首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 12 毫秒
1.
Time resolved SAXS/WAXS experiments, employing synchrotron radiation, together with DSC studies have been carried out on a vinyl alcohol-ethylene copolymer in order to clarify the morphological changes occurring during the non-isothermal crystallization of that copolymer from the melt. It was found that the SAXS long spacing and the WAXS diffraction peaks appear at the same temperature, revealing that the predominant growth mechanism of this process is nucleation and crystal growth but not density fluctuations. Moreover, the temperature variation of different structural parameters (peaks intensity, degree of crystallinity, long period, lamellar thickness) was comprehensively analyzed. Three temperature intervals are observed in this analysis, which have been interpreted as ‘high-temperature crystallization’, ‘low temperature crystallization’ and sub-glass region in order of decreasing temperatures.  相似文献   

2.
A study on the isothermal crystallization of water in aqueous solutions of poly(vinyl methyl ether) (PVME) was carried out by the differential scanning calorimetry (DSC). The influence of PVME concentration (49.5, 44.5 and 39.5 v%) and the crystallization temperature (Tc) on crystallization rate G, crystallization enthalpy (ΔHc) and melting enthalpy (ΔHm) was investigated. Avrami equation cannot be used to describe the crystallization process of water in aqueous PVME solution. Within the measured temperature range, the crystallization rate G increases with the crystallization temperature Tc and with the decreasing PVME content. The crystallization enthalpy ΔHc linearly increases with the degree of supercooling. The influence of Tc on the ΔHc becomes more marked with increasing PVME concentration. For 49.5 and 44.5 v% PVME solutions, the amount of water arrested in solution during the isothermal crystallization and the final concentration of PVME-rich phase increase linearly with the Tc, whereas for 39.5 v% PVME solution, these two values almost do not change with Tc. The amount of frozen water in the subsequent cold crystallization is approximately proportional to the initial Tc. The approximately constant ΔHm for a given concentration at the different initial isothermal crystallization temperatures suggests that the total amount of ice from the first isothermal crystallization and the second cold crystallization is same. The quantitative relation of the amount of frozen water in the cold crystallization and the initial Tc demonstrates that PVME/water complexes are thermodynamically unstable.  相似文献   

3.
The correlation between crystalline morphology development and tensile properties of isotactic polypropylene (iPP) and its blend with poly(ethylene-co-octene) (PEOc) was investigated to study the ductile-brittle transition (DBT) in fracture modes. The sample processing strategy and the scientific observations have never been reported previously. The samples were first isothermally crystallized at 130 °C, 123 °C or 115 °C for a wide range of crystallization times, and then quenched to 35 °C for characterization. It was found that the crystallization conditions including crystallization temperature and time governed the crystalline morphology and even the tensile properties of iPP and the iPP/PEOc (80/20) blend. The lower the crystallization temperature, the shorter the crystallization time was needed for the occurrence of DBT, and the sharper the transition would be. The addition of the elastomer component delayed the DBT occurrence for the iPP/PEOc blend in terms of the crystallization time, owing to the fact that the existence of PEOc domains between the iPP lamellar stack regions or at the iPP spherulitic boundaries enhanced the ductility of the blend. The X-ray diffraction results displayed the oriented and destroyed crystalline structure characterizing the ductile fracture, while unoriented structure describing the brittle failure. The DBT is closely related to the crystal perfection, and factors such as the crystallization temperature and time and the compositions have been proven to be significant variables in determining the DBT occurrence.  相似文献   

4.
Synchrotron radiation wide angle X‐ray diffraction (WAXD) and small angle X‐ray scattering (SAXS) were performed to study the structures of four typical types of poly(ethylene terephthalate) (PET) industrial yarns. Three‐dimensional structural models of the yarns and comprehensive insights into the process–structure–property relationships were gained. High spinning speed, low draw ratio, and high heat‐setting temperatures lead to HMLS yarns with high crystallinity, high amorphous orientation, densely packed lamellar stacks, and a small tilting angle of crystalline lamellae. High draw ratio tends to result in PET industrial yarns with large long period and a large tilting angle of lamellae. Heat‐setting process has a significant influence on the amorphous orientation and crystalline structures, such as crystallinity, crystallite size, as well as crystal grain number. Compared with other structure characteristics, amorphous orientation plays a more important role in determining the tenacity, initial modulus, part load elongation, ultimate elongation, as well as shrinkage of PET industrial yarns. The crystal grain number seems to have an effect on the initial modulus, while the long period influences the elongation of the yarns to some extent. In addition, the small tilting angle of crystalline lamellae may relate to the dimensional stability of PET yarns. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42512.  相似文献   

5.
DSC and time‐resolved WAXS and SAXS are used to study the structure development during isothermal crystallization of poly(glycolic acid) (PGA) in the temperature range 180–195°C. It is shown that the crystallization rate increases with degree of supercooling in the temperature range of consideration. WAXS and DSC crystallinity measurements agree well and a final crystallinity of 50% is found independently of the crystallization temperature. In‐situ SAXS measurements indicate that for PGA the final crystal thickness approaches a limiting value of 70 Å independent of the crystallization temperature in the range 195–180°C. The material develops a well‐defined lamellar structure during crystallization at the highest crystallization temperature under study (195°C). We show that by increasing the degree of supercooling it is possible to hinder the formation of the lamellar structure and crystals, resulting in a less ordered structure. We report that PGA fibers with elastic modulus in the range 20–25 GPa can be prepared by adequate control of the structure before solid‐state plastic deformation. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

6.
The crystallization behavior of poly(lactic acid) (PLA) has been studied extensively, and this has resulted in different reported values for the nucleation densities (Ns) and crystal growth rates (Gs) for similar grades. These inconsistencies may be magnified when they are used in subsequent modeling studies. Therefore, the quiescent crystallization behaviors of three PLA grades were studied with polarized optical microscopy and small‐angle light‐scattering experiments. The Gs and Ns were determined at several isothermal crystallization temperatures with a device that provided near‐instantaneous cooling to the isothermal crystallization temperature. Two growth rate regimes, which were attributed to α and α′ crystallization with a transition around 120 °C, were observed. Avrami analysis revealed that the poly(l ‐lactic acid) homopolymer crystal growth was three‐dimensional and was unaffected by the presence of stereocomplex PLA. The PLA copolymer crystals had a transition from an initial sheaflike conformation to three‐dimensional growth. Furthermore, the lamellar twisting of the homopolymer was observed at the isothermal crystallization temperature around 144 °C. These findings can be used for future modeling studies to predict material behavior in various industrial processes. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44566.  相似文献   

7.
Isothermal melt crystallization of poly(L-lactide) (PLLA) has been studied in the temperature range of 90 to 135°C. A maximum in crystallization kinetic was observed around 105°C. A transition from regime II to regime III is present around 115°C. The crystal morphology is a function of the degree of undercooling. At crystallization temperatures (Tc) below 105°C, further crystallization occurs upon heating; this behavior is not detected for Tc above 110°C. The analysis of the heat capacity increment at glass transition temperature (Tg) and of dielectric properties of PLLA indicates the presence of a fraction of the amorphous phase which does not relax at the Tg, and the amount of this so-called rigid amorphous phase is a function of Tc. © 1997 John Wiley & Sons, Inc. J Appl Polym Sci 64: 911–919, 1997  相似文献   

8.
Isothermal crystallization kinetics and spherulite morphologies of partially immiscible blends of poly(lactic acid) (PLA) and ethylene acrylate copolymer (EAC) were investigated by differential scanning calorimetry (DSC) and polarized optical microscopy. The DSC data obtained was analyzed using the Avrami equation. Crystallization kinetics of PLA from the melt was strongly influenced by the blend composition and the crystallization temperature. At a given crystallization temperature, the overall crystallization rate value was greater in the blends than in PLA suggesting that the presence of EAC enhanced crystallization of PLA. Polarized optical micrographs showed that the crystallization of PLA initially took place at the PLA/EAC interface. At high EAC content (>1 wt %), EAC domains acted as hindrance to crystallization reducing the overall crystallization rate of PLA in the blends. Based on the DSC analysis, the crystallization rate was maximum when PLA blend with 1 wt % EAC was isothermally crystallized at 103 °C. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45487.  相似文献   

9.
The isothermal crystallization kinetics of PLA/fluoromica nanocomposites was studied. Three types of synthetic mica at three concentrations (2.5, 5.0, and 7.5 wt % mica) were used and the effect of these micas on the crystallization and thermal properties of PLA was investigated by differential scanning calorimetry (DSC). The Avrami and Hoffman‐Weeks equations were used to describe the isothermal crystallization kinetics and melting behavior. Addition of these micas to the PLA matrix increased the crystallization rate, and this effect depended on the mica type and concentration. While the nonmodified Somasif ME‐100 exerted the smallest effect, the effect observed for the organically modified Somasif MPE was the most pronounced. The lower half‐time of crystallization t1/2 was around 3 min for the PLA/Somasif MPE nanocomposites containing 7.5 wt % of filler at 90°C, which is about 16 min below that found for neat PLA. The equilibrium melting temperature ( ) of PLA were estimated for these systems, showing an increase in the composites and an increase with increasing loading, except for PLA/Somasif MPE, in which the increase of the mica content decreased about 5°C. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40322.  相似文献   

10.
Two representative poly(lactic acid) (PLA) nanocomposites with 1% TiO2 nanowires were prepared through in situ melt polycondensation and easy solution‐mixing approaches, respectively. The former was denoted as ISPLANC, and the latter as SMPLANC. The isothermal crystallization kinetics and melting behaviors of pure PLA, ISPLANC, and SMPLANC were comparatively investigated by differential scanning calorimetry in the temperature range of 80–115°C. Maximum crystallization growth rate (Gexp) was observed at 100°C for all three samples. The well dispersed TiO2 nanowires acted as effective nucleation agents in ISPLANC, which exhibited much higher Gexp in compared to pure PLA and SMPLANC below 110°C. However, much smaller crystallization enthalpy of ISPLANC was obtained because of its restricted chain mobility in forming crystalline lamellar. The crystallization behavior of all three samples fit the Avrami equation quite well, with most of the R2 values larger than 0.9990. Double‐melting behaviors were observed after heating the samples after isothermal crystallization at various temperatures, which was explained by the melt recrystallization of the smaller and imperfect crystals formed at lower isothermal crystallization temperatures. We also obtained the equilibrium melting temperatures of the three samples by carrying out Hoffman–Weeks plots. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

11.
Structural evolution in the isothermal crystallization process of polyoxymethylene from the molten state has been investigated by carrying out the time-resolved measurements of infrared spectra and synchrotron small angle X-ray scattering (SAXS) and wide angle X-ray scattering. In case of isothermal crystallization at 130 °C, for example, the infrared bands intrinsic of folded chain crystal (FCC) morphology appeared at first, and then the bands of extended chain crystal (ECC) morphology were detected with time delay of ca. 150 s. In the SAXS experiment at 130 °C, the lamellar stacking structure of the long period of ca. 15 nm was observed at first, which changed rapidly to ca. 12 nm in a short time. The SAXS peak with the long period of ca. 6 nm started to appear with a time delay of ca. 150 s after the initial lamellae appeared and coexisted with the initially-observed 12 nm peak. Judging from the timing to detect these characteristic infrared and SAXS signals, a good correspondence was found to exist between the stacked lamellar structure of 12 nm long period and FCC morphology and between the structure of 6 nm long period and ECC morphology. The quantitative analysis was made for the SAXS data on the basis of the lamellar insertion model combined with the paracrystalline theory of the second-kind of disorder. The following structural evolution was deduced from all these results. Immediately after the temperature jump from the melt to 130 °C, the stacked lamellar structure of FCC morphology was generated at first. New lamellae were formed from the amorphous region in between the originally-existing lamellae about 150 s later, where the random chain segments bridging the adjacent lamellae were extended to form the taut tie chains, giving infrared bands of ECC morphology. This inserted lamellar structure of 6 nm long period coexisted at a population of ca. 6% with the initially-formed lamellar stacking structure of 12 nm long period. When the experiment was made at 150 °C, only the formation of stacked lamellar structure of FCC morphology was observed and the insertion of new lamella did not occur.  相似文献   

12.
The nucleation and lamellar growth mechanisms of nascent isotactic polypropylene/poly(ethylene-co-octene) (N-iPP/PEOc) in-reactor alloy were investigated with temperature-resolved synchrotron small angle X-ray scattering (SAXS), differential scanning calorimeter (DSC) and polarized optical microscopy (POM) methods. We have observed two crystallization peaks (fractionated crystallization behavior) during cooling process in N-iPP/PEOc in-reactor alloy. We also determined that the crystallinities from that two crystallization peaks were dependent on liquid-liquid phase separation (LLPS) time with t0.10 and t−0.28, respectively. It was explained that the fractionated crystallization behavior in the N-iPP/PEOc in-reactor alloy system was caused by crystal nucleation occurring in the iPP rich domain by heterogeneous nucleation and at interface of iPP and PEOc rich domains by the fluctuation assisted nucleation. The fluctuation assisted nucleation only occurred at interface of iPP and PEOc domains by concentration fluctuation through the coupling of liquid-liquid spinodal decomposition and the cross-over to crystal nucleation process. Both lamellar crystals formations from heterogeneous and fluctuation assisted nucleation in N-iPP/PEOc were probed by temperature-resolved SAXS during cooling process. Our results provide the physical model for the multiple nucleation and crystal growth mechanisms in the multi-component, multi-phase polymer systems such as in-reactor alloy or blend.  相似文献   

13.
The isothermal cold crystallization and melting behaviors of poly(L ‐lactic acid)s (PLLAs, weight average molecular weight, Mw, 6000–80,000) prepared via melt polycondensation were studied with differential scanning calorimeter in this work. It is found that the crystallization rate increased with decreasing Mw, reached a maximum at Mw of ca. 21,000 and then decreased again. The crystallinity of PLLA can be controlled in the range 30–50% by crystallization temperature (Tc) and time to fulfill the requirement of subsequent solid state polycondensation. The melting behavior strongly depends on Tc. The samples crystallized at high Tc melted with a single peak but those crystallized at low Tc melted with double peaks. The higher melting point (TmH) kept almost constant and the lower melting point (TmL) increased clearly with Tc. But the TmL changed in jumps and a triple melting peak appeared at the vicinity of a characteristic crystallization temperature Tb, possibly because of a change of crystal structure. The equilibrium melting temperature of PLLA with Mw of 21,300 was extrapolated to be 222°C with nonlinear Hoffman‐Weeks method. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

14.
The isothermal crystallisation behaviour and morphology of blends of isotactic polypropylene, iPP, and a liquid crystal polymer, Vectra A950, has been studied using differential scanning calorimetry, optical microscopy and simultaneous WAXS and SAXS in real-time measurements using synchrotron radiation. It has been observed that Vectra domains act as sites for the nucleation of iPP, and the rate of crystallisation is enhanced with increasing Vectra content in the blend. The presence of the α crystalline form in pure iPP, and both α and β forms for iPP in iPP/Vectra blends has been found. The SAXS patterns for iPP/Vectra blends containing β iPP are characterized by two different long period values that were related to the α and β lamellae. The secondary crystallisation mechanism has been investigated by SAXS/WAXS experiments. It is shown that, in contrast to primary crystallisation, secondary crystallisation of iPP is not affected by the presence of the thermotropic liquid crystalline polymer. As already known from pure iPP, the main process of secondary crystallisation is the growth of new lamellar stacks within remaining amorphous regions in the iPP spherulites.  相似文献   

15.
The semicrystalline structure and degree of crystallinity of fractionated crystallizing poly(methylene oxide)/(polystyrene/poly(2,6-dimethyl-1,4 phenylene ether) POM/(PS/PPE) blends have been investigated by DSC, SAXS and WAXD. The three techniques yielded highly correlated results.The degree of crystallinity of the POM phase determined by DSC (Xc,DSC) decreases with decreasing POM content in the blends and this is accompanied by a shift from bulk to homogeneous crystallization.The reduction in the measured degree of crystallinity determined by WAXD (Xc,WAXD) is even more pronounced and indicates, in absence of evidence for the formation of different polymorphs, that only small and imperfect crystals are formed during homogeneous crystallization in finely dispersed droplets. Analysis of the width of the WAXD reflections, which is also related to Xc,WAXD, yields a linear correlation between L1, a measure of the lateral dimensions of the crystallites, and the average dispersed particle diameter. The parameter L2, corresponding to the crystalline lamellar thickness, is non-linearly correlated with the degree of crystallinity, indicating that the decrease in Xc,WAXD is not solely due to the formation of thinner lamellae at higher degrees of undercooling. There is a simple relationship between the SAXS long period and the crystallization temperature, corresponding to the formation of thinner and less perfect crystalline lamellae during fractionated crystallization at higher degrees of undercooling.As the lateral dimensions of the crystallites of finely dispersed crystallizing droplets is governed by their size, Xc,WAXD can be directly related to the particle diameter, since the fraction of small or imperfect crystallites will not be measured by WAXD.  相似文献   

16.
ABSTRACT

The poly (lactic acid)-fulvic acid graft polymer (PLA-FA) was synthesized with lactic acid and fulvic acid (FA). The optimum parameters were determined by orthogonal experiment. X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy exhibited that FA was successfully grafted onto PLA. Then, PLA/PLA-FA composites were prepared with PLA-FA as fillers by melt blending. The structure characterization and performance tests demonstrated that PLA-FA effectively enhanced the comprehensive performance of PLA composites. The rheological analysis demonstrated that PLA-FA had plasticization effect. The non-isothermal crystallization kinetics demonstrated that PLA-FA promoted the crystallization rate of PLA composites, improving toughness of PLA composites.  相似文献   

17.
Poly(ethylene‐octene) (POE), maleic anhydride grafted poly(ethylene‐octene) (mPOE), and a mixture of POE and mPOE were added to poly(butylene terephthalate) (PBT) to prepare PBT/POE, PBT/mPOE, and PBT/mPOE/POE blends by a twin‐screw extruder. Observation by scanning electron microscopy revealed improved compatibility between PBT and POE in the presence of maleic anhydride groups. The melting behavior and isothermal crystallization kinetics of the blends were studied by wide‐angle X‐ray diffraction and differential scanning calorimeter; the kinetics data was delineated by kinetic models. The addition of POE or mPOE did not affect the melting behavior of PBT in samples quenched in water after blending in an extrude. Subsequent DSC scans of isothermally crystallized PBT and PBT blends exhibited two melting endotherms (TmI and TmII). TmI was the fusion of the crystals grown by normal primary crystallization and TmII was the melting peak of the most perfect crystals after reorganization. The dispersed second phase hindered the crystallization; on the other hand, the well dispersed phases with smaller size enhanced crystallization because of higher nucleation density. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

18.
聚乙醇酸(PGA)通常可通过乙交酯开环聚合和乙醇酸熔融缩聚制得,但乙交酯开环聚合工艺复杂,导致PGA成本高。相较而言,乙醇酸熔融缩聚制备PGA工艺简单,成本较低,但难以获得中高分子量的PGA。因此,本文基于熔融/固相缩聚路线,系统研究了催化剂种类与含量、酯化温度、固相缩聚温度等聚合工艺条件对PGA外观形态、特性黏度和热稳定性的影响。发现三氟甲烷磺酸铋对乙醇酸熔融缩聚具有较好的催化效果,优化熔融/固相缩聚条件如下:催化剂含量为0.20%(质量),酯化温度为180℃,熔融缩聚和固相缩聚温度为210℃,固相缩聚时间为12 h。在该熔融缩聚条件下,PGA的最高特性黏度为0.36 dl/g,进一步固相缩聚处理可以将PGA的特性黏度提高到0.59 dl/g。  相似文献   

19.
左旋聚乳酸(PLLA)和右旋聚乳酸(PDLA)在共混体系中可形成立构复合(sc)结晶,与聚乳酸(PLA)同质结晶材料相比,sc 结晶材料具有良好的耐热性和耐化学稳定性。因此,sc 结晶是改善PLA 综合性能的一种有效手段。但在PLLA/PDLA 共混体系中,存在各自的同质结晶与两者之间sc 结晶的竞争,所以制备高耐热sc 型PLA 材料的关键之一是理解其sc 结晶的形成条件与机理,进而调控和促进其sc 结晶程度。在PLLA/PDLA 共混物中,sc 结晶受聚合物化学结构、结晶与加工条件等诸多因素影响,其影响规律和机理较复杂。根据PLLA/PDLA共混物sc 结晶行为影响因素的不同,从聚合物分子量、立构规整性、共混比例、分子链拓扑结构、结晶方式与条件、加工助剂和其他组分加入6 个方面出发,详细综述了PLLA/PDLA 共混物sc 结晶及其sc 材料制备的研究进展,以期为高耐热生物基PLA 材料的加工制备提供指导。  相似文献   

20.
Poly(l ‐lactic acid) (PLLA) is a good biomedical polymer material with wide applications. The addition of poly(ethylene glycol) (PEG) as a plasticizer and the formation of stereocomplex crystals (SCs) have been proved to be effective methods for improving the crystallization of PLLA, which will promote its heat resistance. In this work, the crystallization behavior of PEG and PLLA/poly(d ‐lactic acid) (PDLA) in PLLA/PDLA/PEG and PEG‐b‐PLLA/PEG‐b‐PDLA blends has been investigated using differential scanning calorimetry, polarized optical microscopy and X‐ray diffraction. Both SCs and homocrystals (HCs) were observed in blends with asymmetric mass ratio of PLLA/PDLA, while exclusively SCs were observed in blends with approximately equal mass ratio of PLLA/PDLA. The crystallization of PEG was only observed for the symmetric blends of PLLA39k/PDLA35k/PEG2k, PLLA39k/PDLA35k/PEG5k, PLLA69k/PDLA96k/PEG5k and PEG‐b‐PLLA31k/PEG‐b‐PDLA27k, where the mass ratio of PLLA/PDLA was approximately 1/1. The results demonstrated that the formation of exclusively SCs would facilitate the crystallization of PEG, while the existence of both HCs and SCs could restrict the crystallization of PEG. The crystallization of PEG is related to the crystallinity of PLLA and PDLA, which will be promoted by the formation of SCs. © 2017 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号