首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Many research efforts have been devoted to the replacement of the traditional indium-tin-oxide (ITO) electrode in organic photovoltaics. Solution-based graphene has been identified as a potential replacement, since it has less than two percent absorption per layer, relative high carrier mobility, and it offers the possibility of deposition on large area and flexible substrates, compatible with roll to roll manufacturing methods. In this work, soluble reduced graphene films with high electrical conductivity and transparency were fabricated and incorporated in poly(3-hexylthiophene) [6,6]-phenyl-C61-butyric acid methyl ester photovoltaic devices, as the transparent electrode. The graphene films were spin coated on glass from an aqueous dispersion of functionalized graphene, followed by a reduction process combining hydrazine vapor and annealing under argon, in order to reduce the sheet resistance. The photovoltaic devices obtained from the graphene films showed lower performance than the reference devices with ITO, due to the higher sheet resistance (2 kΩ/sq) and the poor hydrophilicity of the spin coated graphene films.  相似文献   

2.
In this paper we will show the advantages of employing transparent free-standing dielectric films to realize OFETs devices with optimized performances. These advantages concern several aspects, ranging from optimized device performances, to extended versatility in applications.Organic field effect transistors made from a Polyethilene Terephtalate film (Mylar) as a dielectric are presented: these devices are particularly interesting especially in sight of possible applications as chemical and mechanical sensors. In addition, we will show preliminary results obtained from films of Poly Dimethyl Siloxane (PDMS), a polymer whose surface is hydroxyl-free. This feature should allow to obtain ambipolar transport properties in OFETs. Preliminary results on MIS structures are presented.  相似文献   

3.
We report on transparent and highly conductive multilayer electrodes prepared at room temperature by RF sputtering of zinc tin oxide (ZTO) and thermal evaporation of ultrathin silver (Ag) as top contact for transparent organic light emitting diodes (TOLED). Specifically, we study the morphological, electrical and optical properties of the multilayer structure in particular of the thin Ag film. The tendency of Ag to form agglomerates over time on top of ZTO is shown by atomic force microscopy. From the optical constants derived from ellipsometric measurements we evidenced a bulk like behavior of an Ag film with a thickness of 8 nm embedded in ZTO leading to a low sheet resistance of 9 Ω/sq. Furthermore we verify the optical constants by simulation of an optimized ZTO/Ag/ZTO structure. As an application we present a highly efficient TOLED providing a device transmittance of > 82% in the visible part of the spectrum. The TOLED shows no damage caused by sputtering on a lighting area of 80 mm2 and exhibits efficiencies of 43 cd/A and 36 lm/W.  相似文献   

4.
Transparent organic light-emitting devices (TOLEDs) were successfully fabricated utilizing a novel transparent conducting cathode with low work function. Cesium-incorporated indium-tin-oxide film was deposited on the organic layers with negligible damage by simultaneous operation of RF magnetron sputtering using an ITO target and vacuum evaporation of metallic cesium. Incorporation of cesium in the ITO film was confirmed by XPS analysis. The work function (4.3 eV) determined by photoelectron spectroscopy in air (PESA) was lower than that of 0.3-0.4-eV without cesium-incorporation and stable under the atmospheric environment. The electron injection efficiency of cesium-incorporated ITO cathode in the present transparent OLED fabricated was comparable to that of the previous double-layered structure comprising of ITO cathode and an organic buffer layer (BCP) doped by evaporation of cesium [T. Uchida, S. Kaneta, M. Ichihara, M. Ohtsuka, T. Otomo, D.R. Marx, Jpn. J. Appl. Phys., 44, No. 9 (2005) L282].  相似文献   

5.
In this work, we demonstrate the fabrication of a transparent and flexible memory device in the simple structure of metal/dielectric/metal (MIM). Here, the MIM structure consists of gold electrode/200 nm Parylene-C/20 nm gold nanoparticles/100 nm Parylene-C/indium-tin-oxide (ITO) coated polyethylene terephthalate (PET). The use of parylene as the dielectric layer is important to ensure that there is no thermal stress induced on the flexible ITO/PET substrate compare to other reported works using various organic dielectrics that require high temperature curing. In addition, parylene deposition does not disturb the drop-casted gold nanoparticles. Hence, the use of parylene will be the right step forward in the fabrication of mechanically flexible and optically transparent devices. Current versus voltage (IV) plot shows the presence of hysteresis suggesting the charge storage capability as a memory device. In the IV plot, three distinct regions based on the slope have been identified and the transport mechanisms are discussed and explained. The fabricated device shows similar behavior as write-once-read-many memory device and can be programmed with either positive or negative bias voltage. However, the memory device shows unstable current state when being bent under different curvature diameters.  相似文献   

6.
Transparent conductive oxide/metal/oxide, where the oxide is MoO3 and the metal is Cu, is realized and characterized. The films are deposited by simple joule effect. It is shown that relatively thick Cu films are necessary for achieving conductive structures, what implies a weak transmission of the light. Such large thicknesses are necessary because Cu diffuses strongly into the MoO3 films. We show that the Cu diffusion can be strongly limited by sandwiching the Cu layer between two Al ultra-thin films (1.4 nm). The best structures are glass/MoO3 (20 nm)/Al (1.4 nm)/Cu (18 nm)/Al (1.4 nm)/MoO3 (35 nm). They exhibit a transmission of 70% at 590 nm and a resistivity of 5.0 · 10− 4 Ω cm. A first attempt shows that such structures can be used as anode in organic photovoltaic cells.  相似文献   

7.
8.
We report the synthesis of a soluble dendrimers europium(III) complex, tris(dibenzoylmethanato)(1,3,5-tris[2-(2′-pyridyl)benzimidazoly]methylbenzene)-europium(III), and its application in organic electrical bistable memory device. Excellent stability that ensured more than 106 write-read-erase-reread cycles has been performed in ambient conditions without current-induced degradation. High-density, low-cost memory, good film-firming property, fascinating thermal and morphological stability allow the application of the dendrimers europium(III) complex as an active medium in non-volatile memory devices.  相似文献   

9.
报道了一种OFET,它采用ITO作为源漏电极,聚酰亚胺为绝缘层,CuPc为半导体层.实验结果表明,该器件具有明显的场效应性质,性能较好,载流子迁移率和开关比分别达2.3×10-3 cm2/V.s、800,表明ITO是一种合适的、有前途的p型OFET源漏极材料.为此,本文对由电极材料和半导体材料间形成的接触电阻对OFET性能影响进行了分析.  相似文献   

10.
This paper discusses the application of a DC sputtered ZnO thin film as a dielectric in an optically transparent non-volatile memory. The main motivation for using ZnO as a dielectric is due to its optical transparency and mechanical flexibility. We have established the relationship between the electrical resistivity (ρ) and the activation energy (Ea) of the electron transport in the conduction band of the ZnO film. The ρ of 2 × 104–5 × 107 Ω-cm corresponds to Ea of 0.36–0.76 eV, respectively. The k-value and optical band-gap for films sputtered with Ar:O2 ratio of 4:1 are 53 ± 3.6 and 3.23 eV, respectively. In this paper, the basic charge storage element for a non-volatile memory is a triple layer dielectric structure in which a 50 nm thick ZnO film is sandwiched between two layers of methyl silsesquioxane sol–gel dielectric of varying thickness. A pronounced clockwise capacitance–voltage (C–V) hysteresis was observed with a memory window of 6 V. The integration with a solution-processable pentacene, 13,6-N-Sulfinylacetamodipentacene resulted in an optically transparent organic field effect transistor non-volatile memory (OFET-NVM). We have demonstrated that this OFET-NVM can be electrically programmed and erased at low voltage (± 10 V) with a threshold voltage shift of 4.0 V.  相似文献   

11.
Depending on the resistivity and transmittance, transparent conductive oxides (TCO) are widely used in thin film optoelectronic devices. Thus doped In2O3 (ITO), ZnO, SnO2 are commercially developed. However, the deposition process of these films need sputtering and/or heating cycle, which has negative effect on the performances of the organic devices due to the sputtering and heat damages. Therefore a thermally evaporable, low resistance, transparent electrode, deposited onto substrates room temperature, has to be developed to overcome these difficulties. For these reasons combination of dielectric materials and metal multilayer has been proposed to achieve high transparent conductive oxides. In this work the different structures probed were: MoO3 (45 nm)/Ag (x nm)/MoO3 (37.5 nm), with x = 5-15 nm. The measure of the electrical conductivity of the structures shows that there is a threshold value of the silver thickness: below 10 nm the films are semiconductor, from 10 nm and above the films are conductor. However, the transmittance of the structures decreases with the silver thickness, therefore the optimum Ag thickness is 10 nm. A structure MoO3 (45 nm)/Ag (10 nm)/MoO3 (37.5 nm) resulted with a resistivity of 8 × 10− 5 Ω cm and a transmittance, at around 600 nm, of 80%. Such multilayer structure can be used as anode in organic solar cells according to the device anode/CuPc/C60/Alq3/Al. We have already shown that when the anode of the cells is an ITO film the introduction of a thin (3 nm) MoO3 layer at the interface anode (ITO)/organic electron donor (CuPc) allows reducing the energy barrier due to the difference between the work function of ITO and the highest occupied molecular orbital of CuPc [1]. This property has been used in the present work to achieve a high hole transfer efficiency between the CuPc and the anode. For comparison MoO3/Ag/MoO3/CuPc/C60/Alq3/Al and ITO/MoO3/CuPc/C60/Alq3/Al solar cells have been deposited in the same run. These devices exhibit efficiency of the same order of magnitude.  相似文献   

12.
The light extraction efficiency in organic light-emitting devices (OLEDs) is enhanced by up to 2.6 times when a close-packed, hemispherical transparent polymer microlens array (MLA) is molded on the light-emitting surface of a top-emitting device. The microlens array helps to extract the waveguided optical emission in the organic layers and the transparent top electrode, and can be manufactured in large area with low cost.  相似文献   

13.
β-FeSi2 can be used for various optoelectronic devices owing to its superior material features including high optical absorption coefficient and direct band gap of about 0.8 eV. Due to its high refractive index (>5.6), however, suitable antireflection coating (ARC) is necessary for practical device applications. In order to increase the effective areas of optoelectronic devices, transparent electrodes should be also developed. In this work, Al-doped ZnO (AZO) films were fabricated by sputtering on β-FeSi2 thin films and were found suitable for both transparent electrodes and ARC films. Choosing optimum substrate temperature and sputtering rate, high quality AZO films were formed. The conductivity of AZO films was as high as 3×103 S/cm and ohmic contact was easily achieved between AZO and β-FeSi2 films, indicating AZO film as an ideal transparent electrode for β-FeSi2. The transmittance of 400-nm-thick AZO films was >80% and >70% in the wavelength ranges 400-1400 and 1400-1600 nm, respectively. By changing the thickness of AZO film, the central wavelength of minimum reflectance was adjusted to 1550 nm where the total reflectance of AZO/β-FeSi2/Si structure was reduced below 2%.  相似文献   

14.
We have developed top emission organic light-emitting devices using a CsCl capping layer on top of semitransparent Ca/Ag cathode. By using a CsCl capping layer, the transmittance of top electrode can be improved by 93%. While the electrical conduction characteristic of device is not influenced by the capping layer, the current efficiency increases with increasing the transmittance of Ca/Ag/CsCl cathode. For example, as the transmittance of top electrode increases from 55 to 91% by varying CsCl thickness, the current efficiency of green fluorescent top-emitting device increases from 8 to 18 cd/A.  相似文献   

15.
Metal filament based organic memory device has unique advantages of long retention time and thermal stability. However, it has suffered from a large variation in the switching delay time (∼ 100 ms), in spite of the fast real switching time of hundreds nanoseconds. Among many possible reasons for the broad delay time, the effect of structural nonuniformity in active area was mainly considered in this work. To solve this problem, we introduced an embossed structure into previous organic memory device, which significantly narrowed the distribution of the delay time. With this device, we could directly observe that the switching preferentially occurs at the summits of the embossed structure through optical microscope image.  相似文献   

16.
The performance of transparent metal top contacts in organic solar cells can strongly be improved by employing surfactant layers. We use scanning electron microscopy to investigate the change in morphology upon insertion of an Al surfactant layer between 4,7-diphenyl-1,10-phenanthroline (BPhen) and a silver top contact. UV photoelectron spectroscopy measurements show the changes in energetic alignments at different steps of the organic/metal interface formation. Furthermore, using X-ray photoelectron spectroscopy depth profiling, we compare the differing intermixing processes happening within the two samples. Thereby, we can show that Al binds to BPhen molecules, acting as surfactant for subsequently deposited Ag layers, while Ag without any Al surfactant layer penetrates into and intermixes with the BPhen layer.  相似文献   

17.
Jun Liu 《Thin solid films》2010,518(14):3694-416
Bilayer In-doped CdO/Sn-doped In2O3 (CIO/ITO) transparent conducting oxide (TCO) thin films were prepared by depositing thin ITO films by ion-assisted deposition on CIO films grown by metal-organic chemical vapor deposition. The optical, electrical, and microstructural properties of these bilayer TCO films were investigated in detail. A low sheet resistance of ~ 4.9 Ω/□ is achieved for the CIO/ITO (170/40 nm) bilayers without annealing. With a significantly lower In content (20 vs. ~ 93 at.%) and a much higher conductivity (> 12,000 vs. 3000-5000 S/cm) than commercial ITO, these bilayer films were investigated as anodes in bulk-heterojunction organic photovoltaic (OPV) devices having a poly(2-methoxy-5-(3,7-dimethyloctyloxy)-1,4-phenylenevinylene) + [6,6]-phenyl C61 butyric acid methyl ester active layer. Device performance metrics in every way comparable to those of devices fabricated on commercial ITO are achieved, demonstrating that CIO/ITO bilayers are promising low-In content, highly conductive and transparent electrode candidates for OPV cells.  相似文献   

18.
In this contribution,inspired by the excellent resource management and material transport function of leaf veins,the electrical transport function of metallized leaf veins is mimicked from the material transport function of the vein networks.By electroless copper plating on real leaf vein networks with copper thickness of only several hundred nanometre up to several micrometre,certain leaf veins can be converted to transparent conductive electrodes with an ultralow sheet resistance 100 times lower than that of state-of-the-art indium tin oxide thin films,combined with a broadband optical transmission of above 80%in the UV–VIS–IR range.Additionally,the resource efficiency of the vein-like electrode is characterized by the small amount of material needed to build up the networks and the low copper consumption during metallization.In particular,the high current density transport capability of the electrode of>6000 A cm^−2 was demonstrated.These superior properties of the vein-like structures inspire the design of high-performance transparent conductive electrodes without using critical materials and may significantly reduce the Ag consumption down to<10%of the current level for mass production of solar cells and will contribute greatly to the electrode for high power density concentrator solar cells,high power density Li-ion batteries,and supercapacitors.  相似文献   

19.
20.
Spin-capable carbon nanotubes (CNTs) are proposed as a promising material for transparent conductive films (TCFs) to replace indium tin oxide (ITO) in optoelectronic and flexible applications. CNT-TCFs were prepared by a dry-spun method, a straightforward transfer process for fabricating CNT-based films. The effects of acid treatment on the electrical and optical properties of CNT-TCF were evaluated. After acid treatment, the CNT-TCF possesses a much higher electrical conductivity and slightly improved transparency compared to films that have not undergone acid treatment. The electrical properties of the CNT films were dramatically affected by the type of acid treatment. The CNT-TCF treated with a fuming acid treatment exhibited better performance than the CNT-TCF treated with immersion acid treatment only, with a low sheet resistance (210 Ω/sq) and high transmittance (90%) comparable to those of ITO films.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号