首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The dependence of morphology of the poly(imide siloxane)s (PISs) on the solubility parameter of unmodified polyimides and the molecular weight and content of α,ω‐bis(3‐aminopropyl) polydimethylsiloxane (APPS) has been studied. The effect of the morphology on the mechanical properties is also under investigation. The domain formation in the PISs with the APPS molecular weight Mn = 507 g/mol is not found until the mol ratio of APPS/PIS ≥ 0.5% in the pyromellitic dianhydride/p‐phenylene diamine (PMDA/p‐PDA)‐based PISs, and at a mol ratio ≥ 2.7% in the 3,3′,4,4′‐benzophenone tetracarboxylic dianhydride/2,2′‐bis[4‐(3‐aminophenoxy) phenyl] sulfone (BTDA/m‐BAPS)‐based PISs. As the APPS Mn = 715 g/mol, the critical APPS concentrations of the domain formation in both types of PISs are equal to 0.1 and 1.1%, respectively. The critical concentration is equal to 0.6% in the BTDA/m‐BAPS‐based PIS film with the APPS Mn = 996 g/mol. The isolated siloxane‐rich phase in the BTDA/m‐BAPS‐based PISs becomes a continuous phase as the mol ratio of APPS/PIS ≥ 7.7, 10.0, and 16.6% as the APPS Mn = 996, 715, and 507 g/mol, respectively. Dynamic Mechanical Analysis (DMA) shows two Tgs in the PIS films having phase separation: one at −118 ∼ –115°C, being the siloxane‐rich phase, the other at 181–244°C, being the aromatic imide‐rich phase. The SEM micrographs show a significant deformation on the fractured surfaces of the BTDA/m‐BAPS‐based PIS films with a continuous siloxane‐rich phase. This phenomenon of plastic deformation is also observed in the tensile tests at −118°C and at room temperature. The highest elongation in the PIS films is found at the critical siloxane content of the continuous siloxane‐rich phase formation. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 74: 2832–2847, 1999  相似文献   

2.
A series of pyridine‐containing poly(imide‐siloxane) (PIS) copolymers with different amounts of PDMS with various segmental lengths were synthesized from 2,6‐diaminopyridine (DAP), α,ω′‐aminopropylpoly(dimethylsiloxane) (PDMS), 1,3‐bis(4‐aminophenoxy)benzene (APB), and 4,4′‐oxydiphthalic dianhydride (ODPA). A modified synthetic approach was applied instead of approaches commonly reported in the literature, to ensure the incorporation of DAP and PDMS. The effects of the content and the segmental length of PDMS on the thermal glass transition temperature (Tg), dielectric constant, and surface electrical resistivity of the copolymer are investigated. The copolymers were attached to copper foil by hot‐pressing, and changes in wettability caused the peel strength of the laminates to increase with the PDMS content, but to decrease as the DAP content increased. Furthermore, X‐ray photoelectron spectroscopy was employed to determine the loci of failures (LOF) of the laminates and to monitor the movement of LOF, which varies with the PDMS content. For those laminates with good peel strengths, the LOF occur in the interior of PIS layer, indicating that the adhesion is cohesive rather than adhesive. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2007  相似文献   

3.
Mechanical, thermal, and surface properties of poly(dimethylsiloxane)–poly(methyl methacrylate) block copolymers (PDMS-b-PMMA) prepared by the use of polysiloxane(azobiscyanopentanamide)s were intensively investigated. The mechanical strength of block copolymers was found to decrease with an increase of siloxane contents. Dynamic mechanical analysis (DMA) of block copolymers having long siloxane chain length (SCL) and high siloxane content revealed the existence of two glass transitions attributable to microphase separation of two segments. Differential scanning calorimetry (DSC) also gave some evidence of microphase separation supporting the DMA results. It was observed that the incorporation of PDMS segments in block copolymers improved thermal stability of PMMA, as confirmed by thermogravimetric analysis. Surface analysis of the block copolymers films cast from several solutions indicated surface accumulation of PDMS segments, as revealed by water contact angle and ESCA measurements.  相似文献   

4.
In this study, a series of aqueous polyurethane modified by poly(dimethyl siloxane) PDMS were synthesized, which were based on polyoxytetramethylene glycol (PTMG), isophorone diisocyanate (IPDI), dimethylol propionic acid(DMPA), and PDMS. The copolymer was characterized by FTIR and the fraction of hydrogen bonded carbonyl group was determined through decomposition of C?O stretching. Energy dispersive X‐ray analyzer (EDX) was used to investigate the siloxane concentration on the surface and bulk regions. The morphology of aqueous polyurethane before and after modification was studied by SAXS, including the interface between soft and hard micro‐domain, the size and shape of the dispersive particles, as well as the degree of the phase separation. Influence on the morphology structure of aqueous polyurethane in different type and content of organic silicone was studied. It was shown that the degree of hydrogen bonding and phase separation of aqueous polyurethane decreased after the introduction the PDMS resulted from the migration of PDMS to the surface of the film. Therefore, water resistance improved a lot after the introduction of PDMS with different structures, and the tensile strength and elongation of APDMS(PDMS terminated by hydroxyalkyl) decreased while those of EPDMS(PDMS terminated by hydroxyl polyether) appeared little increase at low content and than decreased. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

5.
Three different poly(imide-siloxane)s (PIS) containing rigid imide groups were synthesized by the reaction of amine end-capped imides to the siloxane backbone. These highly soluble amine terminated imides were synthesized by reacting fluorinated anhydride and three different amines (DDBP, DDM, DBP). The imides were grafted to the siloxane backbone by the epoxy group cleavage. All the polymers were obtained in quantitative yields with the inherent viscosities ranging from 0.32 to 0.45 dL/g. The polymers were characterized by FTIR, 1H and 13C NMR, and their thermal properties were studied. The DSC results showed two distinct glass transition temperatures demonstrating the existence of phase separation between the hard imide and soft siloxane groups. Polymeric membranes were prepared employing the coupling reaction between PIS and the polydimethylsiloxane matrix by varying the amount of incorporation of PIS. The membranes showed a high tensile strength of 82 MPa. The contribution of polar and dispersion component towards the total surface energy was studied by the contact angle measurements, and a reduction in surface tension of 15 mN/m was achieved with the fluorine containing PIS membrane. The study of the surface morphology was studied which confirmed the existence of phase separation in these systems. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

6.
X-ray photoelectron spectroscopy is used to reveal surface/bulk compositional relationships in blends of polydimethylsiloxane (PDMS) and PDMS/polycarbonate block copolymers in poly(vinyl chloride) (PVC). It is shown that the surface of PVC can be enriched in siloxane up to 60 at. % PDMS without visible indications of phase separation.  相似文献   

7.
In this study, poly(dimethyl siloxane) (PDMS)/poly(vinylidene fluoride) (PVDF), poly(phenyl methyl siloxane) (PPMS)/PVDF, poly(ethoxy methyl siloxane) (PEOMS)/PVDF, and poly(trifluropropyl methyl siloxane) (PTFMS)/PVDF composite membranes were prepared. The different functional compositions of these membranes were characterized by Fourier transform infrared spectroscopy. The surfaces and sections of these membranes were investigated by scanning electron microscopy. The hydrophobicity at the membrane surface was assessed with contact angle measurement. Swelling experiments were carried out to investigate the swelling behavior of these membranes. The composite membranes prepared in this study were used in the pervaporation separation of ethanol/water mixtures, and their separation performances were compared. The results show that the separation performances of these membranes were strongly related to the silicone rubber components and composition, the total fluxes decreased in the following order: PDMS > PPMS > PEOMS > PTFMS. The separation factor followed the following order: PPMS > PEOMS > PDMS > PTFMS (5 wt % ethanol at 40°C). In addition, the effects of the feed temperature (40–70°C) and feed composition (5–20 wt %) on the separation efficiency were investigated experimentally. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

8.
Various numbers of diphenyl-siloxane groups were incorporated in α,ω-bis(aminopropyl)polydimethylsiloxane (APPS) to prepare α,ω-bis(aminopropyl)-polydimethyldiphenylsiloxane (APPPS) oligomers of three different number-average molecular weights(Mn = 547,772,1210 g mol−1).These APPPS oligomers were than used, together with 3,3′,4,4′-bezonphenone tetracarboxylic dianhydride (BTDA) and 2-2′-bis[4-(3-aminophenoxy)phenyl] sulfone (m-BAPS), to synthesize a series of APPPS containing poly(imide siloxane) (PIS) copolymers. Microstructural studies showed that at certain APPPS content, a critical microphase separation point existed, beyond which, microphase separation began to develop. This critical point of microphase separation was found to be affected by the Mn of the APPPS oligomers (8.0, 4.3 and 2.1 mol% for Mn of 547, 772 and 1,210 g mol−1, respectively). Diphenyl-siloxane significantly improved compatibility between polyimide and polysiloxane segments. Physical studies showed that the introduction of diphenyl siloxane changed the thermal stabilities and mechanical properties of the PIS copolymers. These findings have potential applications for design purposes in engineering polymers.  相似文献   

9.
The dielectric and morphological properties of a series of 9/1 poly(dimethyl siloxane) PDMS)/poly(α-methylstyrene) (PαMS) block copolymers and a 6/4 PDMS/PαMS block copolymer have been determined as a function of solvent casting and thermal treatment. Transmission electron microscope (TEM) results show better phase separation as a function of thermal annealing and casting from cyclohexane, a PDMS preferential solvent. Dielectric studies in the temperature region of the PDMS glass transition are consistent with the TEM results and are interpreted in terms of a most probable distribution of PDMS/PαMS mixed states. When the PDMS segment molecular weight is less than the critical molecular weight, thermal annealing of the solvent cast samples produces a phase separated sample exhibiting the Tg of PDMS as well as a mixed phase. Thermal annealing of samples with the PDMS segment molecular weight greater than the critical molecular weight produces little change in the mixed structure and the dielectric data. All samples have PαMS segment molecular weights less than the critical molecular weight. The observed changes are interpreted in terms of kinetic effects associated with polymer melt viscosity (critical molecular weight) and expected mixing of the two components.  相似文献   

10.
Taeyi Choi  Ajay Padsalgikar 《Polymer》2009,50(10):2320-2706
Segmented polyurethane block copolymers were synthesized using 4,4′-methylenediphenyl diisocyanate (MDI) and 1,4-butanediol (BDO) as hard segments and various soft segments derived from poly(hexamethylene oxide) (PHMO) and poly(dimethylsiloxane) (PDMS)-based macrodiols and mixtures thereof. The microstructure and degrees of phase separation were characterized using a variety of experimental methods. Copolymers synthesized with the PDMS macrodiol and from PDMS/PHMO macrodiol mixtures were found to consist of three phases: a PDMS phase; hard domains; and a mixed phase of PHMO, PDMS ether end group segments and some dissolved hard segments. Two models were used to characterize the small-angle X-ray scattering from these copolymers: pseudo two-phase and core-shell models. Analysis using both methods demonstrates that as the PDMS content in the soft segment mixture increases, the greater the fraction of hard segments involved in hard domains than are dissolved in the mixed phase. Findings from analysis of the carbonyl region of FTIR spectra are also in agreement with greater hard/soft segment demixing in copolymers containing higher PDMS contents.  相似文献   

11.
A poly(1-trimethylsilyl-1-propyne) (PTMSP) membrane was systematically modified to prevent flux decline over time by incorporating poly(dimethyl siloxane) (PDMS) in three different ways: (1) semi-interpenetrating polymer network (I series), (2) PDMS sorption (S series), and (3) PDMS sorption and crosslinking (X series). The PTMSP and PDMS phases were partially mixed in the I series, which was confirmed by the measurement of density and glass transition temperature. The flux and separation factor in pervaporation of an ethanol–water mixture decrease with time for the I series, analogous to the behavior of pure PTMSP. However, the flux and separation factor remained steady with time in the case of the S and X series. The sorption method appears to be a good means for maintaining a time-unvarying flux and separation factor at a minimum expense. © 1994 John Wiley & Sons, Inc.  相似文献   

12.
Taeyi Choi  Ajay Padsalgikar 《Polymer》2010,51(19):4375-872
Segmented polyurethane (PU) block copolymers were synthesized using 4,4′-methylenediphenyl diisocyanate and 1,4-butanediol as hard segments and oligomeric ethoxypropyl polydimethylsiloxane (PDMS) as the soft segments, with hard segment contents ranging from 26 to 52 wt%. The microphase separated morphology, phase transitions, and degrees of phase separation of these novel copolymers were investigated using a variety of experimental methods. Like similar copolymers with mixed ethoxypropyl PDMS/poly(hexamethylene oxide) soft segments, PU copolymers containing only ethoxypropyl PDMS soft segments were found to consist of three microphases: a PDMS matrix phase, hard domains, and a mixed phase containing ethoxypropyl end group segments and dissolved short hard segments. Analysis of unlike segment demixing using small-angle X-ray scattering demonstrates that degrees of phase separation increase significantly as copolymer hard segment content increases, in keeping with findings from Fourier transform infrared spectroscopy measurements.  相似文献   

13.
A series of novel thermoplastic elastomers, based on poly(butylene terephthalate) (PBT) and polycaprolactone‐block‐polydimethylsiloxane‐block‐polycaprolactone (PCL‐PDMS‐PCL), with various mass fractions, were synthesized through melt polycondensation. In the synthesis of the poly(ester‐siloxane)s, the PCL blocks served as a compatibilizer for the non‐polar PDMS blocks and the polar comonomers dimethyl terephthalate and 1,4‐butanediol. The introduction of PCL‐PDMS‐PCL soft segments resulted in an improvement of the miscibility of the reaction mixture and therefore in higher molecular weight polymers. The content of hard PBT segments in the polymer chains was varied from 10 to 80 mass%. The degree of crystallinity of the poly(ester‐siloxane)s was determined using differential scanning calorimetry and wide‐angle X‐ray scattering. The introduction of PCL‐PDMS‐PCL soft segments into the polymer main chains reduced the crystallinity of the hard segments and altered related properties such as melting temperature and storage modulus, and also modified the surface properties. The thermal stability of the poly(ester‐siloxane)s was higher than that of the PBT homopolymer. The inclusion of the siloxane prepolymer with terminal PCL into the macromolecular chains increased the molecular weight of the copolymers, the homogeneity of the samples in terms of composition and structure and the thermal stability. It also resulted in mechanical properties which could be tailored. Copyright © 2010 Society of Chemical Industry  相似文献   

14.
The effect of surface characteristics and morphology of poly(imide siloxane) (PIS) on the true interfacial adhesion between PIS films and alloy-42 substrates was studied. The effect of the viscosity of PIS films and the surface treatment of deep UV/O3 (d-UV/O3) on alloy-42 plates on the peel strength of PIS films/alloy-42 joints has also investigated. 3,3′,4,4′-benzophenone tetracarboxylic dianhydride/2,2′-bis[4-(3-aminophenoxy)phenyl]sulfone (BTDA/m-BAPS) based PIS films with α,ω-bis(3-aminopropyl)polydimethyl siloxane (APPS) molecular weight Mn = 996 g/mole (PIS9Siy) show two phases in all compositions and the linear dependence of the critical surface tension on the surface concentration of the silicon, [Sisurf], on the PIS films. The PIS films with the APPS Mn = 507 g/mole (PIS5Siy) or Mn = 715 g/mole (PIS7Siy) exhibit a morphology change from a homogeneous phase to an inhomogeneous phase starting at the mole ratio (y) of APPS/PIS = 2.7% and 1.1%, respectively. The curves of critical surface tension dependence on the [Sisurf] discontinue or deflect at these two compositions, respectively. The treatment of d-UV/O3 on alloy-42 plates improves the wetting on the alloy surface and promotes the peel strength between the PIS films and alloy-42 plates by a magnitude of ≥ 20%. These results show that the flowability of the same PIS films bonding at different temperatures significantly affects the bonding strength of the joints, but the flowability of different PIS films bonding at the same temperature, e.g. 400 °C, is not the key factor governing the bonding strength of the joints. The true interfacial adhesion of the PIS5Si0.6/alloy-42 joint is 80% higher than that of the unmodified BTDA/m-BAPS based polyimide film/alloy-42 joint. However, zero true interfacial adhesion is obtained between the PIS9Siy films and alloy-42 plates. The wetting kinetics experiment shows that the higher the siloxane content in the PIS, the higher the activation energy for the adhesive bonding process. Moreover, the phase sepration significantly increases the activation energy. The scanning electron micrographs of the peeled-off PIS film surfaces from the PIS/alloy-42 joints reveal the rougher surface morphology from the sample with the higher interfacial adhesion.  相似文献   

15.
A new concept of density‐based phase separation for the preparation of asymmetric membranes from polyethylene (PE) blended with liquid poly(dimethyl siloxane) (PDMS) has been tried. The PE/PDMS membranes were prepared via high‐temperature solution casting. The purpose of incorporating PDMS was to utilize its flexibility, relatively high density in comparison with PE, and dissolution in common solvent for the formation of asymmetric PE/PDMS membranes. The study has been carried out with 1.25, 2.5, 5, and 10% (v/w) loading of PDMS. A host of techniques were used to study morphology of PE/PDMS blend membranes. The membranes show nodular structure on surfaces in contact with solvent vapor environment, whereas the opposite surfaces have smoother texture devoid of nodules. Although differential scanning calorimetric (DSC) melting endotherms indicate enhancement of crystallinity with PDMS addition, chemical etching and subsequent scanning electron microscopic (SEM) observations show increasingly ordered spherulitic pattern on individual nodules with the incorporation of PDMS up to 2.5%. The density of the films also increases with the addition of PDMS as compared to the control. ATR‐FTIR data revealed asymmetric distribution of PDMS in membranes with more PDMS retention toward lower surface of membranes. Membrane cross sections were indicative of graded porosity with increasing pore size toward the bottom surface of membranes. The results were explained in terms of density‐based phase separation.© 2003 Wiley Periodicals, Inc. J Appl Polym Sci 91:2278–2287, 2004  相似文献   

16.
It has been shown in a previous article that melt blending of low levels of commercial poly(dimethyl siloxane) (PDMS) fluid with commercial thermoplastic polyurethanes has a significant positive impact on the coefficient of friction (CoF) and on the mechanical and wear properties of the polyurethanes. The improvements in CoF and wear resistance were expected due to surface modification of the polymer; however, the improvements in the mechanical properties were much more significant than expected. Evidence presented in the earlier publication suggests that the changes in the wear and mechanical properties are not due to surface modification alone, but are largely due to modification of the bulk by PDMS. In this article a model is presented that accounts for the observed relationship between PDMS content and the properties of the blends. It is proposed that the addition of PDMS facilitates an improved packing efficiency (antiplasticization) in the polyurethane soft domain, leading to improved material performance. Beyond an optimum PDMS concentration of 1.5–2.0%, phase separation of PDMS becomes significant, plasticization sets in, and mechanical properties then begin to diminish rapidly. This model has been rigorously investigated and has proven to be highly robust. © 1997 John Wiley & Sons, Inc. J Appl Polym Sci 65:939–950, 1997  相似文献   

17.
新型PDMS渗透蒸发膜处理含酚废水的研究   总被引:1,自引:1,他引:0  
以聚二甲基硅氧烷(PDMS)为原料,甲苯为溶剂,甲基三乙氧基硅烷为交联剂,二丁基二月桂酸锡为催化剂,制得PDMS渗透蒸发膜,以分离因子、渗透通量作为膜分离性能的主要评价指标,研究了交联剂用量及操作条件对膜性能的影响.结果表明,交联剂用量增加,膜对苯酚的选择性增加,渗透通量先上升后下降;料液温度升高,膜的选择性降低,而渗透通量增加;料液浓度增加,膜的选择系数和渗透通量均增加;料液流速加快,膜的渗透通量和选择系数均增加;下游侧压力升高,渗透通量减小,而选择系数增加.在料液温度为60℃、质量浓度为0.5 g·L~(-1)、体积流量为0.6L·min~(-1),下游侧压力为6kPa时,膜的渗透通量为98mg·m~(-2)·h~(-1),膜对苯酚的选择系数为5.12.  相似文献   

18.
The release rate of 2‐pyridine aldoxime chloride (PAM‐Cl) from polysiloxane matrices was found to be in the order poly(vinylmethyldiethylsiloxane) (P(VM‐DE)S) > poly(dimethyldiethyl siloxane) P(DM‐DE)S > poly(vinylmethylsiloxane) (PVMS) > poly(dimethylvinylmethylsiloxane) (P(DM‐VM)S) > poly(dimethylsiloxane) (PDMS). The time for 80% PAM‐Cl release from polysiloxane matrices was found to be in the range 5–14 h. Incorporation of silica (5–10%) as a filler in these matrices reduced the release of PAM‐Cl and in some cases stopped drug release completely. However, the incorporation of crosslinked poly(ethylene glycol) (PEG) (5–20%) in polysiloxane matrices increased the release rate and reduced the time for 80% drug release. Slow release formulations were made by incorporating 5% silica and 5–20% PEG in PDMS, keeping the PAM‐Cl and PEG ratio 1:1. The formulations PDMS + 5% silica + 5–20% PEG + 5–20% PAM‐Cl gave a slow release of PAM‐Cl and the time for 80% drug release was found to be 12 h in each case at pH 7.4 and 37 °C. PVMS and siloxane copolymers showed times for 80% drug release of 6–10 h in comparison with 12 h for PDMS. Diffusion coefficient values for PAM‐Cl–PDMS system are also calculated. © 2000 Society of Chemical Industry  相似文献   

19.
《分离科学与技术》2012,47(7):843-861
Abstract

Several organophilic membranes were utilized to selectively permeate ethanol, n-butanol, and t-butanol from dilute aqueous mixtures using pervaporation (PV). Poly[1-(trimethylsilyl)-1-propyne] (PTMSP) membranes were utilized to investigate the effect of temperature, pressure, and start-up/transient time on the separation of aqueous ethanol mixtures. Results indicate optimal ethanol selectivity and flux at the lowest permeate-side pressure. Increased temperature significantly enhanced the productivity of PTMSP, but extended operation of the PTMSP membranes at high temperatures resulted in flux degradation. Two other hydrophobic membranes, poly(dimethyl siloxane) (PDMS) and a poly(methoxy siloxane) (PMS) composite, were used to separate n-butanol and t-butanol from dilute aqueous mixtures. The effect of feed concentration on the flux and selectivity was investigated. Both membranes were found to be more permeable to n-butanol than t-butanol. The PDMS membrane was found to be more effective than the PMS membrane in terms of flux and selectivity. The effect of membrane thickness on water permeation and on organic selectivity was also studied using the PDMS membrane.  相似文献   

20.
将2种胆甾液晶单体接枝到含氢聚硅氧烷上制备了胆甾液晶齐聚物,并将此齐聚物与聚二甲基硅氧烷复合制备了一系列复合膜.以偏光显微镜观察了不同液晶含量对复合膜的表面结构形态的影响.通过溶血实验和动态凝血实验研究了其血液相容性,结果表明改性的复合膜具有很好的血液相容性.表面接触角的测定表明复合膜的亲水性由于聚二甲基硅氧烷表面胆甾液晶相的存在得到明显改善.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号