首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 906 毫秒
1.
Juan Peng 《Polymer》2005,46(15):5767-5772
The dewetting pattern development of thin film of poly(styrene)-block-poly(methyl methacrylate) (PS-b-PMMA) diblock copolymer has been studied after ‘annealing’ in the PMMA block selective solvent vapor. Initially, typical circular dewetted holes are observed. Further annealing, however, results in the formation of fractal-like holes. The heterogeneous stress induced by the residual solvent remaining in the film after spin-coating induces the anisotropy of the polymer mobility during the annealing process, which triggers the formation of the intriguing surface patterns.  相似文献   

2.
Joachim Schmelz  Holger Schmalz 《Polymer》2012,53(20):4333-4337
We present a straightforward approach to well-defined 1D patchy particles utilizing crystallization-induced self-assembly. A polystyrene-block-polyethylene-block-poly(methyl methacrylate) (PS-b-PE-b-PMMA) triblock terpolymer is cocrystallized in a random fashion with a corresponding polystyrene-block-polyethylene-block-polystyrene (PS-b-PE-b-PS) triblock copolymer to yield worm-like crystalline-core micelles (wCCMs). Here, the corona composition (PMMA/PS fraction) can be easily adjusted via the amount of PS-b-PE-b-PMMA triblock terpolymer in the mixture and opens an easy access to wCCMs with tailor-made corona structures. Depending on the PMMA fraction, wCCMs with a mixed corona, spherical PMMA patches embedded in a continuous PS corona, as well as alternating PS and PMMA patches of almost equal size can be realized. Micelles prepared by cocrystallization show the same corona structure as those prepared from neat triblock terpolymers at identical corona composition. Thus, within a certain regime of desired corona compositions the laborious synthesis of new triblock terpolymers for every composition can be circumvented.  相似文献   

3.
The morphology change of an asymmetric polystyrene-block-poly(2-vinyl pyridine) (PS-b-PVP) diblock copolymer micellar film was investigated during solvent vapor annealing in chloroform. Initially, smaller islands in nanometer-length scale form at the film surface. Further annealing results in the growth of the islands composed of the PS-b-PVP cylinders above the bottom brush layer. For comparison, a film of the block copolymer prepared from THF solution (without micellar structure) was also studied. The surface morphology of the film from THF evolves via spinodal dewetting mechanism during solvent vapor annealing. At a long time solvent vapor annealing, the two kinds of the films display the same surface morphologies, which are determined by the interplay between the surface field and autodewetting.  相似文献   

4.
Xiaoyi Sun  Xiaohua Huang  Qi-Feng Zhou 《Polymer》2005,46(14):5251-5257
The synthesis of ABC triblock copolymer poly(ethylene oxide)-block-poly(methyl methacrylate)-block-polystyrene (PEO-b-PMMA-b-PS) via atom transfer radical polymerization (ATRP) is reported. First, a PEO-Br macroinitiator was synthesized by esterification of PEO with 2-bromoisobutyryl bromide, which was subsequently used in the preparation of halo-terminated poly(ethylene oxide)-block-poly(methyl methacrylate) (PEO-b-PMMA) diblock copolymers under ATRP conditions. Then PEO-b-PMMA-b-PS triblock copolymer was synthesized by ATRP of styrene using PEO-b-PMMA as a macroinitiator. The structures and molecular characteristics of the PEO-b-PMMA-b-PS triblock copolymers were studied by FT-IR, GPC and 1H NMR.  相似文献   

5.
Helene C. Maire 《Polymer》2009,50(10):2273-10190
This paper describes the orientation of cylindrical domains in thin films of a polystyrene-poly(methylmethacrylate) diblock copolymer (PS-b-PMMA; 0.3 as the PMMA volume fraction) on gold and oxide-coated Si substrates having different surface roughness. Atomic force microscopy images of PS-b-PMMA films having thickness similar to the domain periodicity permitted us to study the effects of substrate roughness and block affinity on domain orientation. PS-b-PMMA films on gold substrates showed metastable vertical domain orientation that was attained more slowly on rougher substrates. In contrast, the domains were horizontally oriented on oxide-coated Si regardless of surface roughness and the annealing conditions examined. In addition, cyclic voltammetry data for PS-b-PMMA films on gold substrates whose PMMA domains were etched suggested that the metastable vertically oriented domains reached the underlying substrates. These results indicate that PS-b-PMMA films containing vertically oriented cylindrical domains can be obtained by using rough gold substrates upon annealing under controlled conditions.  相似文献   

6.
Michael R. Tomlinson 《Polymer》2008,49(22):4837-4845
We present methodologies for fabricating block copolymer assemblies grafted onto flat solid substrates, where each block of the copolymer possesses a systematic and gradual variation of molecular weight as a function of the position on the substrate. We demonstrate the utility of this technique on two case studies. In the first project, we generate surface-tethered poly[(2-hydroxyethyl methacrylate)-b-(methyl methacrylate)] (PHEMA-b-PMMA) diblock copolymer brushes and study systematically morphological transitions associated with collapsing either the top PMMA or the bottom PHEMA block while keeping the other block solvated. Scanning force microscopy studies of systems having the top block collapsed reveal the presence of either flat (F), or micellar (M) or bicontinuous (BC) morphologies, whose locus in the phase diagram agrees with theoretical predictions and results of computer simulations. The second case study demonstrates the extension of the deposition method to the case of surface-anchored triblock copolymer brushes. Specifically, we present results pertaining to the formation of poly[(2-hydroxyethyl methacrylate)-b-(methyl methacrylate)-b-(dimethylaminoethyl methacrylate)] brushes with independent variation of all three block lengths.  相似文献   

7.
We investigated, via small angle X-ray scattering, depolarized light scattering, rheometry, and transmission electron microscopy, the phase behavior of the mixture of a symmetric polystyrene-block-poly(n-pentyl methacrylate) copolymer (PS-b-PnPMA) showing the closed-loop phase behavior and excellent baroplasticity, and dodecanol, a PnPMA-selective solvent. We found that the addition of a selective solvent is simple, but very effective to obtain various microdomains including hexagonally packed cylinders and gyroids. Also, with increasing temperature, the mixtures showed multiple ordered-to-ordered transitions (OOTs) in addition to upper ordered-to-disordered transition (UODT). The first observation of gyroid microdomains in PS-b-PnPMA is very important, although they have been widely reported in many block copolymers, for instance, PS-block-polyisoprene copolymer (PS-b-PI) and PS-block-poly(d,l-lactide) copolymer (PS-b-PLA). Since the gyroid microdomains of PS-b-PnPMA show excellent baroplasticity, external pressure instead of temperature could easily change the microdomains.  相似文献   

8.
Wenchun Fan  Sixun Zheng 《Polymer》2008,49(13-14):3157-3167
Polystyrene-block-poly(methyl methacrylate) (PS-b-PMMA) block copolymers with linear and tetra-armed star-shaped topological structures were synthesized via sequential atomic transfer radical polymerization (ATRP). With pentaerythritol tetrakis(2-bromoisobutyrate) as the initiator, the star-shaped block copolymers with two sequential structures (i.e., s-PMMA-b-PS and s-PS-b-PMMA) were prepared and the arm lengths and composition of the star-shaped block copolymers were controlled to be comparable with those of the linear PS-b-PMMA (denoted as l-PS-b-PMMA). The block copolymers were incorporated into epoxy resin to access the nanostructures in epoxy thermosets, by knowing that PMMA is miscible with epoxy after and before curing reaction whereas the reaction-induced phase separation occurred in the thermosetting blends of epoxy resin with PS. Considering the difference in miscibility of epoxy with PMMA and/or PS, it is judged that the reaction-induced microphase separation occurred in the systems. The design of these block copolymers allows one to investigate the effect of topological structures of block copolymers on the morphological structures of the thermosets. By means of atomic force microscopy (AFM) and small-angle X-ray scattering (SAXS), the morphology of the thermosets was examined. It is found that the nanostructures were formed in the thermosets containing l-PMMA-b-PS and s-PS-b-PMMA block copolymers. It is noted that the long-range order of the nanostructures in the epoxy thermosets containing l-PMMA-b-PS is obviously higher than that in the system containing s-PS-b-PMMA. However, the macroscopic phase separation occurred in the thermosetting blends of epoxy resin with s-PMMA-b-PS block copolymer.  相似文献   

9.
In this work, the authors study the fabrication of three-dimensional block copolymer nanostructures in which the morphologies can be reversibly controlled. Polystyrene-block-polydimethylsiloxane (PS-b-PDMS), a promising candidate for nanolithography, is introduced into cylindrical nanopores of anodic aluminum oxide (AAO) templates using a solvent annealing–induced nanowetting in templates (SAINT) method. Not only the morphologies of the infiltrated PS-b-PDMS nanostructures can be tuned by the annealing solvents, but also the solvent-vapor-controlled morphologies can be altered reversibly by annealing the samples repeatedly between different solvent vapors.  相似文献   

10.
Polystyrene/polystyrene-block-poly(methyl methacrylate)/poly(methyl methacrylate) (PS/PS-b-PMMA/PMMA) composite particles were prepared by releasing toluene from PS/PS-b-PMMA/PMMA/toluene droplets dispersed in a sodium dodecyl sulfate aqueous solution. The morphology of the composite particles was affected by release rate of toluene, the molecular weight of PS-b-PMMA, droplet size, and polymer composition. ‘Onion-like’ multilayered composite particles were prepared from toluene droplets of PS-b-PMMA and of PS/PS-b-PMMA/PMMA, in which the weights of PS and PMMA were the same. The layer thicknesses of the latter multilayered composite particles increased with an increase in the amount of the homopolymers. PS-b-PMMA/PS composite particles had a sea-islands structure, in which PMMA domains were dispersed in a PS matrix. On the other hand, PS-b-PMMA/PMMA composite particles had a cylinder-like structure consisting of a PMMA matrix and PS domains.  相似文献   

11.
The dispersion of magnetic nanoparticles (NPs) in homopolymer poly(methyl methacrylate) (PMMA) and block copolymer poly(styrene-b-methyl methacrylate) (PS-b-PMMA) films is investigated by TEM and AFM. The magnetite (Fe3O4) NPs are grafted with PMMA brushes with molecular weights from M = 2.7 to 35.7 kg/mol. Whereas a uniform dispersion of NPs with the longest brush is obtained in a PMMA matrix (P = 37 and 77 kg/mol), NPs with shorter brushes are found to aggregate. This behavior is attributed to wet and dry brush theory, respectively. Upon mixing NPs with the shortest brush in PS-b-PMMA, as-cast and annealed films show a uniform dispersion at 1 wt%. However, at 10 wt%, PS-b-PMMA remains disordered upon annealing and the NPs aggregate into 22 nm domains, which is greater than the domain size of the PMMA lamellae, 18 nm. For the longest brush length, the NPs aggregate into domains that are much larger than the lamellae and are encapsulated by PS-b-PMMA which form an onion-ring morphology. Using a multi-component Flory-Huggins theory, the concentrations at which the NPs are expected to phase separate in solution are calculated and found to be in good agreement with experimental observations of aggregation.  相似文献   

12.
Yang Cong  Jun Fu 《Polymer》2005,46(14):5377-5384
Morphology evolution of diblock copolymer polystyrene-block-poly(4-vinylpyridine) (PS-b-P4VP) micellar thin film in the presence of water was investigated. Surface holes with nanoscale cavities in hexagonal order could be induced by water treatment for certain periods. The nanoscale surface cavities could be transformed into isolated nanospheres in a dry environment or back to protruding densely packed spheres by toluene (a selective solvent for PS coronae) treatment. The morphology evolution of micellar thin film strongly depended on the slow evaporation of toluene solvent, the swelling of P4VP cores in the humid environment, and the subsequent movement of PS chains induced by air and toluene. The incompatibility between solvent and block, and that between the unlike blocks also played an important role in the morphology evolution.  相似文献   

13.
We demonstrate a simple methodology to incorporate interacting magnetic nanoparticles (mNPs) into cylinder forming block copolymer templates. Poly(styrene-block-isoprene) (PS-b-PI) with PI cylinders and poly(styrene-block-4vinylpyridine) (PS-b-P4VP) with PS cylinders were used as the block copolymer templates and γ-Fe2O3 NPs coated with oleic acids were pre-synthesized for the interacting mNPs. Regardless of the template block copolymers, the selective location of mNPs and the size of mNP aggregates are clearly altered by changing casting solvents. When good solvents for both blocks were used as casting solvents, mNPs are readily aggregated during the solvent evaporation. In contrast, under selective casting solvents for the minor blocks, the mNPs were selectively trapped into the cylinder domains through the facile inversion of micelles during solvent evaporation. The interplay between mNPs and block copolymers was also tested with different molecular weights of block copolymers.  相似文献   

14.
We demonstrate a new and simple route to fabricate highly dense arrays of hexagonally close packed inorganic nanodots using functional diblock copolymer (PS-b-P4VP) thin films. The deposition of pre-synthesized inorganic nanoparticles selectively into the P4VP domains of PS-b-P4VP thin films, followed by removal of the polymer, led to highly ordered metallic patterns identical to the order of the starting thin film. Examples of Au, Pt and Pd nanodot arrays are presented. The affinity of the different metal nanoparticles towards P4VP chains is also understood by extending this approach to PS-b-P4VP micellar thin films. The procedure used here is simple, eco-friendly, and compatible with the existing silicon-based technology. Also the method could be applied to various other block copolymer morphologies for generating 1-dimensional (1D) and 2-dimensional (2D) structures.  相似文献   

15.
The re-assembly behaviors of spherical micelles of the polystyrene-b-poly(acrylic acid) (PS-b-PAA) diblock copolymer in different solvent mixtures were investigated using dynamic light scattering, transmission electron microscopy and atomic force microscopy. Depending on the nature of the solvent, PS-b-PAA micelles re-assembled from spheres to nanorings in toluene or to necklace-like aggregates in water induced by solvent evaporation. Systematic studies suggested that the re-assembly behaviors on a neutral surface are strongly correlated with the micellar surface components, the solvent polarity and the chain length of the micelle corona of the solvated blocks. We proposed that the formation of nanorings from PS-b-PAA micelles in toluene is mainly induced by the dewetting process of the solvent, while the necklace-like structure arises from the hydrogen bonding interactions among the partially dissociated PAA units.  相似文献   

16.
17.
Yannie Chan 《Polymer》2004,45(10):3473-3480
We report the novel use of polystyrene-block-poly(acrylic acid) (PS-b-PAA) diblock copolymer micelles as the nano-building blocks in fabricating orderly aligned three-dimensional micropatterns with high regularity through a one-step evaporation-induced cracking process. Crack patterns of square, rectangular, stripe-like and mesh-like structures in micron scale were obtained. The effect of the concentration of diblock copolymer, the properties of the substrates, the thickness of the drying layer, and the morphology of the micelles on the regularity of the crack patterns was studied. By regulating the above factors, we achieved micropatterns of various structures. We further developed a cheap, fast, and simple method for fabricating micromolded structures using the crack patterns as templates.  相似文献   

18.
Nano-channel single crystals were developed via consecutive growth of various polymer single-crystal channels comprising homo and block copolymers by self-seeding method. Poly(ethylene glycol)-b-polystyrene (PEG-b-PS) and poly(ethylene glycol)-b-poly(methyl methacrylate) (PEG-b-PMMA) block copolymers were synthesized by atom transfer radical polymerization. Self-seeding temperature, concentration, and crystallization time affected the width of the channels. This might provide a new way to investigate directional absorption, diffusion, and immobilization of biomacromolecules on the surface. The crystalline blocks of PEG-b-PS and PEG-b-PMMA diblock copolymers were similar, therefore, the continuity of channel-wire growth was guaranteed. Development of complete square channels next to the channels covered with high molecular weight brushes was infeasible. It was ascribed to a higher hindrance of primarily existing tethered chains on the single-crystal channel. Finally, the consecutive channel-wire single crystals were compared with single-step-grown pyramidal and conic structures. These multilayer crystals grew spirally and formed non-flat channels. The structure and morphology of different crystalline channels were detected by atomic force microscopy (AFM) and small angle X-ray scattering (SAXS). In this work, for the first time, the SAXS data of channel-wire single crystals were reported and they were compared by non-flat channel-like crystals. A profound investigation of PEG-b-PS, PEG-b-PMMA copolymers and PEG homopolymer channel-wire single crystals by SAXS and their comparison with AFM data was a novel work in the field of single-crystal engineering.  相似文献   

19.
AAO template is highly recommended to nanostructure polymers and to study polymer properties under confinement. The dynamic properties of polystyrene-block-poly(4-vinylpyridine) (PS-b-P4VP) under confinement using broadband dielectric spectroscopy are investigated in this work and the results compared to those of the bulk. Anodized aluminum oxide (AAO) membranes, having pore diameters from tens to hundreds of nanometers in size, were used to confine PS-b-P4VP. Moreover, the influence of gold nanoparticles (AuNPs) in the copolymer matrix was also studied. The morphology and structure of the bulk copolymer and the copolymer confined in the AAO templates were characterized by transmission electron microscopy, scanning electron microscopy and Small Angle X-Ray Scattering. For PS-b-P4VP in bulk, dielectric relaxation techniques allowed studying selectively the P4VP segmental dynamics within the diblock. At high temperature this copolymer presents a dominant peak (MWS relaxation), most likely originated by the relatively high conductivity combined with the presence of interfaces emerging in the nanostructured samples. Moreover, a pronounced β-relaxation is observed for the copolymer compared with that of pure P4VP. This is likely due to a non-negligible contribution from the α-relaxation of the PS component. The γ-relaxation is markedly different in the copolymer, which is evidenced by a distinct temperature dependence of the resulting relaxation times. When the copolymer is embedded in alumina nanopores with small pore diameters (25 and 35 nm) there are significant changes, where the tendency is going to a faster dynamics when the pore diameter decreases more likely related to the relevance of surface effects. The presence of the AuNPs in the system enhances this effect. These results are in agreement with segregated structures found in the block copolymer by TEM and SAXS.  相似文献   

20.
We recently achieved quantitative synthesis of an amphiphilic coil-rod-coil triblock copolymer, poly(2-vinylpyridine)-b-poly(n-hexyl isocyanate)-b-poly(2-vinylpyridine), by coupling in situ living diblock copolymer poly(2-vinylpyridine)-b-poly(n-hexyl isocyanate) (P2VP-b-PHIC) using malonyl chloride in the presence of pyridine. This led to the introduction of an active methylene group that is a site for further functionalization in the rod block. The Michael addition reaction of the triblock copolymer with 7-(4-trifluoromethyl) coumarin acrylamide led to copolymer bearing a fluorescent pendent in the rod block. The fluorescent labeled copolymers were isolated in ∼94% yields. Similarly C60 pendent was introduced to the rod block by the Bingel reaction. The yields of C60 functionalized copolymers were ∼54%. The precursor and functionalized amphiphilic coil-rod-coil copolymer show diverse morphologies, such as micelles and vesicles by simply changing the solvent. For the C60 functionalized block copolymer, structural constraints in micelles and vesicles prevented C60 pendents to aggregate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号