid P(AAm/CA) hydrogels by using gamma rays. The conditions influencing the preparation of imprinted hydrogels are optimized. The porosity and the characterization of the prepared P(AAm), P(AAm/CA), P(AAm/CA)-M hydrogels was preformed using (TGA) and (SEM). The gel content increases by increasing the monomer concentration and the irradiation dose up to 25 kGy. The swelling (%), rate constant (k), equilibrium ratio (Seq), diffusion constant (n) and the swelling behavior in response to pH value was studied. The Ni2+ imprinted hydrogel can considerably enhance the adsorption capacity and selectivity of the metal ion from wastewater.  相似文献   

8.
The swelling behavior of balanced acrylamide (AAm)‐based polyampholyte hydrogels in water and in aqueous salt (NaCl) solutions was investigated. Equimolar ratio of the ionic comonomers 4‐vinylpyridine (cationic monomer) and acrylic acid (anionic monomer) were used together with the nonionic monomer AAm in the hydrogel preparation. The variations of the hydrogel volume in response to changes in pH were measured. It was found that the hydrogels are in a collapsed state not only at the pH of the isoelectric point pHIEP but also over a wide range of pH including pHIEP. The width of the collapsed plateau increased and the hydrogels assumed a more compact state as the ionic group content is increased. The antipolyelectrolyte behavior was observed along the collapsed plateau region, where the gel occupies a larger volume in salt solution. The experimental swelling data were compared with the predictions of the Flory‐Rehner theory of swelling equilibrium including the ideal Donnan equilibria. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

9.
Acrylamide (AAm)/acrylic acid (AAc) hydrogels in the cylindirical form were prepared by γ‐irradiating binary systems of AAm/AAc with 2.6–20.0 kGy γ‐rays. The effect of the dose and relative amounts of AAc and pH on the swelling properties, diffusion behavior of water, diffusion coefficients, and network properties of hydrogel systems was investigated. The swelling capacities of AAm/AAc hydrogels were in the range of 1000–3000%, while poly(acrylamide) (PAAm) hydrogels swelled in the range of 450–700%. Water diffusion into hydrogels was found to be non‐Fickian‐type diffusion. Diffusion coefficients of AAm/AAc hydrogels were found between 0.79 × 10?5 and 2.78 × 10?5 cm2 min?1. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 3570–3580, 2002  相似文献   

10.
In the present study, hydrogels were prepared by free radical polymerization in water?Cdioxane mixture with fixed molar ratio (25?mol%) of N-isopropylacrylamide (NIPAM) and varying remaining molar concentrations of N-tert-butylacrylamide (NTBA) and acrylamide (AAm). The structure of the resultant hydrogels was studied by Fourier transform infrared (FTIR) spectroscopy and scanning electron microscopy (SEM) techniques. The thermal properties of the hydrogels were analyzed by thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) methods. DSC thermograms were used for the quantitative determination of free, interfacial and bound water contents. The result showed that the free and interfacial water contents increased with increase in the hydrophilic AAm content, and the bound water content increased with hydrophobic NTBA content in the hydrogels. Swelling behavior of the hydrogels was evaluated at different temperatures. The percentage swelling and diffusion kinetic parameters (network structure constant, type of diffusion and diffusion constant) were calculated for all samples. The diffusion was found to be Fickian type for copolymer having equimolar concentrations of NTBA and AAm and non-Fickian type for others. Diffusion coefficients of the hydrogels were found to be increased with increasing temperature. In addition, poly(NIPAM-co-NTBA-co-AAm) hydrogels were used in concentration separation process for BSA solution. The result showed that the copolymer with equimolar NTBA and AAm contents has high separation efficiency with good thermoresponsive behavior among all copolymers.  相似文献   

11.
Super adsorbent polyacrylamide (PAAm)/nanoclay (laponite, Lap) hydrogels were prepared by in situ free radical polymerization of AAm in an aqueous solution with clay as a crosslinker. The swelling properties and water‐soluble cationic dye adsorption behaviors of the PAAm/laponite (PAAm/Lap) nanocomposite (NC) hydrogels were investigated. The parameters of swelling and diffusion of water in dye solutions were evaluated for the PAAm/Lap NC hydrogels. The adsorption behavior of the monovalent cationic dyes such as Basic Blue 12 (BB 12), Basic Blue 9 (BB 9), and Basic Violet 1 (BV 1), were studied on the NC hydrogels. The effects of the clay content of the hydrogel on its cationic dye uptake behavior were studied. The adsorption studies indicated that the rates of dye uptake by the NC hydrogels increased in the following order: BB 9 > BB 12 > BV 1. This order is similar to the swelling results of the PAAm/Lap NC hydrogel in the dye solutions. The equilibrium uptakes of the different dyes by the PAAm/Lap NC hydrogel were nearly the same. In the dye absorption studies, S‐type adsorption in the Giles classification system was found for the BB 12 and BV 1 dyes, whereas L ‐type was observed for the BB 9 dye. After the heat treatment of PAAm/Lap, the rate of dye uptake and equilibrium dye uptake were increased. The NC hydrogels may be considered as a good candidate for environmental applications to retain more water and to remove dyes. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

12.
Highly swollen acrylamide (AAm)/sodium acrylate (SA) hydrogels were prepared by free radical solution polymerization in aqueous solution of AAm with SA as comonomer and two multifunctional crosslinkers such as glutaraldehyde (GL) and divinylbenzene (DVB). Water absorption and percentage swelling were determined gravimetrically. The influence of SA content in hydrogels was examined. Percentage swelling ratio of AAm/SA hydrogels was increased up to 2946–12,533%, while AAm hydrogels swelled up to 1326–1618%. The values of equilibrium water content of the hydrogels are between 0.9297–0.9921. Diffusion behavior was investigated. Water diffusion into hydrogels was found to be non‐Fickian in character. Adsorption properties of AAm/SA hydrogels in aqueous thionin solution have been investigated. Finally, the amount of sorbed thionin per gram of dry hydrogel (qe) was calculated to be 4.81 × 10?6?11.69 × 10?6 mol thionin per gram for hydrogels. Removal efficiency (RE%) of the AAm/SA hydrogels was changed range 37.03–68.82%. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2007  相似文献   

13.
Semi-interpenetrating polymer network (semi IPN) hydrogels of poly(ethylene glycol; PEG) were prepared as a water adsorbent for dye (Janus Green B) sorption. For this, PEG and copolymer of acrylamide/sodium methacrylate (AAm/SMA) were prepared by polymerization of aqueous solution of acrylamide (AAm), sodium methacrylate (SMA) using ammonium persulfate (APS)/N,N,N′,N′-tetramethylethylenediamine (TEMED) as redox initiating pair in presence of PEG and poly(ethylene glycol)dimethacrylate (PEGDMA) as crosslinker. FTIR spectroscopy was used to identify the presence of different repeating units in the semi IPNs. Some swelling and diffusion characteristics were calculated for different semi IPNs and hydrogels prepared under various formulations. Water uptake and dye sorption properties of AAm/SMA hydrogels and AAm/SMA/PEG semi IPNs were investigated as a function of chemical composition of the hydrogels. Janus Green B have used in sorption studies. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

14.
In this study, a random copolymer of acylamide and acrylic acid [poly(AAm‐co‐AA)] was prepared by a redox copolymerization method of their aqueous solutions. The effects of initial AAm/AA mole ratio, PEG 4000 content, and N,N′‐methylenebisacrylamide concentration on swelling behavior were investigated in water. Average molecular weights between crosslinks, percentage swelling, swelling equilibrium values, and diffusion/swelling characteristics (i.e., the structure of network constant, the type of diffusion, the initial swelling rate, swelling rate constant) were evaluated for every hydrogel systems. The hydrogels showed mass swelling capabilities in the range 789–1040% (for AAm/AA hydrogels), 769–930% (for AAm/AA hydrogels in the presence of PEG 4000), and 716–1040% (for AAm/AA hydrogels containing different concentrations of the crosslinker). The swelling capabilities of the hydrogels decreased with the increasing AA, PEG 4000, and crosslinker concentrations. The diffusion of water into AAm/AA hydrogels was found to be a non‐Fickian type. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 91: 1289–1293, 2004  相似文献   

15.
This paper reports a temperature-sensitive poly(N-isopropylacryamide-co-acrylamide)/montmorillonite (P(NIPAAm-co-Am)/MMT) nanocomposite hydrogel with enhanced mechanical properties and thermodynamic stability based on chitosan and nanoparticle MMT. With biodegradable N-maleyl chitosan crosslinker, the temperature-sensitive nanocomposite hydrogel was prepared by free radical polymerization in aqueous solution, using N-isopropylacryamide (NIPAAm), acrylamide (Am), and montmorillonite (MMT) as materials. The clay content varied from 0 to 7 wt% (based on the monomer). The temperature-sensitive behavior, mechanical property, thermodynamic stability, and enzymatic degradation of the nanocomposite hydrogels were investigated in detail.  相似文献   

16.
Two different hydrogels, prepared from N‐vinyl‐2‐pyrrolidone/acrylic acid (NVP/AAc) and N‐vinyl‐2‐pyrrolidone/acrylamide (NVP/AAm), were studied for the separation and extraction of some heavy‐metal ions from wastewater. The hydrogels were prepared by the γ‐radiation‐induced copolymerization of the aforementioned binary monomer mixtures. Further modification was carried out for the NVP/AAc copolymer through an alkaline treatment to improve the swelling behavior by the conversion of the carboxylic acid groups into its sodium salts. The thermal stability and swelling properties were also investigated as functions of the N‐vinyl‐2‐pyrrolidone content. The characterization and some selected properties of the prepared hydrogels were studied, and the possibility of their practical use in wastewater treatment for heavy metals such as Cu, Ni, Co, and Cr was investigated. The maximum uptake for a given metal was higher for a treated NVP/AAc hydrogel than for an untreated NVP/AAc hydrogel and was higher for an untreated NVP/AAc hydrogel than for an NVP/AAm hydrogel. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 2642–2652, 2004  相似文献   

17.
Crosslinked hydrogels comprising acrylamide (AAm) and maleic acid (MA) were synthesized by free radical polymerization in presence of a crosslinker using ammonium persulfate (APS) and N,N,N1,N1-tetramethylethylenediamine (TMEDA) as initiator and activator, respectively. The crosslinked hydrogel formation was confirmed by IR analysis. The swelling/de-swelling characteristics were studied in detail for crosslinked poly(acrylamide-co-maleic acid) [poly(AAM-co-MA)] hydrogels containing different amounts of maleic acid. Four different crosslinkers such as 1,2-ethyleneglycol dimethacrylate (EGDMA), 1,4-butanediol diacrylate (BDDA), 1,6-hexanediol diacrylate (HDDA), and diallyl phthalate (DP) were utilized to study their influence on the swelling behavior of the hydrogels. The effect of reaction parameters such as the concentration of crosslinker and initiator on swelling capacity of the crosslinked poly(AAm-co-MA) hydrogels was also investigated. Further, the influence of various salts, simulated biological fluids, and pH solutions on the swelling pattern of hydrogels was studied extensively. Phase separation morphology of crosslinked hydrogels was also studied by differential scanning calorimetry. The morphology of crosslinked hydrogels were revealed using scanning electron microscopy (SEM).  相似文献   

18.
Carboxymethyl cellulose hydrogels were synthesized by grafting of acrylamide (AAm) and methacrylic acid (MAAc) individually with different concentrations onto carboxymethyl cellulose (CMC) using direct radiation grafting technique. It was found that for both Poly(CMC/AAm) and Poly(CMC/MAAc), the grafting yield and grafting ratio increase with the increasing monomer concentration. Also, it is noted that both grafting ratio and grafting yield of Poly(CMC/AAm) are higher than that of Poly(CMC/MAAc). The effect of different monomer concentrations on gel (%) and swelling behavior was studied. It is found that the increasing monomer concentration increases gel (%). For Poly(CMC/AAm) hydrogels, the swelling behavior decreases with increasing AAm concentration due to high crosslinking hydrogel formation, while as MAAc content increases, swelling behavior increases up to Poly(CMC/MAAc) 1:25 wt%. Swelling kinetics and diffusion mechanism indicate that the water penetration obeys non-Fickian transport mechanism. The structures and properties of the original CMC and the prepared Poly(CMC/MAAc) and Poly(CMC/AAm) were characterized using different analytical tools such as Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), thermogravimetric analysis (TGA), and scanning electron microscope (SEM). This study provides a solution to the discharge of different pollutants from wastewater. The adsorption capacity of Poly(CMC/MAAc) and Poly(CMC/AAm) hydrogels toward heavy metals, Cu+2 and Co+2, dyes such as acid blue dye and methyl green, and organic contaminants such as 4-chlorophenol and 2,4-Dichlorophenoxy acetic acid has been investigated.  相似文献   

19.
Water uptake and the sorption properties of polyelectrolyte hydrogels made by the polymerization of acrylamide (AAm) with maleic acid (MA) were investigated as a function of composition to find materials with swelling and dye sorption properties. Highly swollen acrylamide/maleic acid (AAm/MA) hydrogels were prepared by free radical solution polymerization in aqueous solutions of AAm with MA as comonomer and two multifunctional cross-linkers such as trimethylolpropane triacrylate (TMPTA) and 1,4-butanediol dimethacrylate (BDMA). Swelling experiments were performed in water at 25°C, gravimetrically. Chemically cross-linked AAm/MA hydrogels were used in experiments on sorption of water-soluble monovalent cationic dyes such as “Nil blue” (NB) and “Methyl violet (MV)”. Weight-swelling ratio values of AAm/MA hydrogels were calculated range 8.88–61.46. Some swelling kinetic parameters were found. Diffusion behavior of water and water sorption rate constant were investigated. Water diffusion into hydrogels was found to be non-Fickian in character. For sorption of cationic dyes, NB and MV into AAm/MA hydrogels were studied by batch sorption technique at 25°C. AAm/MA hydrogels in the dye solutions showed coloration. However, the AAm hydrogel did not show sorption of any dye from solution. The amount of the dye sorbed per unit mass of AAm/MA hydrogels was investigated.  相似文献   

20.
Sang Chul Jung 《Polymer》2009,50(20):4957-10547
We investigated the volume phase transition temperatures of N-isopropylmethacrylamide (NIPMA)-co-N-isopropylacrylamide (NIPA) gels with various mole ratios. Nanometer-sized NIPA-co-NIPMA gel particles were prepared by precipitation polymerization and their swelling behaviors were measured using photon correlation spectroscopy (PCS). After applying the interaction energies found using the molecular simulation technique, we predicted the swelling equilibria for the hydrogels in a water system. For studying cross-linked hydrogel particles in water, we have combined the modified double-lattice theory with Flory and Erman's theory of elasticity. To correct for the deviation of the volume transition temperature, we considered the additional energy parameter (?h) between the cross-linker and solvent molecules. We used the corrected model to describe the swelling behavior of the hydrogel and the volume transition temperature. The corrected model was agreed well with their experimental data with no fitting parameters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号