首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
夏季条件下,硫精矿中的磁黄铁矿率先氧化使矿堆迅速结壳,致使矿堆内部缺氧、恒温、酸化,加速其生物氧化过程,使硫精矿失去商品价值并产生大量酸性废水的新污染源。对此种硫精矿进行杀菌、上膜、加入酸环境缓释杀菌剂的化学处理试验及药剂组配、筛选,其中7^#试验组效果明显,含25%以上磁黄铁矿的硫精矿的板结、氧化得到初步控制。  相似文献   

2.
近年来,国内部分矿山硫精矿长期堆存,发生氧化板结现象,成为困扰企业的难题。针对这一问题,对某矿的硫精矿氧化板结的原因进行了分析、试验。研究认为,采用磁选法脱除磁黄铁矿可达到延缓硫精矿氧化板结的发生。  相似文献   

3.
难选磁黄铁矿浮选工艺研究   总被引:13,自引:2,他引:13  
为了综合回收利用安庆铜矿的硫精矿 ,对难选磁黄铁矿进行分析 ,根据磁黄铁矿表面特性 ,采用组合抑制剂及活化剂浮选 ,在原矿含硫较低、硫精矿回收率相近的情况下 ,硫精矿品位提高了 16 %。  相似文献   

4.
广东某大型铜硫矿矿石富含磁黄铁矿型铜硫矿和黄铁矿型铜硫矿,因露天开采,矿物表面易氧化.采用常规的强碱浮铜工艺,生产指标波动较大.对此,研究开发出非碱性浮铜工艺,即在铜粗选中加少量石灰调矿浆pH=7左右,同时加入特效调整剂CW.在原矿中磁黄铁矿与黄铁矿的比例以及黄铁矿型氧化矿含量不同的情况下,获得较好的工业试验指标:铜精矿Cu品位19.59%~24.12%、铜回收率83.03%~85.91%,硫精矿S品位37.86%~40.46%、磁硫精矿S品位30.02%~32.89%,总硫回收率90.14%~93.12%.  相似文献   

5.
铜陵有色某矿山硫矿物以黄铁矿和磁黄铁矿为主,其中黄铁矿可浮性较好,磁黄铁矿可浮性相对较差,在浮选过程中容易氧化、掉槽,且磁黄铁矿与脉石矿物可浮性相近,采用浮选工艺很难获得高品质的硫精矿。根据黄铁矿和磁黄铁矿可浮性的差异、及其磁黄铁具有弱磁性的性质特点,采用分步浮选工艺,优先回收可浮性较好的黄铁矿,中矿以“强磁+浮选”工艺回收可浮性相对较差的磁黄铁矿,实现了对黄铁矿和磁黄铁矿的综合回收。闭路试验指标为:以黄铁矿为主的“硫精矿1”含硫47.78%、含铁43.83%,硫回收率为57.11%;以磁黄铁矿为主的“硫精矿2”含硫36.40%、含铁55.60%,硫回收率为22.12%;总硫精矿含硫43.94%、含铁47.80%,“全硫+铁”品位为91.74%,硫回收率为79.23%。总硫精矿经烧酸后,硫酸烧渣中铁品位在65%以上,附加值大大提高,具有广泛的经济效益和社会效益。  相似文献   

6.
铜陵有色某矿山为解决铜(含金银)、铁回收后的选硫精矿品质问题,在小型条件试验基础上进行了连选选硫试验。结果表明:①磁选尾矿中金属矿物主要为黄铁矿、磁黄铁矿,黄铁矿、磁黄铁矿的解离度均在90%左右,粒度主要分布在10~60μm;脉石矿物主要是石英,其次为方解石、石榴子石等。②磁黄铁矿可浮性比黄铁矿差,且与易浮脉石矿物可浮性相近,是造成浮选工艺很难获得高品质的硫精矿的原因。根据黄铁矿与磁黄铁矿可浮性差异,以及磁黄铁矿和脉石矿物磁性的差异,采用分步浮选、中矿强磁选、强磁选精矿浮选工艺连选,获得了含硫40.36%、含铁49. 25%,全硫+铁品位为89.61%,硫回收率为66.78%的总硫精矿,该精矿经烧酸之后,硫酸烧渣铁品位可达65%,大大提高了硫酸烧渣的附加值。③产品镜下分析表明,磁选尾矿中主要有用矿物为黄铁矿和磁黄铁矿;硫精矿1中金属矿物以黄铁矿为主;精选1尾矿和精选2尾矿中金属矿物主要是磁黄铁矿;硫精矿2中金属矿物以磁黄铁矿为主。这表明分步浮选、中矿强磁选、强磁选精矿浮选工艺是回收磁选尾矿中黄铁矿和磁黄铁矿的合理工艺。④本次连选试验的尾矿2(即强磁选尾矿)含硫较高,达14.53%,以非磁性磁黄铁矿为主,后续应开展该部分含硫矿物的回收研究。  相似文献   

7.
某铅锌多金属硫化矿中含有方铅矿、闪锌矿、黄铁矿、磁黄铁矿、银矿物、毒砂等。为提高资源利用率,加强回收有用矿物,采用优先浮选工艺流程,在铅浮选作业中,采用选择性组合药剂(硫酸锌+亚硫酸钠+DMDC)作为锌闪矿、黄铁矿、磁黄铁矿和毒砂抑制剂,采用选择性组合药剂(SK9011+乙硫氮)作为方铅矿、银矿物的捕收剂。在锌浮作业中采用石灰抑制黄铁矿、磁黄铁矿和毒砂,硫酸铜活化闪锌矿,丁基黄药为捕收剂,实现了锌硫矿物有效分选。在硫浮选作业中采用硫酸铜活化黄铁矿、磁黄铁矿,丁基黄药为捕收剂,使黄铁矿和磁黄铁矿有效回收。工业应用期间,铅回收率提高了3.03个百分点,银回收率提高了4.78个百分点,锌回收率提高了1.24个百分点;获得硫精矿硫品位46.07%,硫回收率73.06%。  相似文献   

8.
目前,从富硫化矿石分离矿物的主要方法是将各矿物分别选入同名精矿中的优先浮选法。含磁黄铁矿的硫化铜一镍矿石的主要矿物是:黄铜矿、镍黄铁矿、、磁黄铁矿,后者的含量在40%至60%(绝对)之间。选别这些矿石采用直接优先浮选流程,产出铜精矿、镍精矿、磁黄铁矿精矿和尾矿。前两种精矿送火法冶炼,而磁黄铁矿精矿送加压一氧化浸出。在铜精矿和镍精矿中除黄铜矿和镍矿铁矿外,尚有悬浮的磁黄铁矿被回收其中。铜精矿中磁黄铁矿的平均含量为18%,镍精矿中其含量为65%。磁黄铁矿含大量硫,它增加了火法冶炼厂厂区大气中二氧化硫的排放量…  相似文献   

9.
代献仁  王周和 《现代矿业》2020,36(1):152-155
铜陵有色某选矿厂硫矿物以黄铁矿和磁黄铁矿为主,现场硫粗精矿经再选后,硫精矿全硫加全铁含量难以达到90%的目标要求,硫精矿经烧酸后所得红粉铁品位低,附加值不高,严重影响企业经济效益。为了实现硫精矿的提质降杂,根据黄铁矿可浮性较好,磁黄铁矿可浮性较差且具有弱磁性等性质特点,在试验室采用分步浮选工艺,即优先回收可浮性较好的黄铁矿,浮尾强磁—浮选回收磁黄铁矿的流程,实现了对黄铁矿和磁黄铁矿的高效回收。为进一步验证分步浮选工艺流程的合理性,在现场分出一部分硫粗精矿矿浆进行了连选试验,连选试验获得的总硫精矿含硫46.31%,全硫加全铁含量为91.60%,硫作业回收率为80.28%;连选试验现场硫精矿含硫39.67%,全硫加全铁含量为80.52%,硫作业回收率为73.94%。连选试验所得硫精矿全硫加全铁含量较现场高11.08个百分点,硫回收率较现场高6.34个百分点。连选试验结果为现场硫粗精矿再选工艺改造提供了技术及理论依据。  相似文献   

10.
以攀枝花硫钴精矿为原料,研究了氧化焙烧对脱硫效果的影响,并对硫钴精矿焙砂的物相组成进行了分析。结果表明,经氧化焙烧后,磁黄铁矿的衍射峰逐渐消失,黄铁矿衍射峰的相对强度明显降低,产生了赤铁矿的衍射峰,说明氧化焙烧能有效脱除硫钴精矿中硫化物矿物中的硫。在此基础上,以煤粉作还原剂,聚乙烯醇为黏结剂,对焙砂进行了压力成型-直接还原试验,研究了还原温度、还原时间、矿煤质量比对焙砂含碳球团直接还原效果的影响。结果表明,当矿粉粒度在74μm以下占75%,黏结剂加入量0.6%,成型压力为6 MPa,水分含量12%,矿煤质量比100∶15,还原温度1 100℃,还原时间25 min时,焙砂含碳球团的直接还原效果较好,金属化率达72.80%。  相似文献   

11.
磁黄铁矿与磁铁矿的浮选分离实践   总被引:5,自引:0,他引:5  
处理以磁黄铁矿和磁铁矿为主要回收对象的矿石,采用浮-磁工艺对磁黄铁矿强化浮选产出合格的硫精矿,浮选尾矿再磁选产出铁精矿。与之对比,先磁后浮分离效果不好。  相似文献   

12.
某铜铁矿选矿厂铁精矿降硫试验研究   总被引:4,自引:3,他引:4  
通过对含硫铁精矿的试验研究分析结果表明,直接用该厂现有的工艺流程对铁精矿进行降硫是不可能达到所要求的质量标准的,其主要是受到磁黄铁矿的影响,本文详细分析了该铁精矿难降硫的原因,并且认为要想获得合格产品,选矿厂必须对现有工艺流程进行改造。  相似文献   

13.
梅山矿业硫精矿再选提纯试验   总被引:1,自引:0,他引:1  
梅山矿业公司选铁过程产生的副产品硫精矿硫品位为30.53%,主要金属矿物有黄铁矿(磁黄铁矿)、磁铁矿、赤铁矿、菱铁矿,脉石矿物有白云石、方解石等碳酸盐矿物及绿泥石、石英等硅酸盐矿物。为提高硫精矿质量,增加硫精矿附加值,对现场产生的的硫精矿进行了再选提纯研究。结果表明:采用1粗1精2扫、精选尾矿与扫选精矿混合后1次精选闭路流程,可以获得产率为76.71%、硫品位为39.62%、杂质MgO含量为0.41%、硫回收率为97.11%的高纯硫精矿。  相似文献   

14.
针对磁黄铁矿易氧化且氧化后可浮性差、难以通过浮选将其与其他矿物分离的问题,通过单矿物浮选试验、接触角测量、Zeta电位测定以及红外光谱测试等方法研究了酸预处理对不同氧化程度六方晶系磁黄铁矿浮选行为的影响及作用机理。结果表明,六方晶系磁黄铁矿氧化程度越深,其可浮性越差; 通过酸预处理可以明显提高六方晶系磁黄铁矿可浮性,且酸预处理pH值越低,酸预处理后六方晶系磁黄铁矿可浮性越好; 酸预处理后的六方晶系磁黄铁矿接触角明显增大,疏水性得到提高,零电点向负方向偏移,表面带正电的氧化产物发生脱附; 红外光谱测试结果表明,丁基黄药与六方晶系磁黄铁矿发生化学吸附同时生成双黄药。  相似文献   

15.
The studies of sulphur distribution in oxidation products of pyrrhotite and chalcopyrite being components of Cu-Ni ores showed that the elementary sulphur — sulphoxide ion ratio on the mineral surface and in the liquid phase of mineral suspensions changes in the presence of sodium thiosulphate. Sodium thiosulphate exhibits properties of a reducing agent and prevents formation of hydrophobic elementary sulphur on pyrrhotite surface due to oxygen absorption and oxidation of thiosulphate-ions to sulphates. The decrease in pyrrhotite floatability is observed, and more favorable conditions are provided for selective flotation of chalcopyrite on copper-nickel ore processing. __________ Translated from Fiziko-Tekhnicheskie Problemy Razrabotki Poleznykh Iskopaemykh, No. 4, pp. 89–94, July–August, 2006.  相似文献   

16.
磁黄铁矿自诱导浮选电化学的研究   总被引:2,自引:2,他引:2  
考察了磁黄铁矿自诱导浮选基本行为,得出了不同pH条件下,回收率一矿浆电位关系和浮选电位上下限—pH关系。结果表明,磁黄铁矿在pH<13,在一定电位范围内,均可实现自诱导浮选。通过循环伏安曲线测量,阐明了磁黄铁矿表面氧化的机理。中性硫是主要疏水体,E-pH图计算,证明了可浮区间内的重要组分。  相似文献   

17.
《Minerals Engineering》2006,19(12):1251-1258
This work investigates the bioleaching of a complex nickel–iron concentrate (pentlandite, pyrrhotite, and minor amounts of chalcopyrite) using acidophile iron-oxidizing bacteria. It aims to improve the understanding of the mechanism of bacterial action on nickel sulphide bioleaching. The effects of the external addition of Fe(II) and the mineralogical assembly on the extraction of nickel are evaluated. A high nickel extraction (around 70%) can be achieved in batch experiments. Moreover, the external addition of iron has not shown any effect on the extraction of the metal, emphasizing the importance of pyrrhotite dissolution in the first step of bioleaching. It was also examined the morphological features of the sulphides as well as the leach residues and reactions products formed during bioleaching. It was noticed that elemental sulphur was produced on pyrrhotite surfaces, which dissolves ahead of pentlandite. A discussion on how galvanic interactions affect the reactivity of sulphide mineral and the formation of bioleaching products is also presented.  相似文献   

18.
某含细粒磁黄铁矿铁锌矿石选矿工艺研究   总被引:1,自引:0,他引:1  
某铁锌矿石中可选矿回收的目的矿物为磁铁矿和闪锌矿,但部分闪锌矿中包裹有磁性较强、粒度较细的磁黄铁矿,处理不当易导致铁精矿中硫含量超标或影响锌精矿品位。为了给该矿石的开发提供技术支撑,对其进行了选矿工艺研究。结果表明:采用先浮选锌后弱磁选铁的原则流程,可以解决铁精矿硫超标问题;将锌粗精矿再磨至-400目占85%后再精选,可以保证锌精矿品位。试验最终获得了锌品位为48.74%、锌回收率为86.92%的锌精矿和铁品位为63.29%、铁回收率为90.58%、硫含量为0.29%的铁精矿。  相似文献   

19.
高硫复杂难选铜铅锌选矿工艺流程试验研究   总被引:4,自引:6,他引:4  
试验依据高硫复杂铜铅锌矿矿石性质的特点,采用磁选—浮选联合工艺流程。试验工艺流程关键技术是磁选脱除磁黄铁矿,应用优先浮选流程,优先浮选铜精矿进行铜硫分离,铜与铅锌分离采用高效抑制剂组合无氰无铬清洁分离工艺,获得了良好的试验指标,铜精矿、铅精矿、锌精矿的品位分别为21.96%、50.68%、41.58%,回收率分别为68.13%、52.24%、79.77%,为高硫复杂难选铜铅锌选矿提供了新途径。  相似文献   

20.
某铁矿石中铁以磁铁矿为主,含部分黄铁矿、磁黄铁矿等铁矿物。磁黄铁矿和黄铁矿的存在,致使在采用直接磁选时,铁精矿含硫较高。针对矿石中的磁铁矿物和含硫矿物的特性特点,进行了详细的多方案试验研究。研究结果表明,原矿粗磨磁选抛尾-磁粗精矿再磨浮选脱硫-浮硫尾矿磁精选联合流程以及磁滑轮抛尾-磁粗精矿再磨浮选脱硫-浮硫尾矿磁精选联合流程均适合处理该铁矿,矿山可通过经济计算确定最佳的提质降杂方案。该技术为同类型磁铁矿山脱硫也提供了技术支持。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号