首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study, the effect of nano-B4C addition on the microstructural and the mechanical behavior of pure Mg are investigated. Pure Mg-metal reinforced with different amounts of nano-size B4C particulates were synthesized using the disintegrated melt deposition technique followed by hot extrusion. Microstructural characterization of the developed Mg/x-B4C composites revealed uniform distribution of nano-B4C particulates and significant grain refinement. Electron back scattered diffraction (EBSD) analyses showed presence of relatively more recrystallized grains and absence of fiber texture in Mg/B4C nanocomposites when compared to pure Mg. The evaluation of mechanical properties indicated a significant improvement in tensile properties of the composites. The significant improvement in tensile ductility (∼180% increase with respect to pure Mg) is among the highest observed when compared to the pure Mg based nanocomposites existing in the current literature. The superior mechanical properties of the Mg/B4C nanocomposites are attributed to the uniform distribution of the nanoparticles and the tendency for texture randomization (absence of fiber texture) achieved due to the nano-B4C addition.  相似文献   

2.
Ruqiang Bao 《Thin solid films》2010,519(1):164-2642
Boron carbide thin films were deposited by radio frequency (RF) magnetron sputtering and characterized by X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, and high resolution transmission electron microscopy. The results reveal that the structure of thin films deposited at substrate temperatures lower than 350 °C is amorphous. We found that there are four chemical states for carbon in amorphous boron carbide thin films deposited by RF magnetron sputtering. One is the segregated carbon in form of the graphitic inclusions in the thin film identified by Raman spectroscopy and Raman mapping using two strong peaks at ~ 1360 cm− 1 and ~ 1590 cm− 1, but the XPS results show that the graphitic inclusions do not connect to the substrate directly. On the surface the carbon forms C=O bonds characterized by the peak of C1s core level at 285.0 eV besides B-C bonds in the boron carbide with the peak of C1s being at 282.8 eV. The detailed analysis of B-C bonds in the boron carbide shows that there are two states for carbon atoms in B-C bonds: in the C-B-C models with C1s peak at 282.3 eV and in the icosahedra with C1s peak at 283.3 eV.  相似文献   

3.
The effect of pressure on the structure and composition of silicon nanoparticles synthesized by hot wire thermal catalytic pyrolysis (HW-TCP) of pure silane has been investigated. Light brown powders were produced at silane pressures of 10 and 50 mbar, at a flow rate of 50 sccm, using a tungsten filament at temperatures of 1900 °C and 1800 °C respectively. As determined by transmission electron microscopy and X-ray diffraction, the particles produced at lower pressure have sizes around 10 nm, whereas those produced at higher pressure are typically 50 nm. High resolution transmission electron microscopy (HR-TEM) shows a surface layer of between 2 and 5 nm thickness, which was confirmed by X-ray photoemission spectroscopy to be an oxide shell. Both X-ray diffraction and HR-TEM confirm a high degree of crystallinity in both sets of particles, with Raman spectroscopy indicating an increase in crystalline fraction with synthesis pressure.  相似文献   

4.
TiO2 thin films prepared by Hot-Wire CVD method have been studied as a protecting material of transparent conducting oxide (TCO) against atomic hydrogen exposures for the fabrications of Si thin film solar cells. It was found that electrical conductivity of the films at room temperature reached a value of 0.4 S/cm. This value is 2-3 orders of magnitude higher than that of TiO2 films prepared by RF magnetron sputtering and electron-beam evaporation methods in our previous works. The conductivity improvement seems to be partly due to the enlargement of TiO2 crystallites.  相似文献   

5.
We have obtained thanks to reduced pressure-chemical vapor deposition germanium nanocrystals in a high quality SiO2 matrix. A perfect control of (i) the tunnel and control oxide layer thicknesses and (ii) the germanium nanocrystals' density and diameter has been achieved. Scanning electron microscopy was used to (i) determine the nucleation and growth rate of the germanium nanocrystals and (ii) evaluate their morphological stability during their embedding. We have also studied the influence of thin selectively grown Si films in order to passivate the surface of the germanium nanocrystals. X-ray photoelectron spectroscopy has shown that the germanium nanocrystals' surface properties are better with a Si capping. The polycrystalline state of the nanocrystals has been evaluated with X-ray diffraction. Transmission electron microscopy image reveals the lack of germanium diffusion and precipitation in the SiO2 matrix.  相似文献   

6.
Growth of carbon nanotubes (CNTs) on bulk copper foil substrates has been achieved by sputtering a nickel thin film on Cu substrates followed by thermal chemical vapor deposition. The characteristics of the nanotubes are strongly dependent on the Ni film thickness and reaction temperature. Specifically, a correlation between the thin film nickel catalyst thickness and the CNT diameter was found. Two hydrocarbon sources investigated were methane and acetylene to determine the best conditions for growth of CNTs on copper. These results demonstrate the effectiveness of this simple method of directly integrating CNTs with highly conductive substrates for use in applications where a conductive CNT network is desirable.  相似文献   

7.
Growth of Ag films on Br- and H-passivated Si(111) surfaces and the annealing behaviour have been investigated by Rutherford backscattering spectrometry, scanning electron microscopy and photoemission electron microscopy techniques. Upon annealing the phenomenon of thermal grooving was observed in the Ag films. Depending on the annealing temperature, at an intermediate annealing time Ag depletion (evaporation) from the grain boundaries produces fractal patterns of Ag-depleted regions. Continued annealing eventually produces a percolated network of Ag-depleted regions (thermal grooves) along the grain boundaries and isolated Ag grains appear as the depth of the grooves reaches the substrate. For the fractal structures produced by thermal grooving, the fractal dimension has been estimated to be 1.60 ± 0.04. Observation of a fractal pattern in thermal grooving was not hitherto reported. A thorough analysis of the experimental results has been carried out in the context of current theories. These theories are inadequate to describe the experimental results.  相似文献   

8.
As-doped sub-micron ZnO rods were realized by a simple thermal diffusion process using a GaAs wafer as an arsenic resource. The surface of the sub-micron ZnO rods became rough and the morphology of As-doped sub-micron ZnO rods changed markedly with increasing diffusion temperature. From the results of energy-dispersive X-ray spectroscopy, X-ray diffraction and photoluminescence, arsenic elements were confirmed to be introduced into the sub-micron ZnO rods. The acceptor ionization energy was deduced to be about 110 meV based on the temperature-dependent PL spectra.  相似文献   

9.
Nanosize cobalt boride particles were synthesized from the vapor phase using a 30 kW–4 MHz radio frequency (RF) thermal plasma. Cobalt and boron powder mixtures used as precursors in different composition and feed rate were evaporated immediately in the high temperature plasma and cobalt boride nanoparticles were produced through the quenching process. The X-ray diffractometry (XRD) patterns of cobalt boride nanoparticles prepared from the feed powder ratio of 1:2 and 1:3 for Co:B showed peaks that are associated with the Co2B and CoB crystal phases of cobalt boride. The XRD analysis revealed that increasing the powder feed rate results in a higher mass fraction and a larger crystalline diameter of cobalt boride nanoparticles. The images obtained by field emission scanning electron microscopy (FE-SEM) revealed that cobalt boride nanoparticles have a spherical morphology. The crystallite size of the particles estimated with XRD was found to be 18–22 nm.  相似文献   

10.
The consumption of the surface native oxides is studied during the atomic layer deposition of TiO2 films on GaAs (100) surfaces. Films are deposited at 200 °C from tetrakis dimethyl amido titanium and H2O. Transmission electron microscopy data show that the starting surface consists of ~2.6 nm of native oxide and X-ray photoelectron spectroscopy indicates a gradual reduction in the thickness of the oxide layer as the thickness of the TiO2 film increases. Approximately 0.1-0.2 nm of arsenic and gallium suboxide is detected at the interface after 250 process cycles. For depositions on etched GaAs surfaces no interfacial oxidation is observed.  相似文献   

11.
Europium doped zinc sulfide nanocrystals (ZnS:Eu) are prepared by solvothermal method. Crystallite size and lattice constant of the prepared samples are calculated from the X-ray diffraction patterns. The as-prepared samples are found to be a mixture of complex chemical groups. Heat treatment of the samples at 300 °C resulted in ZnS:Eu state. The crystal structure is not affected by the increase in the concentration of Eu from 1 mol% to 5 mol%. Fourier Transform Infrared Spectroscopy (FTIR) studies showed that characteristic absorption bands of hydroxyl groups and the acetate bands increased with increase in Eu concentration. The morphological results studied using Scanning Electron Microscopy (SEM) indicate agglomeration of nanoparticles and a marginal increase in the particle size. Photoluminescence (PL) spectra of the samples showed a prominent emission band peaked at ∼400 nm besides three weak ones at ∼422, 485 and 530 nm. The PL intensity increased with increase in Eu concentration.  相似文献   

12.
The feasibility of Aerosol Assisted Chemical Vapour Deposition (AA-CVD) has been investigated for the growth of zinc oxide (ZnO) films containing preformed metal nanoparticles. The deposition parameters were first established for ZnO thin films, by varying the heating configuration, substrate temperature and deposition time. Films were characterised using Scanning Electron Microscopy and X-Ray Diffraction. As-deposited films, grown at 250 °C, were mostly amorphous and transformed to highly crystalline Wurtzite ZnO at higher substrate temperatures (400-450 °C). A change in the preferential orientation of the films was observed upon changing (i), the substrate temperature or (ii), the heating configuration. Following this, the applicability of the AA-CVD process for the incorporation of preformed nanoparticles (platinum and gold) in ZnO thin films was investigated. It was found that surface agglomeration occurred, such that the ZnO films were capped with an inhomogeneous coverage of the metal. These layers were characterised using Transmission Electron Microscopy and Electron Diffraction. A possible mechanism for the formation of these metal surface clusters is presented.  相似文献   

13.
Electrodeposited CuInSe2 thin films are of potential importance, as light absorber material, in the next generation of photovoltaic cells as long as we can optimize their annealing process to obtain dense and highly crystalline films. The intent of this study was to gain a basic understanding of the key experimental parameters governing the structural-textural-composition evolution of thin films as function of the annealing temperature via X-ray diffraction, scanning/transmission electron microscopy and thermal analysis measurements. The crystallization of the electrodeposited CuInSe2 films, with the presence of Se and orthorhombic Cu2  xSe (o-Cu2  xSe) phases, occurs over two distinct temperature ranges, between 220 °C and 250 °C and beyond 520 °C. Such domains of temperature are consistent with the melting of elemental Se and the binary CuSe phase, respectively. The CuSe phase forming during annealing results from the reaction between the two secondary species o-Cu2  xSe and Se (o-Cu2  xSe + Se → 2 CuSe) but can be decomposed into the cubic β-Cu2  xSe phase by slowing down the heating rate. Formation of liquid CuSe beyond 520°C seems to govern both the grain size of the films and the porosity of the substrate-CuInSe2 film interface. A simple model explaining the competitive interplay between the film crystallinity and the interface porosity is proposed, aiming at an improved protocol based on temperature range, which will enable to enhance the film crystalline nature while limiting the interface porosity.  相似文献   

14.
Chen L  Holec D  Du Y  Mayrhofer PH 《Thin solid films》2011,519(16):5503-5510
Multinary Ti-Al-N thin films are used for various applications where hard, wear and oxidation resistant materials are needed. Here, we study the effect of Zr addition on structure, mechanical and thermal properties of Ti1-xAlxN based coatings under the guidance of ab initio calculations. The preparation of Ti1-x-zAlxZrzN by magnetron sputtering verifies the suggested cubic (NaCl-type) structure for x below 0.6-0.7 and z ≤ 0.4. Increasing the Zr content from z = 0 to 0.17, while keeping x at ~ 0.5, results in a hardness increase from ~ 33 to 37 GPa, and a lattice parameter increase from 4.18 to 4.29 Å. The latter are in excellent agreement with ab initio data. Alloying with Zr also promotes the formation of cubic domains but retards the formation of stable wurtzite AlN during thermal annealing. This leads to high hardness values of ~ 40 GPa over a broad temperature range of 700-1100 °C for Ti0.40Al0.55Zr0.05N. Furthermore, Zr assists the formation of a dense oxide scale. After 20 h exposure in air at 950 °C, where Ti0.48Al0.52N is already completely oxidized, only a ~ 1 μm thin oxide scale is formed on top of the otherwise still intact ~ 2.5 μm thin film Ti0.40Al0.55Zr0.05N.  相似文献   

15.
A non-polar AlGaN/GaN structure is a strong candidate for the high-voltage device that can operate in enhancement-mode compared to the depletion-mode operation that is practically unavoidable for a standard polar AlGaN/GaN structure. Growth of non-polar GaN is non-trivial and a two-step nucleation scheme was developed to produce high-quality non-polar a-plane AlGaN/GaN structures on r-plane sapphire. The anisotropic nature of non-polar GaN requires a modification to a typical polar GaN-based transistor fabrication process. A KOH wet etch proceeded by a dramatically different mechanism compared to the standard polar c-face AlGaN/GaN structure. This device with Pt/Au Schottky gate displayed a barrier height of 0.76 eV and an ideality factor of 4 at 20 °C.  相似文献   

16.
Cr-Ru alloy coatings with Cr content ranging from 47 to 83 at.% were deposited at 400 °C by direct current magnetron co-sputtering with a Ti interlayer on silicon substrates. With a total input power of 300 W, the Cr content in the Cr-Ru coatings increased linearly with the increasing input power of Cr. The intermetallic compound phase Cr2Ru with columnar structure was identified for the as-deposited Cr56Ru44 and Cr65Ru35 coatings, resulting in an increase of hardness up to 15-16 GPa. To evaluate the performance of Cr-Ru coatings as a protective coating on glass molding dies, the annealing treatment was conducted at 600 °C in a 50 ppm O2-N2 atmosphere. The outward diffusion and preferential oxidization of Cr in the Cr-Ru coatings resulted in the variations of the crystalline structure, chemical composition distribution, and surface hardness after annealing. X-ray diffraction and transmission electron microscopy (TEM) proved that an oxide scale consisting of Cr2O3 formed on the free surface. Scanning electron microscopy and TEM observed the surface morphology and structural variation. The chemical composition depth profiles were analyzed by Auger electron microscopy, verifying the presence of a Cr-depleted zone beneath the oxide scale. The hardness of Cr56Ru44 and Cr65Ru35 coatings decreased to 11-12 GPa after annealing, accompanied by the replacement of the Cr2Ru phase by the Ru phase.  相似文献   

17.
A modified four-step method was applied to grow a 3C-SiC thin film of high quality on the off-axis 1.5° Si(111) substrate in a mixed gas of C3H8, SiH4 and H2 using low pressure chemical vapor deposition. The modified four-step method adds a diffusion step after the carburization step and removes the cooling from the traditional three-step method (clean, carburization, and growth). The X-ray intensity of the 3C-SiC(111) peak is enhanced from 5 × 104 counts/s (the modified three steps) to 1.1 × 105 counts/s (the modified four steps). The better crystal quality of 3C-SiC is confirmed by the X-ray rocking curves of 3C-SiC(111). 3C-SiC is epitaxially grown on Si(111) supported by the selected area electron diffraction patterns taken at the 3C-SiC/Si(111) interface. Some {111} stacking faults and twins appear inside the 3C-SiC, which may result from the stress induced in the 3C-SiC thin film due to lattice mismatch. The diffusion step plays roles in enhancing the formation of Si-C bonds and in reducing the void density at the 3C-SiC/Si(111) interface.  相似文献   

18.
Electroless Ni-P (EN) alloys are widely used as coating materials. Their properties depend on the level of phosphorus present and the extent of thermal treatment. We report the results of two complimentary electronic structure techniques, X-ray absorption near edge structure (XANES) and X-ray photoelectron spectroscopy (XPS), and the site-specific surface chemistry in EN alloys of different phosphorus compositions and thermal treatments. In XANES experiment, absorption at the Ni L3,2 edge and the P K edge were measured and the P 2p, Ni 2p, and Ni 3p bands were measured by XPS. Heating EN alloys to high temperatures result in a competitive reaction between phosphorus and nickel on the surface for oxygen. There is an increase in the level of phosphates and other forms of phosphorus oxides and a decrease in the oxidized nickel on the surface of the EN alloy thin film. Changes in the electronic structure and chemical composition in the bulk of the EN alloy are not obvious.  相似文献   

19.
In this paper, we reported on an approach to prepare tin disulfide (SnS2) thin films on soda-lime glass substrates by vacuum thermal evaporation using SnS2 powders as a source. The influence of annealing on the chemical composition, crystal structure, surface morphology, and optical band gap of the SnS2 thin films was systemically investigated. The as-grown SnS2 thin film was amorphous, homogeneous, smooth, nearly stoichiometric, with no pinhole and crack free, and with an optical band gap of 2.41 eV. After the SnS2 thin film was annealed at 300 °C, the crystallization of SnS2 was demonstrated by X-ray diffraction and scanning electron microscope with a characteristic of a preferred orientation along (001) plane with hexagonal phase and the sheet appearance of the SnS2 crystals. At the annealing temperature of 350 °C, some SnS2 crystallites and a few pinholes appeared on the surface of the SnS2 thin films, though the SnS2 thin film was not oxidized. When the annealing temperature was increased to 400 °C, SnS2 was gradually oxidized into an approximate spherical shape of SnO2 from the top to the bottom of the SnS2 thin film by trace O2 in the furnace. Therefore, our experiment suggested that the annealing temperature of the SnS2 thin film using the vacuum thermal evaporation should not be over 300 °C as a window layer in compound thin film solar cells.  相似文献   

20.
The morphology and texture of Ge films grown under oblique angle vapor deposition on native oxide covered Si(001) substrates at temperatures ranging from 230 °C to 400 °C were studied using scanning electron microscopy, X-ray diffraction and X-ray pole figure techniques. A transition from polycrystalline to {001}<110> biaxial texture was observed within this temperature range. The Ge films grown at substrate temperatures < 375 °C were polycrystalline. At substrate temperatures of 375 °C and 400 °C, a mixture of polycrystalline and biaxial texture was observed. The 230 °C sample consisted of isolated nanorods, while all other films were continuous. The observed biaxial texture is proposed to be a result of the loss of the interface oxide layer, resulting in epitaxial deposition of Ge on the Si and a texture following that of the Si(001) substrates used. The rate of oxide loss was found to increase under oblique angle vapor deposition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号