首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fe-doped TiO2 thin films were prepared in situ on stainless steel substrates by liquid phase deposition, followed by calcination at various temperatures. It was found that some Fe3+ ions were in situ doped into the TiO2 thin films. At 400 °C, the film became photoactive due to the formation of anatase phase. At 500 °C, the film showed the highest photocatalytic activity due to an optimal Fe3+ ion concentration in the film. At 900 °C, the photocatalytic activity of the films decreased significantly due to the further increase of Fe3+ ion concentration, the formation of rutile phase and the sintering and growth of TiO2 crystallites.  相似文献   

2.
Photocatalytic properties of porous TiO2/Ag thin films   总被引:1,自引:0,他引:1  
In this study, nanocrystalline TiO2/Ag composite thin films were prepared by a sol-gel spin-coating technique. By introducing polystyrene (PS) spheres into the precursor solution, porous TiO2/Ag thin films were prepared after calcination at a temperature of 500 °C for 4 h. Three different sizes (50, 200, and 400 nm) of PS spheres were used to prepare porous TiO2 films. The as-prepared TiO2 and TiO2/Ag thin films were characterized by X-ray diffractometry (XRD) and by scanning electron microscopy to reveal structural and morphological differences. In addition, the photocatalytic properties of these films were investigated by degrading methylene blue under UV irradiation.When PS spheres of different sizes were introduced after calcination, the as-prepared TiO2 films exhibited different porous structures. XRD results showed that all TiO2/Ag films exhibited a major anatase phase. The photodegradation of porous TiO2 thin films prepared with 200 nm PS spheres and doped with 1 mol% Ag exhibited the best photocatalytic efficiency where ∼ 100% methylene blue was decomposed within 8 h under UV exposure.  相似文献   

3.
铁、铬离子掺杂对TiO2薄膜光催化活性的影响   总被引:30,自引:0,他引:30  
采用溶胶-凝胶法在釉面砖表面制备了均匀的TiO2薄膜,并研究了铁、铬离子掺杂对TiO2光催化性能影响。对罗丹明B的光降解实验表明,适量的铁、铬离子掺杂均可提高TiO2薄膜的光催化活性,铁离子的掺杂效果明显高于铬离子,而铬离子的掺杂方式影响TiO2薄膜的光催化活性,这主要基于它们不同的掺杂机理。  相似文献   

4.
Ba0.6Sr0.4TiO3 dielectric thin films doped by Cr(0, 1, 2.5, 5, 10 mol%) (BSTC) were prepared by radio frequency magnetron sputtering on Pt/Ti/SiO2/Si substrates. The structure and morphology of the BSTC thin films were studied by atomic force microscopy and X-ray diffraction. The effect of Cr doping on the dielectric properties of BST thin films were analyzed. The results show that the dielectric loss of Cr doping BST thin films is lower than that undoped, and the tunability increased with Cr doping. The thin film doped with 5 mol% Cr has the best dielectric properties. The tunability, loss and figure of merit (FOM) at 1 MHz were 38.9%, 0.0183, and 21.3, respectively.  相似文献   

5.
《Materials Research Bulletin》2006,41(9):1596-1603
Anatase TiO2 thin films were successfully prepared on glass slide substrates via a sol–gel method from refluxed sol (RS) containing anatase TiO2 crystals at low temperature of 100 °C. The influences of various refluxing time on crystallinity, morphology and size of the RS sol and dried TiO2 films particles were discussed. These samples were characterized by infrared absorption spectroscopy (FT-IR), X-ray diffraction (XRD), transmission electron microscopy (TEM), field emission-scanning electron microscopy (FE-SEM) and UV–vis absorption spectroscopy (UV–vis). The photocatalytic activities of the TiO2 thin films were assessed by the degradation of methyl orange in aqueous solution. The results indicated that titania films thus obtained were transparent and their maximal light transmittance exceeded 80% under visible light region. The TiO2 thin films prepared from RS-6 sol showed the highest photocatalytic activity, when the calcination temperature is higher than 300 °C. The degradation of methyl orange of RS-6 thin films reached 99% after irradiated for 120 min, the results suggested that the TiO2 thin films prepared from RS sol exhibited high photoactivities.  相似文献   

6.
Zn2+ doped TiO2 nanofibers were prepared by electrospinning followed by calcination. The results of TGA, FE-SEM, XRD and XPS indicated that the obtained nanofibers with diameter in range of 50–150 nm were composed of anatase TiO2 phase and Zn2+ doping in TiO2 did not distort the pristine crystal structure of TiO2. Besides methylene blue (MB) was employed to investigate photocatalytic properties of the obtained samples. The results revealed that Zn2+ doped TiO2 nanofibers had excellent photocatalytic activity, which was symbolized by an optimum photodegradation efficiency of 96.1% under Zn2+ doping concentration of 2 at.%. The photocatalytic efficiency of 2 at.% Zn2+ doped TiO2 nanofibers still exceeded 95% after using for five times.  相似文献   

7.
Sn-doped and undoped nano-TiO2 particles have been synthesized by hydrotermal process without acid catalyst at 225 °C in 1 h. Nanostructure-TiO2 based thin films, contain at different solid ratio of TiO2 in coating, have been prepared on glass surfaces by spin-coating technique. The structure, surface morphology and optical properties of the thin films and the particles have been investigated by element analysis and XRD, BET and UV/VIS/NIR techniques. The photocatalytic performance of the films was tested for degradation of malachite green dye in solution under UV and VIS-lights. The results showed that the hydrothermally synthesized nano-TiO2 particles are fully anatase crystalline form and are easily dispersed in water, the coated surfaces have nearly super-hydrophilic properties and, the doping of transition metal ion efficiently improved the photocatalytic performance of the TiO2 thin film. The results also proved that malachite green is decomposed catalytically due to the pseudo first-order reaction kinetics.  相似文献   

8.
Jong Min Jung  Eui Jung Kim 《Vacuum》2008,82(8):827-832
Au/TiO2 thin films with various Au doping contents were deposited on quartz substrates by radio frequency (RF) magnetron co-sputtering. The as-deposited Au/TiO2 films were characterized by energy-dispersive X-ray spectroscopy (EDS), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), XRD, and UV-vis techniques. Au doping and UV treatment enhanced the photocatalytic efficiency of TiO2 thin films. The optimal RF power of the Au target and UV treatment time were 5 W and 1 h, respectively. The enhanced photoactivity of Au(5 W)/TiO2 thin films with UV treatment is found to result from the increased hydroxyl concentration.  相似文献   

9.
Chromium doped titanium dioxide (TiO2) nanocrystal films with various doping concentration have been successfully prepared by a sol–gel dip-coating process. These films have been characterized by XRD, XPS, AFM, and UV–vis absorption spectroscopy. It is found that Cr doping can effectively reduce the transition temperature of anatase to rutile phase as well as the grain size. The absorption edges of TiO2 thin films shift towards longer wavelengths (i.e. red shifted) from 375 nm to about 800 nm with increasing Cr concentration, which greatly enhances TiO2 nano-materials on the absorption of solar spectrum. The appearance of UV–vis absorption features in the visible region can be ascribed to the newly formed energy levels such as Cr 2p level and oxygen vacancy state between the valence and the conduction bands in the TiO2 band structure. The enhancement of the photocatalytic properties is observed for Cr-doped TiO2 thin film.  相似文献   

10.
《Materials Letters》2006,60(9-10):1224-1228
Pure and 2 mol% Mn doped Ba0.6Sr0.4TiO3 (BST) thin films have been deposited on La0.67Sr0.33MnO3 (LSMO) coated single-crystal (001) oriented LaAlO3 substrates using pulsed-laser deposition technique. The bilayer films of BST and LSMO were epitaxially grown in pure single-oriented perovskite phases for both samples, and an enhanced crystallization effect in the BST film was obtained by the addition of Mn, which were confirmed by X-ray diffraction (XRD) and in situ reflective high energy electron diffraction (RHEED) analyses. The dielectric properties of the BST thin films were measured at 100 kHz and 300 K with a parallel-plate capacitor configuration. The results have revealed that an appropriate concentration acceptor doping is very effective to increase dielectric tunability, and to reduce loss tangent and leakage current of BST thin films. The figure-of-merit (FOM) factor value increases from 11 (undoped) to 40 (Mn doped) under an applied electric field of 200 kV/cm. The leakage current density of the BST thin films at a negative bias field of 200 kV/cm decreases from 2.5 × 10 4 A/cm2 to 1.1 × 10 6 A/cm2 by Mn doping. Furthermore, a scanning-tip microwave near-field microscope has been employed to study the local microwave dielectric properties of the BST thin films at 2.48 GHz. The Mn doped BST film is more homogeneous, demonstrating its more potential applications in tunable microwave devices.  相似文献   

11.
Hierarchical N‐doped TiO2 nanostructured catalysts with micro‐, meso‐, and macroporosity are synthesized by a facile self‐formation route using ammonia and titanium isopropoxide precursor. UV–vis diffuse reflectance spectra confirm the red shift and band gap narrowing due to the doping of N species in the TiO2 nanoporous catalyst. Hierarchical macroporosity with fibrous channel patterning is observed and well preserved even after calcination at 800 °C, indicating thermal stability, whereas micro‐ and mesoporosity are lost after calcination at 500 °C. The photocatalytic activity of hiearchical N doped TiO2 catalysts loaded with Au is evaluated for H2 production reaction in visible light. The enhanced photocatalytic activity is attributed to the combined synergetic effect of N doping for visible light absorption, micro‐ and mesoporosity for an increase of effective surface area and light harvestation, and hierarchical macroporous fibrous structure for multiple reflection and effective charge transfer.  相似文献   

12.
Anatase TiO2 films were successfully synthesized by a modified sol-gel method wherein peroxo titanic acid solution was derived from TiCl4/ethanol/water solution at room temperature. The as-prepared films were further surface-doped by photodeposited Fe2O3 and Cr2O3 to improve its physicochemical properties. The phase and structure of the films were investigated by X-ray diffraction, scanning electron microscopy and X-ray photoelectron spectroscopy. The physicochemical properties of the films were also measured. The results show that both hydrophilicity and photocatalytic activity of the films were remarkably improved by doping transition metal ion Fe3+. In case of Cr3+ doped films, hydrophilicity was also significantly enhanced but photocatalytic activity for methyl orange under UV irradiation was still comparable with the undoped films.  相似文献   

13.
Photocatalytically active, N-doped TiO2 thin films were prepared by low pressure metalorganic chemical vapor deposition (MOCVD) using titanium tetra-iso-propoxide (TTIP) as a precursor and NH3 as a reactive doping gas. We present the influence of the growth parameters (temperature, reactive gas phase composition) on the microstructural and physico-chemical characteristics of the films, as deduced from X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), secondary ion mass spectrometry (SIMS) and ultra-violet and visible (UV/Vis) spectroscopy analysis. The N-doping level was controlled by the partial pressure ratio R = [NH3]/[TTIP] at the entrance of the reactor and by the substrate temperature. For R = 2200, the N-doped TiO2 layers are transparent and exhibit significant visible light photocatalytic activity (PA) in a narrow growth temperature range (375-400 °C). The optimum N-doping level is approximately 0.8 at.%. However, the PA activity of these N-doped films, under UV light radiation, is lower than that of undoped TiO2 films of comparable thickness.  相似文献   

14.
p-Type SnO thin films were fabricated via reactive RF magnetron sputtering on borosilicate substrates with an Sn target and Ar/O2/N2 gas mixture. The undoped SnO thin film consisted of a polycrystalline SnO phase with a preferred (1 0 1) orientation; however, with nitrogen doping, the preferred orientation was suppressed and the grain size decreased. The electrical conductivity of the undoped SnO thin films demonstrated a relatively low p-type conductivity of 0.05 Ω−1 cm−1 and it was lowered slightly with nitrogen doping to 0.039 Ω−1 cm−1. The results of the X-ray photoelectron spectroscopy suggested that the nitrogen doping created donor defects in the SnO thin films causing lower electrical conductivity. Lastly, both the undoped and doped SnO thin films had poor optical transmittance in the visible range.  相似文献   

15.
Undoped and 3 mol% Zn-doped barium strontium titanate thin films were deposited on Pt/Ti/SiO2/Si substrates using a sol–gel method. The microstructure and morphology of the films were characterized by X-ray diffraction and atomic force microscopy. It showed that both films are polycrystalline with a perovskite structure and smaller grains were observed for the Zn-doped thin films. Dielectric measurements showed that the dielectric loss at 500 kHz was reduced from 0.042 to 0.019 by Zn doping, which was accompanied by a slight decrease of the dielectric constant from 303 to 273. At an applied electric field of 60 kV/cm, the leakage current density of the Zn-doped Ba0.7Sr0.3TiO3 thin films was 2.5 × 10−8 A/cm2, which was by two orders of magnitude lower than that of the undoped films. The leakage current characteristics also indicated that the Ohmic conduction region of barium strontium titanate thin films was extended by Zn dopant. The microstructure, electrical properties and extension mechanism of Ohmic conduction region of the Zn-doped barium strontium titanate thin films were discussed in relation to the effect of Zn doping.  相似文献   

16.
We report on photo-fixation of SO2 onto nanostructured TiO2 thin films prepared by reactive DC magnetron sputtering. The films were exposed to 50 ppm SO2 gas mixed in synthetic air and illuminated with UV light at 298 and 473 K. The evolution of the adsorbed SOx species was monitored by in situ Fourier transform infrared specular reflection spectroscopy. Significant photo-fixation occurred only in the presence of UV illumination. The SO2 uptake was dramatically enhanced at elevated temperatures and then produced strongly bonded surface-coordinated SOx complexes. The total SOx uptake is consistent with Langmuir adsorption kinetics. The sulfur doping at saturation was estimated from X-ray photoelectron spectroscopy to be ~ 2.2 at.% at 473 K. These films were pale yellowish and had an optical absorption coefficient being ~ 3 times higher than in undoped film. The S-doped films exhibit interesting oleophobic properties, exemplified by the poor adherence of stearic acid. Our results suggest a new method for sulfur doping of TiO2 to achieve combined anti-grease and photocatalytic properties.  相似文献   

17.
Undoped and Ga doped ZnO thin films (1% GZO, 3% GZO and 5% GZO) were grown on c-Al2O3 substrates using the 1, 3 and 5 at. wt.% Ga doped ZnO targets by pulsed laser deposition. X-ray diffraction studies revealed that highly c-axis oriented, single phase, undoped and Ga doped ZnO thin films with wurtzite structure were deposited. Micro-Raman scattering analysis showed that Ga doping introduces defects in the host lattice. The E2High mode of ZnO in Ga doped ZnO thin film was observed to shift to higher wavenumber indicating the presence of residual compressive stress. Appearance of the normally Raman inactive B1 modes (B1Low, 2B1Low and B1High) due to breaking of local translational symmetry, also indicated that defects were introduced into the host lattice due to Ga incorporation. Band gap of the Ga doped ZnO thin films was observed to shift to higher energy with the increase in doping concentration and is explicated by the Burstein-Moss effect. Electrical resistivity measurements of the undoped and GZO thin films in the temperature range 50 to 300 K revealed the metal to semiconductor transition for 3 and 5% GZO thin films.  相似文献   

18.
Fe-doped TiO2 nanometer thin films were prepared on soda-lime glass pre-coated with a SiO2 layer by a dip-coating method from a precursor solution containing ferric nitrate followed by calcination at 500 °C for 2 h. It was found that TiO2 thin films doped with Fe3+ at 0.05–0.2 at.% show the greatest photoinduced super-hydrophilicity and the slowest conversion rate from the hydrophilic to a hydrophobic state.  相似文献   

19.
The ZnSe thin films were deposited onto glass substrates by the spray pyrolysis method using mixed aqueous solutions of ZnCl2 and SeO2 at the substrate temperature 430 °C. These films were implanted with 130 keV nitrogen ions to various doses from 1 × 1016 to 1 × 1017 ions/cm2. We have analysed the properties of the nitrogen ion-implanted ZnSe thin films using X-ray diffraction and optical transmittance spectra. The values of optical bandgap have been determined from the absorption spectra. The bandgap of the N+ doped films decreased from 2.70 eV for undoped film to 2.60 eV for maximum doping probably due to band-tailing, whereas the absorption coefficient values increased with the increase of the implantation dose.  相似文献   

20.
《Thin solid films》2006,494(1-2):274-278
In the present study, nanocrystalline TiO2/Ag composite thin films were prepared by a sol–gel spin coating technique. While, by introducing polystyrene (PS) microspheres, porous TiO2/Ag films were obtained after calcining at a temperature of 500 °C. The as-prepared TiO2 and TiO2/Ag thin films were characterized by X-ray diffractometry, and scanning electron microscopy to reveal the structural and morphological differences. In addition, the photocatalytic properties of these films were investigated by degrading methylene blue under UV irradiation.After 500 °C calcination, the microstructure of PS-TiO2 film without Ag addition exhibited a sponge-like microstructure while significant sintering effect was noticed with Ag additions and the films exhibited a porous microstructure. Meanwhile, coalescence of nanocrystalline anatase-phase TiO2 can be observed with respect to the sharpening of XRD diffraction peaks. The photodegradation of porous TiO2 doped with 1 mol% Ag exhibited the best photocatalytic efficiency where 72% methylene blue can be decomposed after UV exposure for 12 h.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号