首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Dan Peng 《Polymer》2006,47(17):6072-6080
A series of well-defined amphiphilic graft copolymers consisting hydrophilic poly(acrylic acid) backbones and hydrophobic polystyrene side chains were synthesized by successive atom transfer radical polymerization (ATRP) followed by hydrolysis of poly(methoxymethyl acrylate) (PMOMA) backbone. Grafting-from strategy was employed for the synthesis of graft copolymers with narrow molecular weight distribution. Hydrophobic side chains were connected to the backbone through stable C-C bonds. The backbone can be easily hydrolyzed with HCl without affecting hydrophobic side chains. This family of amphiphilic graft copolymers can form stable micelles in water. The critical micelle concentration was determined by fluorescence spectroscopy. The micellar morphologies and sizes were studied using transmission electron microscopy (TEM) and dynamic light scattering (DLS). The sizes of micelles were dependent on ionic strength, pH value and preparation conditions.  相似文献   

2.
Amphiphilic graft copolymers comprising monomeric units of methoxy poly(ethylene glycol) (mPEG)-acrylate, 2-hydroxyethyl methacrylate (HEMA)–cholesterol conjugates and HEMA were synthesized and their properties characterized. The value of the critical micelle concentration (CMC) for these copolymers is linearly proportional to the ratio of the number of mPEG–acrylates to that of the HEMA–cholesterol conjugates per macromolecule (NPEG/Nc), which is the most important parameter which influences the formation of polymeric micelles. The latter show excellent colloidal stability and their sizes decrease with increasing CMC. Based on the quenching of pyrene fluorescence, the relatively high levels of the loading capacity of pyrene are attributed to the elevated hydrophobicity of the micelle core. The loading capacity of pyrene decreases with increasing CMC. The weight-average partition coefficient for pyrene in polymeric micelles increases with increasing polymer concentration because more micelles are available for accommodating pyrene. Copyright © 2004 Society of Chemical Industry  相似文献   

3.
A novel, well-defined, amphiphilic graft copolymer was synthesized by the free-radical copolymerization of acrylic acid and an amphiphilic macromonomer, n-octylphenyl polyoxyethylene acrylate. This acrylic copolymer was characterized by IR and 1H-NMR. The number-average molecular weight was determined by gel permeation chromatography to be 4.37 × 104 (weight-average molecular weight/number-average molecular weight = 1.23). The graft copolymer exhibited good solubility in water and high surface activity at much lower concentrations. The molecules of the AA–C8PhEO10Ac copolymer formed polymolecular micelles at 3.0 × 10−4 g/mL. The aggregation of the copolymer was examined in aqueous solution by measurement of the fluorescence of 2-p- toluidinylnaphthalene 6-sulfonate as a fluorescent probe. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

4.
Dorota Neugebauer 《Polymer》2007,48(17):4966-4973
Poly(ethylene glycol)methyl ether methacrylate (PEOMA) and oligo(propylene glycol)-4-nonylphenyl ether acrylate (OPOPhNA) were copolymerized by atom transfer radical polymerization (ATRP). Grafting through method was employed in the presence of CuBr/HMTETA or CuBr/PMDETA catalyst/ligand complex in anisole at 70 °C. It yielded a heterografted copolymers containing hydrophilic PEO and hydrophobic OPOPhNA side chains with polymerization degree DP = 68-315 in the presence of PMDETA and DP = 48-195 in the presence HMTETA. Moreover, higher reactivity of PEOMA than OPOPhNA (rmethacrylate > racrylate), which was observed during copolymerization, suggested the formation of copolymers with a spontaneous gradient composition starting from the grafted segment of P(PEOMA). The molecular weight distribution (MWD) was increased with DP in the range 1.2-1.6. The X-ray diffraction analysis (WAXS) indicated that larger number of PEO segments generated crystalline properties in the copolymers with amorphous OPOPhNA.  相似文献   

5.
Isotactic polypropylene-based polymer hybrids linking poly(methyl methacrylate) (PMMA) and poly(2-hydroxyethyl methacrylate) (PHEMA) were successfully synthesized by a graft copolymerization from maleic anhydride-modified polypropylene (PP-MAH). PP-MAH reacted with ethanolamine to produce a hydroxyl group containing polypropylene (PP-OH) and the thus obtained PP-OH was treated with 2-bromoisobutyryl bromide and converted to a 2-bromoisobutyryl group containing polypropylene (PP-Br). The metal-catalyzed radical polymerization of MMA with PP-Br was performed using a copper catalyst system in o-xylene solution at 100 °C to give the PP-based polymer hybrids linking PMMA segments (PP-PMMA hybrids). Thus obtained PP-PMMA hybrids demonstrated higher melting temperature than PP-Br and microphase-separation morphology at the nanometer level owing to the chemical linkage between both segments. On the other hand, the polymer hybrids linking PHEMA segment (PP-PHEMA hybrids) were also obtained by the radical polymerization of HEMA with PP-Br in o-xylene slurry at 25 °C. TEM observation suggested that the polymerization mainly initiated on the surface of the PP-Br powder, led to the peculiar core-shell-like morphology. These PP-PHEMA hybrid powders showed a good affinity with water due to the hydrophilicity of the PHEMA segments.  相似文献   

6.
以辛基酚聚氧乙烯醚丙烯酸酯(C8PhEO10Ac)为大分子单体,丙烯酸(AA)、丙烯酰胺(AM)为共聚单体,采用大分子单体接枝共聚法,制备了一种两亲性接枝共聚物(AA-AM-g-C8PhEO10Ac),用静态光散射(SLS)与GPC联用技术测得接枝共聚物的分子量为9.51×105,用FTIR、1H NMR和TG/DTA等手段对共聚物的结构及性能进行了表征。采用透射电子显微镜(TEM)对聚合物在水溶液中的自组装行为进行了初步研究。结果表明,AA-AM-g-C8PhEO10Ac在水溶液中自组装,形成球型胶束,随着浓度增大,趋向于形成更大的自组装体。  相似文献   

7.
Atom transfer radical polymerization (ATRP) of 1‐(butoxy)ethyl methacrylate (BEMA) was carried out using CuBr/2,2′‐bipyridyl complex as catalyst and 2‐bromo‐2‐methyl‐propionic acid ester as initiator. The number average molecular weight of the obtained polymers increased with monomer conversion, and molecular weight distributions were unimodal throughout the reaction and shifted toward higher molecular weights. Using poly(methyl methacrylate) (PMMA) with a bromine atom at the chain end, which was prepared by ATRP, as the macro‐initiator, a diblock copolymer PMMA‐block‐poly [1‐(butoxy)ethyl methacrylate] (PMMA‐b‐PBEMA) has been synthesized by means of ATRP of BEMA. The amphiphilic diblock copolymer PMMA‐block‐poly(methacrylic acid) can be further obtained very easily by hydrolysis of PMMA‐b‐PBEMA under mild acidic conditions. The molecular weight and the structure of the above‐mentioned polymers were characterized with gel permeation chromatography, infrared spectroscopy and nuclear magnetic resonance. Copyright © 2005 Society of Chemical Industry  相似文献   

8.
Xiaohuan Zhang 《Polymer》2007,48(19):5507-5513
A series of well-defined graft copolymers with a polyallene-based backbone and poly(methyl methacrylate) side chains were synthesized by the combination of living coordination polymerization of 6-methyl-1,2-heptadien-4-ol and atom transfer radical polymerization of methyl methacrylate. We first prepared poly(alcohol) with polyallene repeating units via 6-methyl-1,2-heptadien-4-ol by living coordination polymerization initiated by [(η3-allyl)NiOCOCF3]2, followed by transforming the pendant hydroxyl groups into halogen-containing ATRP initiation groups. Next, grafting-from route was used for the synthesis of the well-defined graft copolymer with excellent solubility: poly(methyl methacrylate) was grafted to the backbone via ATRP of methyl methacrylate. This kind of graft copolymer is the first example of graft copolymer via allene derivative and methacrylic monomer.  相似文献   

9.
A well-defined amphiphilic comb-like copolymer of poly(ethylene oxide)(PEO) as main chain and polylactide (PLA) as side chain was successfully prepared via a combination of anionic polymerization and coordination-insertion ring-opening polymerization. The anionic copolymerization of ethylene oxide (EO) and ethoxyethyl glycidyl ether (EEGE) was carried out using potassium 2-(2-methoxyethoxy)ethoxide as initiator, and then ethoxyethyl groups of EEGE units of the copolymers obtained were removed by hydrolysis. Two copolymers of methoxypoly(ethylene oxide-co-glycidol) [mpoly(EO-co-Gly)] were formed with multiple hydroxyl sites (the molar ratio values of Gly to EO in copolymers: 1/10.6 and 1/5.2; Mn: 10,100 and 5,020 respectively), and them were used further to initiate the ring-opening polymerization of lactide in the presence of stannous octoate, and a well-defined comb-like copolymer of PEO as main chain and PLA as side chain was obtained. The intermediate and final products of PEO-g-PLA were characterized by GPC and NMR in detail.  相似文献   

10.
由聚氧乙烯(PEO)大单体与丙烯酸丁酯(BA)、甲基丙烯酸甲酯(MMA)合成含PEO支链的两亲性(BA-MMA)三元接枝共聚物,对该共聚物的乳化性、吸水性和物理机械性能进行了研究.结果表明,合成的共聚物具有良好的乳化性及吸水性,并在一定组成下呈现热塑性弹性体的性质.  相似文献   

11.
The graft copolymerization was carried out by methyl methacrylate with starch in which azobisisobutyronitrile was used as an initiator. The grafting reactions were carried out within a 65–95°C temperature range, and the effect of the monomer, initiator concentrations, and the amount of starch on the graft yield were also investigated. The maximum graft yield was obtained at a azobisisobutyronitrile concentration of 2.0 × 10?3 mol/L. The overall rate activation energy of the reaction was found to be 89.42 kJ/mol. The grafted starches were characterized with infrared spectroscopy, scanning electron microscopy, and thermogravimetry. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 53–57, 2002  相似文献   

12.
由聚氧乙烯(PFO)大单体、丙烯酸丁酯(BA)、甲基丙烯酸甲酯(MMA)共聚合成的产物经水及乙醚/丙酮(体积比3/7)分别萃取得取了纯化的两亲性接枝共聚物,用凝胶渗透色谱仪、红外光谱仪、核磁共振仪对接枝共聚物进行了表征,用蒸气渗透压计、膜渗透压计、X射线衍射仪及偏光显微镜研究了接枝共聚物的结构参数平均相对分子质量(M-nb)为9.1×103~15.2×103;随着共聚时间的延长,Ng有所下降,M-nb有所增加,接枝共聚物的结晶度为0~49.5%,且随着PEO含量及其相对分子质量的增加而增大;接枝物呈现球晶结构,且随着PEO含量的减少,球晶变小且不规整.  相似文献   

13.
Amphiphilic ABA triblock copolymers of poly(ethylene oxide) (PEO) with methyl methacrylate (MMA) were prepared by atom transfer radical polymerization in bulk and in various solvents with a difunctional PEO macroinitiator and a Cu(I)X/N,N,N′,N″,N″‐pentamethyldiethylenetriamine catalyst system at 85°C where X=Cl or Br. The polymerization proceeded via controlled/living process, and the molecular weights of the obtained block copolymers increased linearly with monomer conversion. In the process, the polydispersity decreased and finally reached a value of less than 1.3. The polymerization followed first‐order kinetics with respect to monomer concentration, and increases in the ethylene oxide repeating units or chain length in the macroinitiator decreased the rate of polymerization. The rate of polymerization of MMA with the PEO chloro macroinitiator and CuCl proceeded at approximately half the rate of bromo analogs. A faster rate of polymerization and controlled molecular weights with lower polydispersities were observed in bulk polymerization compared with polar and nonpolar solvent systems. In the bulk polymerization, the number‐average molecular weight by gel permeation chromatography (Mn,GPC) values were very close to the theoretical line, whereas lower than the theoretical line were observed in solution polymerizations. The macroinitiator and their block copolymers were characterized by Fourier transform infrared spectroscopy, 1H‐NMR, matrix‐assisted laser desorption ionization time‐of‐flight mass spectrometry, thermogravimetry (TG)/differential thermal analysis (DTA), differential scanning calorimetry (DSC), and scanning electron microscopy (SEM). TG/DTA studies of the homo and block copolymers showed two‐step and multistep decomposition patterns. The DSC thermograms exhibited two glass‐transition temperatures at ?17.7 and 92°C for the PEO and poly(methyl methacrylate) (PMMA) blocks, respectively, which indicated that microphase separation between the PEO and PMMA domains. SEM studies indicated a fine dispersion of PEO in the PMMA matrix. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 97: 989–1000, 2005  相似文献   

14.
Series of graft copolymers with [Poly(epichlorohydrin-co-ethylene oxide)] [Poly(ECH-co-EO)] as backbone and polystyrene (PS), poly(isoprene) (PI) or their block copolymers as side chains were successfully synthesized by combination of ring-opening polymerization (ROP) with living anionic polymerization. The Poly(ECH-co-EO) with high molecular weight (Mn = 3.3 × 104 g/mol) and low polydispersity index (PDI = 1.34) was firstly synthesized by ring-ROP using ethylene glycol potassium as initiator and triisobutylaluminium (i-Bu3Al) as activator. Subsequently, by “grafting onto” strategy, the graft copolymers Poly(ECH-co-EO)-g-PI, Poly(ECH-co-EO)-g-PS and Poly(ECH-co-EO)-g-(PI-b-PS) were obtained using the coupling reaction between living PILi+, PSLi+ or PS-b-PILi+ species capped with or without 1,1-diphenylethylene (DPE) agent and chloromethyl groups on poly(ECH-co-EO). By model experiment, the addition of DPE agent was confirmed to have an important effect on the grafting efficiency at room temperature. Finally, the target graft copolymers and intermediates were characterized by SEC, 1H NMR, MALLS and FTIR in detail, and thermal behaviours of the graft copolymers were also investigated by DSC measurement.  相似文献   

15.
Photosensitive graft copolymers containing azobenzene chromophores in the main and side chains were successfully synthesized by combining living atom transfer radical polymerization (ATRP) and acyclic diene metathesis (ADMET) chemistry based on the results of proper heterodifunctional inimer and azobenzene monomer design. The precise copolymer architectural features were manipulated by combining the macromonomer technique and the macroinitiator method. The as-prepared copolymer containing azobenzene chromophores in the main and side chains showed unique reversible isomerization processes, suggesting that the photoisomerization of azobenzene chromophores occured mainly in one of the two types of azobenzene groups in the main or side chains with similar probabilities due to their main and side-on structure.  相似文献   

16.
Poly(epichlorohydrin) possessing chloromethyl side groups in the main chain was used in the atom transfer radical polymerization of methyl methacrylate and styrene to yield poly(epichlorohydrin‐g‐methyl methacrylate) and poly(epichlorohydrin‐g‐styrene graft copolymers. The polymers were characterized by 1H NMR spectroscopy, gel permeation chromatography, differential scanning calorimetry, and fractional precipitation method. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 2725–2729, 2006  相似文献   

17.
Amphiphilic ethyl cellulose (EC)-g-poly(acrylic acid) (PAA) copolymers were synthesized by atom transfer radical polymerization (ATRP). Firstly, ethyl cellulose macro-initiators with the degree of the 2-bromoisobutyryl substitution of 0.04 and 0.25 synthesized by the esterification of the hydroxyl groups remained in EC macromolecular chains and the 2-bromoisobutyryl bromides. Secondly, tert-butyl acrylate was polymerized by ATRP with the ethyl cellulose macro-initiator and EC-g-PtBA copolymers were prepared. Finally, the EC-g-PAA copolymers were prepared by hydrolyzing tert-butyl group of the EC-g-PtBA copolymers. The grafting copolymers were characterized by means of GPC, 1H NMR and FTIR spectroscopies. The molecular weight of graft copolymers increased during the polymerization and the polydispersity was low. A kinetic study showed that the polymerization was first-order. Meanwhile, EC-g-PAA copolymers were self-assembled to micelles or particles with diameters of 5 nm and 100 nm in water (pH = 10) when the concentration was 1.0 mg/ml.  相似文献   

18.
Polycarbonates (PCs) having poly(methyl methacrylate)s (PMMAs) as graft chains were prepared by the polycondensation of PC oligomers bearing chloroformate groups as the end groups with dicarboxyl‐terminated PMMA macromonomers, which were prepared by the radical polymerization of methyl methacrylate in the presence of thiomalic acid as a chain transfer. The resulting PC‐PMMA graft copolymers were transparent in comparison with PC/PMMA blend polymers, and had higher Vickers hardness than blend polymers when both of them had the same PMMA content. According to the results of multiple regression analysis, the improvement of Vickers hardness was conducive to length (46%) and number (37%) of PMMA branches. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 80: 2670–2675, 2001  相似文献   

19.
Zhongyu Li 《Polymer》2006,47(16):5791-5798
A novel well-defined amphiphilic graft copolymer of poly(ethylene oxide) as main chain and poly(methyl acrylate) as graft chains is successfully prepared by combination of anionic copolymerization with atom transfer radical polymerization (ATRP). The glycidol is protected by ethyl vinyl ether first, then obtained 2,3-epoxypropyl-1-ethoxyethyl ether (EPEE) is copolymerized with EO by initiation of mixture of diphenylmethyl potassium and triethylene glycol to give the well-defined poly(EO-co-EPEE), the latter is deprotected in the acidic conditions, then the recovered copolymer [(poly(EO-co-Gly)] with multi-pending hydroxyls is esterified with 2-bromoisobutyryl bromide to produce the ATRP macroinitiator with multi-pending activated bromides [poly(EO-co-Gly)(ATRP)] to initiate the polymerization of methyl acrylate (MA). The object products and intermediates are characterized by NMR, MALDI-TOF-MS, FT-IR, and SEC in detail. In solution polymerization, the molecular weight distribution of the graft copolymers is rather narrow (Mw/Mn < 1.2), and the linear dependence of Ln [M0]/[M] on time demonstrates that the MA polymerization is well controlled.  相似文献   

20.
ABSTRACT

Hydrophobic poly (vinylidene fluoride-co-chlorotrifluoroethylene) P(VDF-co-CTFE) was used as the polymer backbone to graft poly (oxyethylene methacrylate) (POEM) by atom transfer radical polymerization. Synthesis of graft P(VDF-co-CTFE)-g-POEM copolymer was confirmed by fourier transfer infrared spectroscopy (FTIR) and proton nuclear magnetic resonance (1H-NMR). The hydrophilicty of grafted membrane increased with increasing ingrafting of POEM as characterized by contact angle measurement. Transmission electronmicroscopy (TEM) study reveals the microphase separated morphology of P(VDF-co-CTFE)-g-POEM copolymer. Adhesion of gram-positive and negative bacteria and mouse embryonic fibroblast (MEF) cell on the membrane surface were observed by SEM that showed the enhancement of bioinert properties with the increase in the POEM grafting. Bioinert properties were further confirmed by protein adsorption behavior.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号