首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Spherical shape borate-based bioactive glass powders with fine size were directly prepared by high temperature spray pyrolysis. The powders prepared at temperatures between 1200 and 1400 °C had mixed phase with small amounts of fine crystal and an amorphous rich phase. Glass powders with amorphous phase were prepared at a temperature of 1500 °C. The mean size of the glass powders prepared by spray pyrolysis was 0.76 μm. The glass powders prepared at a temperature of 1200 °C had two distinct exothermic peaks (Tc1 and Tc2) at temperatures of 588 and 695 °C indicating crystallization. The glass transition temperature (Tg) of the powders prepared at a temperature of 1200 °C was 480 °C. Phase-separated crystalline phases with spherical shape were observed from the surface of the pellet sintered at a temperature of 550 °C. Crystallization of the pellet was completely occurred at temperatures of 750 and 800 °C. The pellets sintered at temperatures below 700 °C had single crystalline phase of CaNa3B5O10. The pellet sintered at a temperature of 800 °C had two crystalline phases of CaNa3B5O10 and CaB2O4.  相似文献   

2.
Crystallinity of poly(?-l-lysine) (?-PL) was discussed by analyzing the differences in the 1H spin-spin relaxation times (T2H), the 13C spin-lattice relaxation times (T1C), and the 13C NMR signal shapes between the crystalline and the non-crystalline phases. The observed 1H relaxation curve (free induction decay followed by solid-echo method) showed the sum of Gaussian and exponential decays. Similarly, the observed 13C relaxation curves obtained from the Torchia method were double-exponential. The 13C NMR spectrum of ?-PL was divided into the narrow and the broad lines by utilizing the intrinsic differences in the 1H spin-lattice relaxation times in the rotating-frame between them, which are attributed to the crystalline and the non-crystalline phases, respectively. Even though the crystallinity is obtained from the identical NMR measurements, the estimated values are different with each other. The crystallinity estimated from the T2H differences was 75.8 ± 0.1% at 333 K and 60.7 ± 0.4% at 353 K. From the T1C differences, the value was estimated to be 62 ± 11%. Furthermore, the value estimated from the NMR signal separation was 54 ± 5%. In this study we have explained these discrepancies by the difference in susceptibility among the experiments for the inter-phase, which exists in-between the crystalline and the amorphous phases. Furthermore, the estimated crystallinity was ascertained by the X-ray diffraction experiment.  相似文献   

3.
Alcoholysis and kraft lignin-based polycaprolactones (LigPCL) were synthesized by the polymerization of ε-caprolactone which was initiated by the hydroxyl (OH) group in lignin. LigPCL-based polyurethanes were also prepared from LigPCL. The caprolactone (CL)/OH ratio of the CAPCLs was changed from 1 to 25 mol mol−1. Thermal properties of the LigPCL and LigPCL-based polyurethane (PU) sheets were studied by differential scanning calorimetry (DSC). Glass transition temperature (Tg), heat capacity difference at TgCp) cold crystallization temperature (Tcc) and melting temperature (Tm), were determined by DSC. The main chain motion of lignin is observed in the whole CL/OH ratio. When CL/OH ratio exceeds 5 mol mol−1 in the LigPCL samples and 10 mol mol−1 in the LigPCL-based PU samples, the crystalline region which is organized by the PCL chain association is observed. It was found that PCL chain association is controlled by both chain length and chemical cross linking.  相似文献   

4.
Ultra-high molecular weight isotactic polypropylene (UHMW-iPP) reactor powders have been successfully ultra drawn below melting temperature (Tm) by a combination of calendar rolling and tensile drawing techniques. Two UHMW-iPP reactor powders having different MWs were synthesized by using the same Ziegler-Natta catalyst system at 70 °C in hexane. The resultant tensile properties increased with increasing draw ratio, due to orientation-crystallization during tensile draw, which was indicated by DSC and WAXD measurements. The film drawn under optimum conditions exhibited the maximum tensile modulus of ∼25 GPa, independent of sample MW, corresponding to 70% of the ultimate modulus of iPP crystal. However, the higher maximum tensile strength of ∼1.0 GPa was achieved for the reactor powder having the higher MW, which is three times as high as those of commercial high-strength iPP tapes. Such a fact that high performances have been achieved by processing from reactor powder state below Tm implies that crystallization with less entanglement occurs during polymerization. When drawability and resultant properties were compared among different iPP reactor powders prepared under different conditions, it was clarified that they were predominantly affected by not only MW but also by the reactor powder morphology, especially surface smoothness.  相似文献   

5.
In this work, the reversible addition-fragmentation chain transfer (RAFT) polymerization of vinyl acetate (VAc) was successfully performed at room temperature using 60Co γ-irradiation as the initiation source. Under the dose rate of 10 Gy/min irradiation, the polymerization proceeded smoothly and converted approximately 90% of the monomer within 7 h. The molecular weight distribution (Mw/Mn) remained narrow (Mw/Mn < 1.35) up to 90% conversion. Compared to AIBN-initiated RAFT polymerization at 60 °C, 60Co γ-irradiation-initiated RAFT polymerization is a technique that can better control the molecular weight, especially at high conversion. The 1H NMR spectra and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry confirmed that most of the chain ends of poly(VAc) (PVAc) from γ-irradiated RAFT polymerization were living and can be reactivated for chain-extension reactions. The microstructures of PVAc from 60Co γ-irradiated RAFT polymerization (almost head-to-tail addition) and AIBN-initiated RAFT polymerization (5% tail-to-tail addition) were different, as revealed by the 13C NMR spectra. For the first time, 60Co γ-irradiation was used as an initiation source for RAFT polymerization of VAc at room temperature.  相似文献   

6.
The Co2+ sorption of two wool powders was investigated using its radioisotope 57Co (T1/2 = 271.8 days and γ = 122.1 and 136.5 keV) as a tracer. The effects of the type of buffer, the pH value, the contact time and the initial concentration of Co2+ on the sorption behaviour of wool powders were studied. The Co2+ releasing ability of wool powders and the re-use of wool powders to sorb Co2+ were also examined. The optimum sorption of Co2+ by the powders occurred at pH 8 in phosphate buffer and pH 10 in ammonium sulphate buffer. Fourier-transform infrared spectroscopy (FTIR) was used to study the changes in chemical structure of the wool after exposure to both buffer solutions. Compared to the untreated wool fibre, the fine wool powders showed rapid sorption rates and high sorption capacities for Co2+. Co2+ ions were recovered after exposing the Co2+ loaded wool to HCl (0.1 M) and buffer at pH 3 (glycine/sodium chloride). After releasing Co2+ ions from wool powders, the efficiency of wool powders re-used to sorb Co2+ was 80% of that of the fresh wool powders. It is concluded from this study that wool powder can be used as an efficient sorbent to remove and release Co2+ from solution.  相似文献   

7.
Nanosized ytterbium doped yttria powders were prepared by citrate-gel combustion techniques. As-synthesized precursor and calcined powders were characterized for their crystalline structure, particle size and morphologies. Nanocrystalline Yb3+:Y2O3 powders with pure cubic yttria crystal structure were obtained by calcination of as-prepared precursors at 1100 °C for 3 h. Powders obtained were well dispersed with an average particle size of 60 nm. By using the obtained powders, nearly full dense Yb3+:Y2O3 ceramics were produced by vacuum sintering at 1800 °C for 12 h. The emission spectrum of the sintered ceramics under the excitation wavelength of 905 nm illustrates that there are three fluorescence peaks locating at 976 nm, 1030 nm and 1075 nm respectively, all corresponding to the 2F5/2 → 2F7/2 transitions of ytterbium ion.  相似文献   

8.
Phosphors of α-Y2Si2O7 doped with Nd3+ ions were prepared using the sol–gel technique. Nano-sized crystalline phosphor powders were obtained by annealing the dried gels at 960 °C. The crystallization properties of the phosphor powders were determined from their XRD patterns. The α-Y2Si2O7 phase was the only phase observed in all compositions. As the amount of amorphous SiO2 in the composition was increased, the crystalline sizes and the widths of the size distribution curves were found to decrease from 17.8 nm to 10.6 nm and from 15.6 nm to 12.2 nm, respectively. The spectroscopic properties of the powders were studied by measuring the luminescence and the decay patterns of the 4F3/24I9/2 and 4F3/24I11/2 transitions between 50 K and 310 K. No appreciable effect of the crystallite sizes on the average lifetime of the 4F3/2 level was observed at temperatures below 100 K. The effect of temperature, however, becomes relevant above 100 K as the size of α-Y2Si2O7 nano-crystal becomes smaller.  相似文献   

9.
In this study we investigated the effect of precursor Bi3+/Fe3+ ion concentration on the hydrothermal synthesis of BiFeO3 crystallites. It is demonstrated that the phase-purity and morphology of the products is highly dependent on the metal ion concentration. Phase-pure BiFeO3 crystals can be prepared at the Bi3+/Fe3+ ion concentration ranging from 0.025 to 0.0625 M. The samples prepared at n(Bi3+/Fe3+)=0.025, 0.0375, 0.05, and 0.0625 M, are composed, respectively, of cuboid-like particles (100–200 nm), regular spherical agglomerates (30–40 μm) made up of irregular grains with size about several hundred nanometers, irregular flower-like clusters formed from irregular grains of several hundred nanometers in size, and octahedron-shaped particles (500–600 nm). These samples have a similar bandgap energy of 2.20 eV and exhibit a typical antiferromagnetic behavior at room temperature.  相似文献   

10.
Ester Zuza 《Polymer》2008,49(20):4427-4432
The segmental dynamics of polylactide chains covering the Tg − 30 °C to Tg + 30 °C range was studied in absence and presence of a crystalline phase by dynamic mechanical analysis (DMA) using the framework provided by the WLF theory and the Angell's dynamic fragility concept. An appropriate selection of stereoisomers combined with a thermal conditioning strategy to promote crystallization (above Tg) or relaxation of chains (below Tg) was revealed as an efficient method to tune the ratio of the rigid and mobile amorphous phases in polylactides. A single bulklike mobile amorphous phase was taken for poly(d,l-lactide) (PDLLA). In turn three phases, comprising a mobile amorphous fraction (MAF, XMA), a rigid amorphous fraction (RAF, XRA) and a crystalline fraction (Xc) were determined in poly(l-lactide) (PLLA) by modulated differential scanning calorimetry (MDSC) according to a three-phase model. The analysis of results confirms that crystallinity and RAF not only elevate the Tg and the breadth of the glass transition region but also yields an increase in dynamic fragility parameter (m) which entails the existence of a smaller length-scale of cooperativity of polylactide chains in confined environments. Consequently it is proposed that crystallinity is acting in polymeric systems as a topological constraint that, preventing longer range dynamics, provides a faster segmental dynamics by the temperature dependence of relaxation times according to the strong-fragile scheme.  相似文献   

11.
We recorded temperature-dependent high-resolution 13C NMR spectra of dry and swollen poly(acrylate)s [poly(2-methoxyethyl acrylate) (PMEA), poly(2-hydroxyethyl methacrylate) (PHEMA), and poly(tetrahydrofurfuryl acrylate) (PTHFA)] by dipolar decoupled-magic angle spinning (DD-MAS) and cross-polarization-magic angle spinning (CP-MAS) methods, to gain insight into their network structures and dynamics. Suppressed or recovered intensities (SRI) analysis of 13C CP-MAS and DD-MAS NMR was successfully utilized, to reveal portions of dry and swollen polymers which undergo fast and slow motions with fluctuation frequencies in the order of 108 Hz and 104-105 Hz, respectively. Fast isotropic motions with frequency higher than 108 Hz at ambient temperature were located to the portions in which 13C CP-MAS NMR signals of swollen PMEA were selectively suppressed. In contrast, low-frequency motion was identified to the portions in which 13C DD-MAS (and CP-MAS) signals are most suppressed at the characteristic suppression temperature(s) Ts. Network of PMEA gels (containing 7 wt% of water) turns out to be formed by partial association of backbones only, as manifested from their Ts gradient at lowered temperature, whereas networks of PHEMA (containing 40 wt% of water) and PTHFA (9 wt% of water) gels are tightly formed through mutual inter-chain associations of both backbones and side-chains, as viewed from the raised Ts values for both near at ambient temperature. It is also interesting to note that flexibility of gel network (PMEA > PTHFA > PHEMA) characterized by the suppression temperature Ts (PMEA < PTHFA < PHEMA) is well related with a characteristic parameter for biocompatibility such as the production of TAT (thrombin-antithrombin III complex) as a marker of activation of the coagulation system.  相似文献   

12.
The thin films of a symmetric crystalline-coil diblock copolymer of poly(l-lactic acid) and polystyrene (PLLA-b-PS) formed lamellae parallel to the substrate surface in melt. When annealed at temperatures well above the glass transition temperature of PLLA block (TgPLLA), the PLLA chains started to crystallize, leading to reorientation of lamellae. Such reorientation behavior exhibited dependence on the correlation between the crystallization temperature (Tc), the glass transition temperature of PS (TgPS), the peak melting point of PLLA crystals (TmPLLA), and the end melting point of PLLA crystals (Tm,endPLLA). When annealed at (Tc=) 80 °C (Tc < TgPS < TODT, order-disorder transition temperature), 123 °C (TgPS < Tc < TmPLLA < TODT), 165 °C (TgPS < TmPLLA < Tc < Tm,endPLLA < TODT), the parallel lamellae became perpendicular to the substrate surface, exclusively starting at the edge of surface relief patterns. Meanwhile, the corresponding lamellar spacing was significantly enhanced. The PLLA crystallization between PS layers was hypothesized to account for the lamella reorientation during annealing. The crystallization, chain conformation, and possible chain folding mechanisms were discussed, based on detailed analysis of the lamellar structure before and after crystallization.  相似文献   

13.
A sensitive and rapid electrochemiluminescence (ECL) method for the detection of N6-Methyladenosine (m6A) in urine samples on a heated indium-tin-oxide (ITO) electrode is presented. The ECL intensity of Tris(2,2′-bipyridyl) dichlororuthenium(II)hexahydrate (Ru(bpy)32+) can be enhanced by the presence of m6A. Experimental results showed that the change of ECL intensities (ΔI) of the Ru(bpy)32+ between before and after addition of m6A was affected by the working electrode surface temperature (Te); the highest ΔI occurred at 31 °C. Under optimum conditions, the ΔI had a linear relationship with the m6A concentration in the range of 1.9 × 10−9-3.9 × 10−6 mol/L and a detection limit of 7.7 × 10−10 mol/L (S/N = 3) at Te = 31 °C. The recovery of m6A standards added to urine samples verified the accuracy of the proposed method.  相似文献   

14.
D.J Harris  M.K Alam 《Polymer》2002,43(19):5147-5155
The relative concentrations and carbon spin-lattice relaxation constants (T1,C) of the amorphous, intermediate, and crystalline phases of unaged crosslinked polyolefin cable insulation (ultimate elongation, e=310%), 60Co γ-irradiated (e=22%), and irradiated+annealed (e=220%) samples were determined by chemometric analyses of directly polarized solid-state 13C NMR spectra. The T1,C relaxation curves of the intermediate and amorphous components were found to be mono-exponential. The intermediate component contains 23±5% of the CH2 segments in the unaged sample and has an T1,C relaxation constant of 1.4±0.3 s. γ-Irradiation caused a slight decrease in the amount of intermediate component to 19±5% and an increase of the relaxation constant to 1.8±0.3 s. The subsequent annealing of the irradiated sample resulted in an additional increase of the relaxation constant to 2.1 s and a slight loss of crystallinity. The amorphous T1,C relaxation constants were found to be identical in all three samples and have a value of 0.38±0.03 s. At ambient temperature, the crystalline phase was found to relax via chain diffusion from the intermediate component. The rate of helical jumps was twice as fast in the irradiated and irradiated+annealed samples compared with the unaged material.  相似文献   

15.
CaCu3Ti4O12 nano-sized powders were successfully prepared by sol-gel technique and calcination at 600-900 °C. The thermal decomposition process, phase structures and morphology of synthesized powders were characterized by IR, DSC-TG, XRD, TEM, respectively. It was found that the main weight-loss and decomposition of precursors occurred below 450 °C and the complex perovskite phase appeared when the calcination temperature was higher than 700 °C. Using above synthesized powders as starting materials, CCTO-based ceramics with excellent dielectric properties (?25 = 5.9 × 104, tan δ = 0.06 at 1.0 kHz) were prepared by sintering at 1125 °C. According to the results, a conduction mechanism was proposed to explain the origin of giant dielectric constant in CCTO system.  相似文献   

16.
Hai-Mu Ye  Jun Xu  Bao-Hua Guo  Tian-Liang Yun  Hui Ma 《Polymer》2007,48(25):7364-7373
Inclusion compounds formed from host small molecules and guest polymers have provided a novel platform to study the behavior of isolated polymer chains confined in nanochannels. In this article, the PEO chain conformation in the metastable poly(ethylene oxide) (PEO)-urea inclusion compound (IC) and its transition was characterized via a combination of different analytical methods. Based on the FTIR and Raman spectroscopy results, PEO chains in the metastable tetragonal IC are tentatively assigned to the tgg′ conformation. The structural changes of the metastable tetragonal IC to the stable trigonal form were observed via in situ FTIR and ex situ WAXD. The transformation is a kinetic solid-solid process and can even occur at room temperature. The activation energy of about 222 kJ/mol indicates that the transition occurred via cooperative disruption of several hydrogen bonds. Measurement of the laboratory frame spin-lattice relaxation time T1 (13C) shows that molecular motions of the nanoconfined PEO chains are more intensive than the neat crystalline PEO but weaker than those of the neat amorphous PEO. Second harmonic generation microscopy demonstrates that the trigonal IC exhibits stronger nonlinear optical activity than the tetragonal IC. The intermolecular hydrogen bonding is attributed to the driving force for the transformation of the metastable tetragonal IC into the stable trigonal form.  相似文献   

17.
Kinetics of the solid-solid II-I phase transition of isotactic polybutene-1 was investigated. The fraction WI of phase I as a function of time ttr during the phase transition was measured by X-ray diffraction at various temperatures Ttr. The Avrami indices n of the WI-ttr plots are approximately unity for Ttr > 288 K. A bell-shaped temperature dependence of the transition rate V with the maximum transition rate at 285 K was obtained. The V-Ttr curve and the Avrami index n = 1 suggest that the rate-determining process is primary nucleation. The dependence of V on Ttr for Ttr < 283 K is described by the William-Landel-Ferry (WLF) equation, which shows that the glass transition affects the transition rate. The Avrami index decreases to n < 1 for Ttr < 283 K, indicating a broadened distribution of the transition rate caused by the spatial heterogeneity of the amorphous state at low temperatures near the glass transition. Those evidences at low temperature clearly suggest that the solid-solid phase transition is influenced by the mobility of chain folding, tie chains and cilia in the amorphous between the stacks of lamellar crystals.  相似文献   

18.
7Li and 19F NMR linewidths and impedance spectra are reported for low-dimensional CmOn (I):LiBF4 mixtures. Data for the ionophilic polymer C18O5 is compared with that for the ionophobic C18O1 and the block copolymer C16O1O5(21%) (21 mol% of C16O5). In C18O5:LiBF4 (1:1) narrow 7Li linewidths, which were observed in the liquid crystal phase above the side chain melting temperature (∼50 °C), persist in the crystal down to ca. 0 °C and broaden below −20 °C. However, in C18O1:LiBF4 (1:0.6) narrow 7Li linewidths were also observed down to −20 °C suggesting highly mobile neutral aggregates of salt since this system is non-conductive. In the copolymer C16O1O5(21%):LiBF4 (1:0.7) the linewidths were even narrower down to −70 °C with weak temperature dependence. In all systems 19F linewidths were significantly broader than 7Li linewidths. The complex plane plots obtained by impedance spectroscopy exhibit characteristic minima identified with ‘grain boundary’ resistance and, following heat treatment, minima with weak temperature dependence identified with ‘internal crystal’ resistance, Ri, and conductivities, σi ≥ 10−4 S cm−1. Four-component mixtures of copolymers CmO1O5 and CmO1O4 with LiBF4 and ‘salt-bridge’ poly(tetramethylene oxide)-dodecamethylene copolymers gave conductivities of ca. 4 × 10−4 S cm−1 at 20 °C with weak temperature dependence. A novel carrier-hopping mechanism of lithium transport decoupled from side chain melting in the crystalline state is postulated.   相似文献   

19.
A series of novel single-phase white phosphors Ba1.3Ca0.69−x−ySiO4:0.01Eu2+,xMn2+, yDy3+ were synthesized by the solid-state method. The excitation spectra of these phosphors exhibit a broad band in the range of 260–410 nm, which can meet the application requirements for near-UV LED chips (excited at 350–410 nm). The emission spectra consist of two broad bands positioned around 455 nm and 596 nm, which are assigned to 5d→4f transition of Eu2+, and 4T16A1 transition of Mn2+, respectively. The luminescence intensity of phosphors enhances obviously by doping Dy3+ ions, and the intensity of two bands reaches an optimum when Dy3+ amounts to 2 mol%. In addition, thermoluminescence investigation of phosphor was conducted, getting two shallow trap defects with activation energy of 0.43 eV and 0.45 eV, which demonstrates the energy transfer mechanism of Dy–Eu through the process of hole and electron traps. By precisely tuning the Mn2+ content, an optimized white light with color rendering index (CRI) of Ra=84.3%, correlated color temperature (CCT) of Tc=8416 K and CIE chromaticity coordinates of (0.2941, 0.2937) is generated. The phosphor could be a potential white phosphors for near-UV light emitting diodes.  相似文献   

20.
We describe the impact of thermal treatment on the structure and phase transitions of the liquid crystalline aromatic co-polyester, HIQ-40, comprising 40 mol% p-hydroxybenzoic acid (H), 30 mol% isophthalic acid (I), and 30 mol% p-hydroquinone (Q). Simultaneous, real-time wide and small angle X-ray scattering (WAXS, SAXS), differential scanning calorimetry, and optical ellipsometry were used to study initially isotropic, amorphous films of HIQ-40. Films were annealed above the glass transition temperature, Tg, at temperatures, Ta, from 130 to 290 °C. Depending upon Ta, thermal treatment results in formation of regions of nematic order and/or crystalline order in a disordered matrix. As Ta increases, molecular mobility in the amorphous phase increases resulting in a reduction in Tg. Two or three endothermic events are seen in all samples by thermal analysis. The lowest temperature endotherm is associated with melting of crystals formed either at Ta or during the thermal scan. The two higher temperature endotherm features result from transformation of crystal melt-to-nematic, and formation of more mobile nematic domains from constrained liquid, respectively, and are relatively insensitive to Ta.A strong Bragg scattering peak is seen for corresponding to formation of two-phase structure comprising crystals and disordered phase. At higher temperatures, very strong scattered intensity in the SAXS pattern re-emerges, even after all WAXS crystal reflections have disappeared. Results suggest that a two-phase structure, of ordered nematic domains co-existing with less ordered regions, may be forming continuously above the crystal melting point.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号