首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The time development of the surface morphology of asymmetric polystyrene-b-poly(4-vinylpyridine) (PS-b-P4VP) thin films ‘annealing’ in methanol vapor, a selective solvent for minority P4VP block, was investigated by atomic force microscopy(AFM). For PS-b-P4VP with cylindrical structure in bulk, as annealing time progressed, the surface morphology underwent structural transitions from featureless topography to hybrid morphology of cylindrical and spherical pits, to cylinders, to nanoscale depressions, back to cylinders again. The different film thickness made the number of the transitions observed, at any given annealing time, different. The thicker the film is the more transitions at a given annealing time can be observed. If the film was not thick enough, depressions appeared. For PS-b-P4VP with spherical structure in bulk, it displayed nanoscale depressions with the annealing time increasing. A possible mechanism of the transition of morphologies during solvent annealing was proposed.  相似文献   

2.
AAO template is highly recommended to nanostructure polymers and to study polymer properties under confinement. The dynamic properties of polystyrene-block-poly(4-vinylpyridine) (PS-b-P4VP) under confinement using broadband dielectric spectroscopy are investigated in this work and the results compared to those of the bulk. Anodized aluminum oxide (AAO) membranes, having pore diameters from tens to hundreds of nanometers in size, were used to confine PS-b-P4VP. Moreover, the influence of gold nanoparticles (AuNPs) in the copolymer matrix was also studied. The morphology and structure of the bulk copolymer and the copolymer confined in the AAO templates were characterized by transmission electron microscopy, scanning electron microscopy and Small Angle X-Ray Scattering. For PS-b-P4VP in bulk, dielectric relaxation techniques allowed studying selectively the P4VP segmental dynamics within the diblock. At high temperature this copolymer presents a dominant peak (MWS relaxation), most likely originated by the relatively high conductivity combined with the presence of interfaces emerging in the nanostructured samples. Moreover, a pronounced β-relaxation is observed for the copolymer compared with that of pure P4VP. This is likely due to a non-negligible contribution from the α-relaxation of the PS component. The γ-relaxation is markedly different in the copolymer, which is evidenced by a distinct temperature dependence of the resulting relaxation times. When the copolymer is embedded in alumina nanopores with small pore diameters (25 and 35 nm) there are significant changes, where the tendency is going to a faster dynamics when the pore diameter decreases more likely related to the relevance of surface effects. The presence of the AuNPs in the system enhances this effect. These results are in agreement with segregated structures found in the block copolymer by TEM and SAXS.  相似文献   

3.
Wan-Chun Chen  Feng-Chih Chang 《Polymer》2010,51(18):4176-7560
In this study, we investigated the miscibility, phase behavior, and self-assembled nanostructures formed from the immiscible crystalline-amorphous diblock copolymer poly(?-caprolactone-b-4-vinyl pyridine) (PCL-b-P4VP, A-B) when blended with the homopolymer poly(vinyl phenol) (PVPh, C) and the diblock copolymer poly(vinyl phenol-b-styrene) (PVPh-b-PS, C-D). Long-range-ordered microphase separation was difficult to achieve in the PCL-b-P4VP/PVPh (A-B/C) blend system because PVPh interacted with both the P4VP and PCL blocks simultaneously through hydrogen bonding interactions. In contrast, we observed sharp, multiple orders of diffraction in the SAXS profiles of the PCL-b-P4VP/PVPh-b-PS (A-B/C-D) blend system, indicating that perfect microphase separation occurred because the incorporation of the PS block induced the PVPh block to hydrogen bond preferentially with the P4VP block. This simple A-B/C-D (PCL-b-P4VP/PVPh-b-PS) diblock copolymer mixture exhibited self-assembly behavior (a three-lamella phase) similar to that of a corresponding ABC triblock copolymer.  相似文献   

4.
Nishar Hameed 《Polymer》2008,49(24):5268-5275
Nanostructured poly(?-caprolactone)-block-poly(2-vinyl pyridine) (PCL-b-P2VP)/poly(acrylic acid) (PAA) interpolyelectrolyte complexes (IPECs) were prepared by casting from THF/ethanol solution. The morphological behaviour of this amphiphilic block copolymer/polyelectrolyte complexes with respect to the composition was investigated in a solvent mixture. The phase behaviour, specific interactions and morphology were investigated using differential scanning calorimetry (DSC), Fourier transform infrared (FTIR) spectroscopy, optical microscopy (OM), dynamic light scattering (DLS) and atomic force microscopy (AFM). Micelle formation occurred due to the aggregation of hydrogen bonded P2VP block and polyelectrolyte (PAA) from non-interacted PCL blocks. It was observed that the hydrodynamic diameter (Dh) of the micelles in solution decreased with increasing PAA content up to 40 wt%. After 50 wt% PAA content, Dh again increased. The micelle formation in PCL-b-P2VP/PAA IPECs was due to the strong intermolecular hydrogen bonding between PAA homopolymer units and P2VP blocks of the block copolymer. The penetration of PAA homopolymers into the shell of the PCL-b-P2VP block copolymer micelles resulted in the folding of the P2VP chains, which in turn reduced the hydrodynamic size of the micelles. After the saturation of the shell with PAA homopolymers, the size of the micelles increased due to the absorption of added PAA onto the surface of the micelles.  相似文献   

5.
We demonstrate a simple methodology to incorporate interacting magnetic nanoparticles (mNPs) into cylinder forming block copolymer templates. Poly(styrene-block-isoprene) (PS-b-PI) with PI cylinders and poly(styrene-block-4vinylpyridine) (PS-b-P4VP) with PS cylinders were used as the block copolymer templates and γ-Fe2O3 NPs coated with oleic acids were pre-synthesized for the interacting mNPs. Regardless of the template block copolymers, the selective location of mNPs and the size of mNP aggregates are clearly altered by changing casting solvents. When good solvents for both blocks were used as casting solvents, mNPs are readily aggregated during the solvent evaporation. In contrast, under selective casting solvents for the minor blocks, the mNPs were selectively trapped into the cylinder domains through the facile inversion of micelles during solvent evaporation. The interplay between mNPs and block copolymers was also tested with different molecular weights of block copolymers.  相似文献   

6.
We demonstrate a new and simple route to fabricate highly dense arrays of hexagonally close packed inorganic nanodots using functional diblock copolymer (PS-b-P4VP) thin films. The deposition of pre-synthesized inorganic nanoparticles selectively into the P4VP domains of PS-b-P4VP thin films, followed by removal of the polymer, led to highly ordered metallic patterns identical to the order of the starting thin film. Examples of Au, Pt and Pd nanodot arrays are presented. The affinity of the different metal nanoparticles towards P4VP chains is also understood by extending this approach to PS-b-P4VP micellar thin films. The procedure used here is simple, eco-friendly, and compatible with the existing silicon-based technology. Also the method could be applied to various other block copolymer morphologies for generating 1-dimensional (1D) and 2-dimensional (2D) structures.  相似文献   

7.
Nishar Hameed 《Polymer》2008,49(4):922-933
The phase behavior, hydrogen bonding interactions and morphology of poly(hydroxyether of bisphenol A) (phenoxy) and poly(?-caprolactone)-block-poly(2-vinyl pyridine) (PCL-b-P2VP) were investigated using differential scanning calorimetry (DSC), Fourier transform infrared (FTIR) spectroscopy, optical microscopy and atomic force microscopy (AFM). In this A-b-B/C type block copolymer/homopolymer system, both P2VP and PCL blocks have favorable intermolecular interaction towards phenoxy via hydrogen bonding. However, the hydrogen bonding between P2VP and phenoxy is significantly stronger than that between PCL and phenoxy. Selective hydrogen bonding between phenoxy/P2VP pair at lower phenoxy contents and co-existence of two competitive hydrogen bonding interactions between phenoxy/P2VP and phenoxy/PCL pairs at higher phenoxy contents were observed in the blends. This leads to the formation of a variety of composition dependent nanostructures including wormlike, hierarchical and core-shell morphologies. The blends became homogeneous at 95 wt% phenoxy where both blocks of the PCL-b-P2VP were miscible with phenoxy due to hydrogen bonding. In the end, a model was proposed to explain the microphase morphology of blends based on the experimental results obtained. The swelling of the PCL-b-P2VP block copolymer by phenoxy due to selective hydrogen bonding causes formation of different microphases.  相似文献   

8.
Chao Wang  Tingmei Wang  Xianqiang Pei 《Polymer》2009,50(22):5268-2608
The solution behavior of poly(styrene)-poly(4-vinylpyridine) (PS-b-P4VP) block copolymer with added poly(4,4′-oxydiphenylenepyromellitamic acid) (POAA) homopolymer in DMF is studied by dynamic light scattering (DLS), nuclear magnetic resonance (NMR), and transmission electron microscopy (TEM). It is found that coaggregation takes place when mixing PS-b-P4VP block copolymer and POAA homopolymer in DMF due to the strong interpolymer hydrogen-bonding between POAA chains and P4VP blocks. The coaggregation is a diffusion-controlled process and the complexation-induced aggregates are very stable. NMR measurements demonstrate that the resultant aggregates are much more swollen compared with typical amphiphilic block copolymer core-shell micelles. DLS measurements with Eu3+ as a probe combined with TEM observation, are employed to study the structure of the aggregates. Results reveal that the formed aggregates are core-shell spheres with the P4VP/POAA complexes as core and the PS blocks as shell when the weight ratio of POAA to PS-b-P4VP is lower. However, a core-shell-corona structure forms with a thin layer of POAA chains adsorbed on the initial core-shell aggregates with increasing weight content of POAA to 60%. Finally, possible mechanisms of the structural transitions are proposed.  相似文献   

9.
We report the morphological characterization of asymmetric miktoarm star block copolymers of the (PS-b-PI)nPS type where n=2,3 (denoted 2DB and 3DB miktoarm stars, respectively) and a symmetric super H-shaped block copolymer of the (PS-b-PI)3PS(PI-b-PS)3 type (denoted SH) which were synthesized by anionic polymerization. The initial volume fraction of PS (φPS) for each copolymer was 0.51-0.56, giving a lamellar morphology. Addition of homopolystyrene (hPS) with a molecular weight lower than the respective PS blocks in the neat materials lead to a transition from the lamellar structure to hexagonally packed cylinders. Addition of low molecular weight homopolyisoprene (hPI) on the other hand, only resulted in swollen lamellae even when the overall composition was highly asymmetric (80/20). Changes in the lamellar spacing as well as in the respective PS and PI layer thickness were measured by SAXS. The transition from lamellae to cylinders with increased PS content occurred without the observation of an intervening cubic morphology for the 2DB and 3DB miktoarm stars. However, blends with 30 and 35% hPS ((φPS)total=0.68-0.70) with the super H-shaped block copolymer lead to the observation of lamellar-catenoid structures.  相似文献   

10.
Bokyung Kim  Jong Hak Kim  Jehan Kim 《Polymer》2009,50(15):3822-291
We report the transition behavior and the ionic conductivity of ion-doped amorphous block copolymer, based on two compositionally different polystyrene-block-poly(2-vinylpyridine) copolymers (PS-b-P2VPs) that can self-assemble into nanostructures, where P2VP block is ionophilic to lithium perchlorate (LiClO4). The transition temperatures of LiClO4-doped PS-b-P2VP, like the order-to-disorder transition (TODT), were measured by small-angle X-ray scattering (SAXS) and depolarized light scattering (DPLS). The selective ionic coordination to the nitrogen units of P2VP block leads to the increase of the repulsive interactions between two block components from weak- to strong-segregation regime with increasing amount of LiClO4, which results subsequently in the increased TODT. However, for a compositionally asymmetric PS-b-P2VP under lamellar morphology, the ionic conductivity by the addition of LiClO4 was remarkably increased at higher temperatures, representing that the effective ionic coordination at the greater volume fraction of P2VP block component improves the ionic conductivity as the temperature approaches to a rubbery phase.  相似文献   

11.
Ke Zhang 《Polymer》2010,51(13):2809-18
A functional gelable triblock copolymer, poly(2-vinylpyridine)-block-poly(3-(triethoxysilyl)propyl methacrylate)-block-polystyrene (P2VP-b-PTEPM-b-PS), was prepared by the combination of reversible addition-fragmentation chain transfer (RAFT) mediated radical polymerization and copper catalyzed click chemistry. Bulk microphase separation of P2VP310-b-PTEPM58-b-PS322 under different conditions was studied in order to prepare organic/inorganic nanoobjects by a procedure of crosslinking PTEPM phases and dispersing in a solvent. The conditions included using different annealing solvents and adding stearic acids to form supramolecular complexes with P2VP blocks respectively. Then the packed cylinders with P2VP cores and PTEPM shells dispersed in the PS matrix, lamella with alternating PS, PTEPM and P2VP layers, and the inverse cylindrical morphology with PS cores and PTEPM shells dispersed in the matrix of P2VP/stearic acid complex were obtained respectively just from the same triblock copolymer sample. After crosslinking PTEPM microdomains by sol-gel process and dispersing in solvents, a series of organic/inorganic polymeric nanoobjects, including two types of nanofibers with inverse internal structure and one novel kind of nanoplates, were produced. Further modification of the fibers with P2VP cores has been studied.  相似文献   

12.
In this work, TiO2 nanoparticles were dispersed and stabilized in water using a novel type of dispersant based on tailor-made amphiphilic block copolymers of poly(ethylene glycol)-block-poly(4-vinyl pyridine) (mPEG-b-P4VP) prepared by atom transfer radical polymerization (ATRP). The performance of this new block copolymer as dispersant was compared to a polyelectrolyte dispersant commonly used for TiO2, sodium salt of polyacrylic acid (Na-PAA). The effect of dispersion technique and type and amount of dispersant on deagglomeration and stability of the TiO2 aqueous suspensions were studied. After incorporation in a standard waterborne acrylic varnish formulation, dry film transparency, photocatalytic activity, and nanoparticle cluster size were also evaluated. The results show that mPEG-b-P4VP copolymer with appropriate block lengths can have a better performance than Na-PAA in terms of aqueous dispersion stabilization and cluster size reduction in the acrylic matrix. This translates into higher film transparency and photocatalytic performance.  相似文献   

13.
Low dielectric constant nanoporous poly(methyl silsesquioxane) (PMSSQ) was prepared through the templating of an amphiphilic block copolymer, poly(styrene-b-2-vinylpyridine) (PS-b-P2VP). The experimental and theoretical studies suggest that the intermolecular hydrogen bonding interaction is existed between the PMSSQ precursor and PS-b-P2VP. The result of modulated differential scanning calorimeter (MDSC) indicates the miscible hybrid of the PMSSQ precursor/PS-b-P2VP. The miscible hybrid and the narrow thermal decomposition of the PS-b-P2VP lead to nanopores in the prepared films from the results of transmission electronic microscopy (TEM), atomic force microscopy (AFM), and small angle X-ray scattering (SAXS). The effects of the loading ratio and the PS block volume ratio (fPS: 0.74, 0.46 and 0.35) on the morphology and properties of the prepared nanoporous PMSSQ films were investigated. The AFM and TEM studies suggest that the uniform pore morphology should be prepared from a modest porogen loading level for the optimum intermolecular hydrogen bonding. The PS-b-P2VP with a smaller fPS requires a higher loading level to obtain the uniform pores. The refractive index and dielectric constant of the prepared nanoporous films could be tuned by the loading ratio in the range of 1.361-1.139 and 2.359-1.509, respectively. However, both properties are independent of the fPS. The prepared study demonstrates the control of the morphology and properties of the nanoporous films through the polymer structure.  相似文献   

14.
In this study, we demonstrate control over the localized surface plasmon band (SPB) of a micellar poly(styrene-block-4vinylpyridine) (PS-b-P4VP) copolymer thin film composite that includes Ag and Au nanoparticles (NPs) in the presence of single walled carbon nanotubes (SWCNTs). Ag and Au NPs are preferentially located in the P4VP core and the PS corona of ordered spherical PS-b-P4VP copolymer micelles, respectively. This structure gave rise to a single SPB due to the coupling of Ag and Au SPBs. The non-covalent addition of SWCNTs in the block copolymer micelles shifts the coupled SPB to a lower wavelength. The maximum shift in the coupled SPB of approximately 30 nm was achieved in the PS-b-P4VP/Ag/Au NPs composite. The carbon nanotube induced modulation of the coupled SPB stems from the charge accumulation effect of the SWCNTs placed between the two types of nanoparticles.  相似文献   

15.
This review highlights the precise synthesis and application of various well-defined rod–coil and coil–coil block copolymers composed of poly(2-(or 4-)vinylpyridine) (P2VP or P4VP) block(s) with pyridine moieties. These polymers were synthesized by means of living anionic polymerization. Poly(hexyl isocyanate) (PHIC) was used as the rod-like segment, because hexyl isocyanate undergoes living anionic polymerization under carefully selected conditions. This review describes the syntheses of the block copolymers, polystyrene-b-P2VP, polystyrene-b-P4VP, polyisoprene-b-P2VP, P2VP-b-poly(methyl methacrylate), P2VP-b-poly(ethylene oxide), P2VP-b-poly(2-(N-carbazolyl)ethyl methacrylate), P2VP-b-PHIC, P2VP-b-PHIC-b-P2VP, and PHIC-b-P2VP-b-PHIC. The formation of self-organized nanostructured materials and molecular assemblies by such block copolymers and their possible applications are also described. These assemblies include monolayers, microphase-separated periodic-ordered nanostructures, micelles, polymer–metal complexes, nanoparticles, inorganic and metal layers, and nanoporous films with nanoparticles.  相似文献   

16.
17.
This paper describes the formation of fibril like aggregates from the self-assembly of block copolymer mixture (polystyrene-b-poly(4-vinylpyridine) (PS-b-P4VP) and polystyrene-b-poly(acrylic acid) (PS-b-PAA)) via interpolymer hydrogen bonding in nonselective solvent. The hydrogen bonding between P4VP and PAA in chloroform leads to the formation of complex. When all the pyridine units in P4VP were all hydrogen bonded to acrylic acid in PAA, the formed complex is insoluble, resulting in the formation of spherical micellar aggregates and nanorods. However, two kinds of supramolecules with insoluble or soluble complex are formed in the solution when PS-b-P4VP and PS-b-PAA are mixed with equal mole ratio. The fibril like aggregates can be formed from the self-assembly of supramolecule with soluble complex during spin-coating process. The effects of evaporation rate of solvent and solution concentrations on the formation of fibril like aggregates were investigated. The results prove that the kinetic factors play an important role in the formation of the fibril like aggregates.  相似文献   

18.
We demonstrate a facile route to decorate the surface of networked single walled carbon nanotubes (SWNTs) with silver nanoparticles (Ag NPs). The method is based on utilization of either spherical poly(styrene-b-4vinylpyridine) (PS-b-P4VP) or cylindrical poly(styrene-b-acrylic acid) (PS-b-PAA) copolymer micelles capable of stabilizing nanotubes in solution and subsequently forming a thin and uniform block copolymer/SWNTs composite film upon spin coating. The selective doping of silver acetate into either P4VP or PAA domains in a thin composite film, followed by thermal treatment, results in the formation of Ag NPs in the cores of micelles. Further heat treatment at 500 °C sufficiently high for degrading both block copolymers allows us to fabricate a thin SWNTs network in which Ag NPs are efficiently deposited on the surface of nanotubes. A sharp surface plasmon absorption band around 400 nm of the networked SWNTs with Ag NPs confirms the presence of Ag NPs with narrow distribution in their size.  相似文献   

19.
We investigated the self-assembly behavior of a series of supramolecular rod–comb block copolymer complexes made by the hybridization of rod–coil diblock copolymers of poly (2,5-di(2-ethylhexyloxy)-1,4-phenylene vinylene)-b-poly(2-vinyl pyridine) (PPV-b-P2VPf) with different volume fractions, f, of the P2VP coils and an anionic surfactant, dodecyl benzenesulfonic acid (DBSA), that selectively interacts with the P2VP to form the side-chain comb teeth. The resulting hybrids show hierarchically ordered structures at multiple length scales, forming so-called structure-in-structure morphology. Notably, for PPV-b-P2VP0.56(DBSA)x, the larger-scale structure changes from a lamellar phase, to a broken lamella, and eventually to a hexagonally packed strip phase with increasing DBSA molar ratio (x) to P2VP monomer unit. Furthermore, simultaneous SAXS and WAXS measurements showed that the order-disorder transition temperatures of larger-scale structures in the PPV-P2VP0.56(DBSA) rod–comb systems were higher than those associated with the pristine PPV-P2VP0.56 polymers. The large-scale structure of PPV-P2VP0.56(DBSA) exists at temperatures around 210 °C even though the rod–rod interaction between PPV blocks disappear at ∼120 °C, signifying that the formation of the P2VP(DBSA) lamellar mesophase plays a critical role in forming the large-scale hexagonally packed strip structures.  相似文献   

20.
A polymer blend system consisting of polystyrene grafted onto poly (p-phenylene ethynylene) (PS-g-PPE) and poly (styrene-block-isoprene-block-styrene) triblock copolymer (SIS) yields highly polarized emission due to the unidirectional alignment of the PPE molecules. During the roll casting, the triblock copolymer microphase separates and creates unidirectionally aligned PS cylindrical microdomains in the rubbery PI matrix. PPE, a fluorescent conjugated polymer, was grafted with polystyrene (PS) side chains that enabled sequestration and alignment of these rigid backbone emitter molecules into the PS microdomains of the SIS triblock copolymer. Deforming the thermoplastic elastomer in a direction perpendicular to the orientation direction of the cylinders causes rotation of the PS cylinders and the PPE emitter molecules and affords tunable polarized emission due to re-orientation of the PPE containing PS cylinders as well as film thinning from Poisson effect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号