首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
Samples of 0.4Li2MnO3·0.6LiNi1/3Co1/3Mn1/3O2 (LMO) with tunable morphologies were synthesized via polyacrylonitrile (PAN) as a template. The starting PAN/N,N‐dimethylformamide (DMF) ratios, including 1:9, 1:10, 1:12, and 1:14, were optimized for the fiber morphologies and electrochemical performance. Through electrospinning, metal salts were well dispersed in the PAN fibers. The crystal structure and morphologies of the PAN/LMO fibers were characterized by X‐ray diffraction, scanning electron microscopy, and thermal analysis. Along with the decrease in the concentration of PAN in the precursor, the diameters of the PAN/LMO fibers decreased. On the other hand, at the highest and lowest concentrations, 1:9 and 1:14, of PAN with DMF, micrometer PAN fibers were electrospun, whereas ratios of PAN to DMF of 1:10 and 1:12 resulted in the electrospinning of millimeter‐long fibers of PAN. In the interface of PAN and metal salts, LMOs were grown and accompanied the decomposition of PAN, and the crystal morphologies of LMO quite depended on the diameter and length of the PAN/LMO nanofibers. During heat treatment, the morphologies of the PAN fibers controlled the removal of small molecules and the crystal morphologies of LMOs. The charge/discharge results indicate that LMO with a tubular structure delivered a capacity of 262.3 mAh/g at a cutoff voltage of 2.5–4.8 V at a 0.1 C rate. Benefitting from a unique hollow and nanocrystalline architecture, it also exhibited good rate and cycling performances. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43022.  相似文献   

2.
Alkaline hydrolyses of p-nitrophenyl acetate (PNPA) and p-nitrophenyl laurate (PNPL) were studied in the presence of poly(3-methyl-1-vinylimidazolium iodide) (PVII-C1), poly(3-n-hexadecyl-1-vinylimidazolium iodide) (PVIII-C16) and their monomeric analogs. The polysoap (PVII-C16) was a completely quaternized polyion, in contrast to other polysoap systems that have been studied. The hydrolysis of PNPA was not affected by these polyions. The hydrolysis of PNPL was instead enhanced by the addition of these cationic polyions. The magnitudes of the enhancement were in the order of PVII-C16 > PVII-C1, which is explained in terms of the hydrophobicity of these polyions. Values of k2, the rate constant of the polymer substrate complex, indicated that the esters bound to the polymer were more reactive than the free esters. Binding or association constants (K) obtained also increased in the order PVII-C16 > PVII-C1. Inhibitory results were observed for the hydrolysis of PNPL in presence of 3-n-hexadecyl-1-vinylimidazolium iodide (VII-C16). The activation parameters for these reactions were also investigated.  相似文献   

3.
Gel spun polyacrylonitrile/carbon nanotube (PAN/CNT) composite fibers have been produced, and the stress-induced G′ Raman band shifts in the CNTs have been monitored to observe stress transfer during fiber strain. Improvements in CNT quality, CNT dispersion, and post-processing fiber drawing are shown to increase the stress transfer from the matrix to the CNT. Radial breathing mode (RBM) intensity of specific CNT chiralities confirms CNT debundling during fiber processing. During PAN/CNT fiber straining, there reaches a plateau in the CNT G′ downshift, signifying that the stress on the CNT is maintained despite continued straining of the PAN/CNT fiber. Correlating CNT strain with CNT modulus and volume fraction allows for the interfacial shear strength (τi) of the PAN-CNT interface to be determined. The as-spun and fully drawn PAN/CNT-A (99/1) nano composite fibers exhibit τi of 13.1 and 30.9 MPa, respectively, while an improved CNT dispersion (PAN/CNT-A (99.9/0.1)) results in τi equal to 44.3 MPa.  相似文献   

4.
We have observed time-dependent drifts in permeability and selectivity for two types of composite hollow fibers used for air separation. One was PVP [poly(4-vinyl pyridine)]/6FDA-durene/polyacrylonitrile (PAN) composite hollow fiber, and the other was 6FDA-3,5-diaminobenzonitrile/6FDA-durene/PAN composite hollow fiber. Their permeabilities dropped 50 to 70% after 3 to 5 months, while selectivities for O2N2 deteriorated slightly with time. A systematic study was carried out to investigate the causes of this creep behavior. Various composite fibers, such as polyimide/Celgard and polyimide siloxane/PAN, were fabricated to simulate the aging process. We conclude that the aging phenomenon observed for these two 6FDA-durene/PAN composite fibers was not due to the structure change of the PAN substrate, but mainly to the densification effect of the 6FDA-durene gutter layer on composite fibers. © 1996 John Wiley & Sons, Inc.  相似文献   

5.
Poly(l ‐lactide)/polyacrylonitrile (PLLA/PAN) core‐sheath composite fibers were fabricated by coaxial electrospinning. The crystallization behavior of PLLA within the coaxial electrospun fibers was studied by differential scanning calorimetry (DSC). The PLLA/PAN coaxial electrospun fiber with a PLLA diameter of ~32 nm (C1) exhibits a crystallization temperature (Tc) of 22.5 °C higher but a cold‐crystallization temperature (Tcc) of 10 °C lower than bulk PLLA. The crystallinity of C1 fiber is also higher than bulk PLLA. In both isothermal melt‐ and cold‐crystallization, PLLA in C1 fiber crystallizes faster than the bulk PLLA, as revealed by the smaller half crystallization times (t1/2). The enhanced crystallizability of PLLA in the C1 fiber may be attributed to the increased nuclei number and crystal growth rate induced by the PAN surface, i.e., surface‐induction effect. However, PLLA also suffers a nano‐confinement effect exerted by PAN sheath in the coaxial electrospun fiber, which can suppress PLLA crystallization. When the diameter of PLLA is too small (< 32 nm), the nano‐confinement effect may prevail over the surface‐induction effect, leading to a slower crystallization rate and smaller crystallinity. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45980.  相似文献   

6.
This article reports a new needleless emulsion electrospinning method for scale‐up fabrication of ultrathin core–shell polyacrylonitrile (PAN)/isophorone diisocyanate (IPDI) fibers. These core–shell fibers can be incorporated at the interfaces of polymer composites for interfacial toughening and self‐repairing due to polymerization of IPDI triggered by environmental moisture. The electrospinnable PAN/IPDI emulsion was prepared by blending PAN/N,N‐dimethylformamide and IPDI/N,N‐dimethylformamide solutions (with the solute mass fraction of 1 : 1). The electrospinning setup consisted of a pair of aligned metal wires as spinneret (positive electrode) to infuse the PAN/IPDI emulsion and a rotary metal disk as fiber collector (negative electrode). The formed ultrathin core–shell PAN/IPDI fibers were collected with the diameter in the range from 300 nm to 3 μm depending on the solution concentration and process parameters. Optical microscopy, scanning electron microscopy, and Fourier transform infrared spectroscopy were used to characterize the core–shell nanostructures. Dependencies of the fiber diameter on the PAN/IPDI concentration, wire spacing, and wire diameter were examined. Results show that needleless emulsion electrospinning provides a feasible low‐cost manufacturing technique for scalable, continuous fabrication of core–shell nanofibers for potential applications in self‐repairing composites, drug delivery, etc. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40896.  相似文献   

7.
Additives have been proven to be useful in improving electrospinnability and controlling fiber morphology through the modification of solution properties, including the conductivity, viscosity, and surface tension. In this study, the effects of adding small amounts of four different types of ionic liquids [i.e., 1‐butyl‐3‐methylimidazolium chloride (C4MIMCl), 1‐dodecyl‐3‐methylimidazolium chloride (C12MIMCl), 1‐ethyl‐3‐methylimidazolium bromide (C2MIMBr), and 1‐ethyl‐3‐methylimidazolium phosphate (C2MIM)3PO4] on the solution properties, electrospinning process, and characteristics of polyacrylonitrile (PAN) were investigated. The results show that the solution conductivities significantly increased with the addition of different ionic liquids with concentrations varying from 0.1 to 1.0 wt %, and the tendency depended on the structures of the ionic liquids. (C2MIM)3PO4 showed the highest conductivity value; this was followed by C2MIMBr, C4MIMCl, and C12MIMCl. The ionic liquids formed visible crystals; this made the fiber surfaces rough, and some fiber segments underwent partial aggregation. A regular varying tendency between the minimum mean diameter of the PAN/ionic liquid fibers and the structure of the ionic liquid was found. The PAN/N,N‐dimethylformamide (DMF)/(C2MIM)3PO4 solution showed the highest conductivity among the four systems with different ionic liquids added, and the thinnest minimum diameter of the PAN/(C2MIM)3PO4 fibers appeared with a relatively low ionic liquid concentration of 0.25 wt %, whereas the PAN/DMF/C12MIMCl solution had the lowest conductivity, and the minimum mean diameter of PAN/C12MIMCl fibers appeared at a relatively high ionic liquid concentration of 0.8 wt %. Although the conductivity of the PAN/DMF/C2MIMBr solution was higher than that of the PAN/DMF/C4MIMCl solution, the minimum mean diameters of the PAN/C2MIMBr and PAN/C4MIMCl fibers appeared at the same ionic liquid concentration of 0.5 wt % because of the similar ionic activities of C2MIMBr and C4MIMCl. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 2359–2368, 2013  相似文献   

8.
The manufacturing of pure polyacrylonitrile (PAN) fibers and magnetic PAN/Fe3O4 nanocomposite fibers is explored by an electrospinning process. A uniform, bead-free fiber production process is developed by optimizing electrospinning conditions: polymer concentration, applied electric voltage, feedrate, and distance between needle tip to collector. The experiments demonstrate that slight changes in operating parameters may result in significant variations in the fiber morphology. The fiber formation mechanism for both pure PAN and the Fe3O4 nanoparticles suspended in PAN solutions is explained from the rheologial behavior of the solution. The nanocomposite fibers were characterized by scanning electron microscopy (SEM), Fourier transform infrared (FT-IR) spectrophotometer, and X-ray diffraction (XRD). FT-IR and XRD results indicate that the introduction of Fe3O4 nanoparticles into the polymer matrix has a significant effect on the crystallinity of PAN and a strong interaction between PAN and Fe3O4 nanoparticles. The magnetic properties of the nanoparticles in the polymer nanocomposite fibers are different from those of the dried as-received nanoparticles.  相似文献   

9.
Polyacrylonitrile (PAN) composite microfibers with different contents of graphene oxide (GO) were fabricated via wet-spinning route in this work. Based on nonsolvent-induced phase separation theory, N,N-dimethyl formamide/water mixture system was employed as coagulation bath, nonsolvent (water) diffused into PAN spinning solution and led to a quick PAN fiber solidification. Nematic liquid crystal state of GO dispersions and GO/PAN spinning solutions were determined via polarized optical microscopy images, and the morphology and structure of the composite fibers were characterized via scanning electron microscope, Transmission electron microscopy, Fourier transform infrared spectra, and X-ray diffraction. 1 wt % GO/PAN composite fibers exhibited outstanding mechanical properties, 40% enhancement in tensile strength and 34% enhancement in Young's modulus compared with pure PAN fiber. The results of dynamic mechanical analysis indicated that the composite fiber with 1 wt % GO performed the best thermal mechanical property with 5.5 GPa and 0.139 in storage modulus and loss tangent, respectively. In addition, thermogravimetric analysis showed that thermal stability of the composite fibers enhanced with the increasing GO contents. GO/PAN composite fibers can be as the candidate of carbon fiber precursor, high performance fibers, and textiles applications. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 46950.  相似文献   

10.
Polyacrylonitrile (PAN)-based composite membranes were prepared by immersion precipitation method by using poly(N,N-dimethylaminoethyl methacrylate)-grafted silica (PDMAEMA@SiO2) nanoparticles as hydrophilic additives. The molecular weight of PDMAEMA were controlled by the surface initiated atom transfer radical polymerization of N,N-dimethylaminoethyl methacrylate on SiO2 nanoparticles. The synthesized nanoparticles have a typical core–shell structure as characterized in detail by FT-IR, TEM, DLS and GPC. The prepared PAN-based composite membranes have higher porosity and water permeation flux than those of the pure PAN membranes. They also show high rejection (⩾90%) to bovine serum albumin and high flux recovery ratio (⩾90%) to water permeation. These improved performances are attributed to the good hydrophilicity of PDMAEMA@SiO2 nanoparticles. The results suggest that PDMAEMA@SiO2 nanoparticles are suitable for the property optimization of PAN-based composite membranes.  相似文献   

11.
A polyacrylonitrile (PAN) precursor fiber of a special grade for preparing carbon fibers was modified by the impregnation of an aqueous KMnO4 solution. The effects of the modification on the lateral and morphology structure, related to the crystalline properties of both the precursors and preoxidized fibers, such as the orientation index, crystal size, and crystallinity index, were measured by wide‐angle X‐ray diffraction. For both modified and original PAN fibers, a comparative study of the changes of the elemental content during the process of preoxidation, the relations between the thermal stress and heat‐treatment temperature, and the effect of the modification on the skin/core structure of a preoxidized fiber were also introduced by the use of elemental analysis, optical microscopy, and so on. The modification of KMnO4 was demonstrated to increase the density, increase the crystallinity index, increase the preferred orientation index, and decrease the crystal size for a modified precursor fiber and for a preoxidized fiber developed from a modified precursor fiber after a different heat‐treatment temperature. KMnO4 also showed a catalytic action, accelerating the rate of preoxidation and reducing the time of thermal stabilization; this improved the homogenization of the cross‐section structure and led to an improvement in the tensile strength of 15–20% and an improvement in the elongation of 20–30% in the resulting carbon fibers. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 97: 2047–2053, 2005  相似文献   

12.
《Ceramics International》2016,42(10):11603-11610
The work presents results on the manufacture and comparative assessment of the structure and microstructure parameters of polyacrylonitrile polymer (PAN)-based carbon nano- and micro-fibers. Using the same polymer solution, PAN nano- and microfibers were obtained. The PAN nanofibers were obtained by electrospinning, and microfibers were spun using the conventional solution-spinning method. The PAN-based fiber precursors were annealed to 1000 °C, 2000 °C and to 2800 °C. Using X-ray diffraction and Raman spectroscopy, the structural and microstructural parameters of both types of carbon fibers were examined. The morphology of PAN nanofibers and carbon nanofibers (CNF) were studied by SEM. Both types of ex-PAN carbon fibers (nano and micro) have similar the c-axis spacing (d002) values and crystallite sizes after heat treatment to 2000 °C presenting turbostratic structure. HR-TEM images of low temperature CNF show uniform microstructure with the misoriented small carbon crystallites along the fiber axis. The ratio of the integrated intensities of the D and G peaks for carbon nanofibers after heat treatment at 2000 °C was distinctly higher in comparison to carbon microfibers (CF). After additional annealing the fibers to 2800 °C a better structural ordering show CNF. The crystallite sizes (Lc, La) in CNF were distinctly higher in comparison to the crystallites in CF. CF consist of two carbon components, whereas CNF contain three carbon components varying in structural and microstructural parameters. One of carbon phases in CNF was found to have the interlayer spacing close to graphite, i.e. d002=0.335 nm.  相似文献   

13.
Electrospun polyacrylonitrile (PAN)‐based carbon composite fibers embedded with magnetic nanoparticles have been developed as materials for electromagnetic wave absorption. The nanocomposite fibers were prepared by electrospinning from a dispersion of magnetite (Fe3O4) nanoparticles stabilized by L ‐glutamic acid in a solution of PAN and N, N‐dimethyl formamide. The Fe3O4‐embedded PAN nanofibers were stabilized at 270°C in air and carbonized at 800°C in nitrogen. The Fe3O4 nanoparticles were crystalline with a particle size of about 7 nm, most of which was reduced to Fe3C with agglomerates of up to 50 nm diameter in the carbon fibers. The carbon morphology was mostly disordered, but exhibited a layered graphitic structure in the vicinity of the nanoparticles. The carbon composite fiber exhibited ferromagnetic behavior, and the induced magnetic saturation per unit mass of fibers increased with increasing Fe3O4 content in the precursor. The complex relative dielectric permittivity was tuned by adjusting the amount of Fe3O4 in the carbon fiber precursor. With increasing Fe3O4 content, good electromagnetic wave absorption characteristics were observed below 6 GHz, even for samples with fiber loadings as low as 5 wt %. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

14.
Stabilized polyacrylonitrile (PAN) fibers pretreated under N2 and air atmospheres were prepared and their thermal behaviors were compared by differential scanning calorimetry and thermogravimetry methods. The results indicated that the subsequent stabilization reaction of PAN pretreated in air was more obvious than that in N2. In addition, the thermal stability of PAN pretreated in air is better than that in N2. The structural analysis by Fourier transform infrared spectroscopy and solid state 13C nuclear magnetic resonance implied that oxygen promoted dehydrogenation and a compact conjugated structure was formed in PAN. In addition, the C?O structures were generated in air and increased gradually with temperature. The contents of oxygen in PAN fibers studied by elemental analysis corresponded with the structural evolution. Further investigation indicated that the C?O structures helped dehydration and also promoted formation of the cross‐linked structures. A mechanism for structural evolution in PAN during stabilization in air was proposed. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

15.
Polyacrylonitrile (PAN) hollow fibers were pretreated with ammonium dibasic phosphate and then further oxidized in air, carbonized in nitrogen, and activated with carbon dioxide. The effects of carbonization temperature of PAN hollow fiber precursor on the microstructure, specific surface, pore‐size distribution, and adsorption properties of PAN‐based carbon hollow fiber (PAN‐CHF) and PAN‐based activated carbon hollow fibers (PAN‐ACHF) were studied in this work. After the activation process, the surface area of the PAN‐ACHF increased very remarkably, reaching 900 m2 g?1 when carbonization is 1000°C, and the adsorption ratios to creatinine and VB12 of ACHF were much higher than those of CHF, especially to VB12. The different adsorption ratios to two adsorbates including creatinine and VB12 reflect the number of micropores and mesopores in PAN‐ACHF. The dominant pore sizes of mesopores in PAN‐ACHF are from 2 to 5 nm. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 97: 2155–2160, 2005  相似文献   

16.
Summary The coagulation process of polyacrylonitrile (PAN) precursor during wet-spinning was studied by chemical method based on the KMnO4 titration. Experiments were performed with gelled solutions of PAN in dimethyl sulphoxide (DMSO) to determine the diffusion rate of solvent during the coagulation. The experimental datas about solvent diffusion coeffecient were calculated by using diffusion equation, which reflected the coagulation process of nascent fibers. At the same time, the effects of coagulation on the residual solvent content, the change of morphology of nascent fibers, the crystallization degree and the stress-strain curves were studied by use of X-ray diffraction, SEM, single fiber tensible test and so on. The results elucidated the relationship between coagulation process and the structure and property of PAN nascent fibers.  相似文献   

17.
The rate data of the hydrocracking reaction of low-temperature tar are presented. The overall order of the reaction was found to be second order below 1500 psi and first at and above 1500 psi. The rate of gasoline formation from tar was found to be represented by k1g = 0.14 k1N.O + 0.16 k1S + 0.14 k1O + 0.12 k1N + 0.08 where k1N.Ok1Sk1O and k1N are first order rate constants for the hydrocracking of hydrocarbons, and sulphur, oxygen and nitrogen compounds present in tar respectively.  相似文献   

18.
Boron nitride (BN) thin coating has been formed on the surface of chemically activated polyacrylonitrile (PAN) carbon fiber by dip coating method. Dip coating was carried out in saturated boric acid solution followed by nitridation at a temperature of 1200 °C in nitrogen at atmospheric pressure to produce BN coating. Chemical activation improved surface area of PAN fiber which favours in situ carbothermal reduction of boric acid. Scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS) have shown the formation of boron nitride. The X-ray photoelectron spectroscopy reveals that the coating forms a composite layer of carbon, BN/BOxNy and some graphite like BCN with local structure of B–N–C and B(N–C)3. The oxidation resistance of the coated fiber was significantly higher than uncoated carbon fiber. Tensile strength measurement reveals that the BN coated fiber maintained 90% of its original strength. As compared to chemical vapor deposition (CVD), this process is simple, non-hazardous and is expected to be cost effective.  相似文献   

19.
The stabilization process of polyacrylonitrile (PAN) fiber is necessary to develop high-performance carbon fiber. This work is concerned with studies of the activation energy of PAN fibers during the stabilization process. A wide-angle X-ray diffractometer combined with a fiber specimen holder for heating was used to measure the activation energy of crystal transition Ec. Ec is almost the same as the activation energy of the cyclization reaction E which is measured by a differential thermal analysis (DTA). The variation of crystal size in PAN fiber and a model of the ladder polymer in stabilized fiber transformed from acrylontrile (AN) units of PAN fiber are discussed also. The crystal size of PAN fiber increases when the thermal treatment temperature is raised. When exposed to temperatures above the crystal degradation temperature Td, the molecular rods of PAN fiber are destroyed completely, and ladder polymer is formed in the ordered phase of the original PAN fiber. The transformation of ladder polymer is initiated in the disordered phase, and then at the boundaries of the ordered phase.  相似文献   

20.
PFSA-TiO2(or Al2O3)-PVA/PVA/PAN difunctional hollow fiber composite membranes with separation performance and catalytic activity have been prepared by dip-coating method. The good separation performance was brought about by the glutaraldehyde (GA) surface cross-linked PVA/PAN composite membrane, and the good catalytic activity of the membrane was achieved by the perfluorosulphonic acid (PFSA) used. The difunctional hollow fiber membranes were characterized by XRD, TGA, EDX, SEM, and FTIR. The separation performance was measured by dehydration of azeotropic top product of ethanol-acetic acid esterification, and the catalytic activity was obtained by investigating the esterification of ethanol and acetic acid. The FTIR spectra and the morphologies of difunctional hollow fiber composite membranes were similar for samples prior to esterification and post-esterification with ethanol and acetic acid for 24?h. Difunctional hollow fiber composite membranes with 2% PFSA, 8% TiO2 (named as DM-T1), and 2% PFSA, 8% Al2O3 (named as DM-A1) (all by weights) showed the best catalytic activity. They displayed fluxes of 165 and 173?g/m2?h, separation factors of water to ethanol of 279 and 161, PFSA contents in difunctional hollow fiber composite membrane of 3.2 and 2.4%, the ratios of PFSA to feed solution (acetic acid?Cethanol) of 0.031 and 0.023%, and the equilibrium conversion of ethanol at 53.5 and 57.6%, in the given order for TiO2 and Al2O3 containing samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号