首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
Flow accelerated corrosion leads to wall thinning of outlet-feeder pipes in the primary heat transport system of pressurized heavy water reactors and can even necessitate enmasse feeder replacement. Replacement of carbon steel 106-grade-B (CS) with chromium containing carbon steel reduces the risk of this failure. This paper discusses the role of small additions of chromium in modifying the properties of the oxide film. CS and chromium containing mild steels viz., A333, 2.25Cr–1Mo and modified 9Cr–1Mo alloy were exposed to primary heat transport (PHT) system chemistry conditions. The oxide films formed were characterized by electrochemical and surface characterization techniques. Mott–Schottky analysis showed donor type of defects. The densities of defects in the oxides of chromium containing alloys were 3–15 times less than that in CS. In presence of ∼200 ppb of dissolved oxygen, the oxides formed were hematite with two orders of magnitude smaller concentration of defects as compared to that formed under reducing conditions. These results suggest that the presence of chromium lowers the defect density of the oxide film and thus ensures a reduced corrosion rate.  相似文献   

2.
The Al86Ni9La5 amorphous ribbons were annealed at 503 K for different time to obtain partially crystallized alloys with the different volume fractions of α-Al phase, and the effect of the crystallization extent on the electrochemical behavior of the ribbon was investigated in 0.01 M NaCl solution. The results show that the corrosion resistance of the partially crystallized ribbons is higher than that of the as-spun ribbon with the fully amorphous structure, and the corrosion resistance of the partially crystallized alloy is strongly dependent on the volume fraction of α-Al phase. The partially crystallized ribbon containing about 20 vol% α-Al phase exhibits the highest corrosion resistance.  相似文献   

3.
The corrosion behavior of Ti-Nb dental alloy in artificial saliva with and without the addition of lactic acid and sodium fluoride was investigated by electrochemical techniques, with the commercial Titanium-molybdenum alloy (TMA) as a comparison. The chemical composition, microstructure and constitutional phase were characterized via energy dispersive spectrometry, optical microscope and X-ray diffraction, meanwhile the open circuit potential, electrochemical impedance spectroscopy and potentiodynamic polarization measurements were carried out to study the corrosion resistance of experimental alloys, with the corroded surface being further characterized by scanning electron microscopy and X-ray photoelectron spectroscopy. It was found that the corrosion behavior of Ti-Nb alloy was similar to those TMA alloy samples in both artificial and acidified saliva solutions, whereas statistical analysis of the electrochemical impedance spectroscopy and polarization parameters showed Ti-Nb alloy exhibited better corrosion resistance in fluoridated saliva and fluoridated acidified saliva. SEM observation indicated that TMA alloy corroded heavily than Ti-Nb alloy in fluoride containing saliva. XPS surface analysis suggested that Nb2O5 played an important role in anti-corrosion from the attack of fluoride ion. Based on the above finding, Ti-Nb alloy is believed to be suitable for the usage in certain fluoride treated dental works with excellent corrosion resistance in fluoride-containing oral media.  相似文献   

4.
The corrosion characteristic of a novel Mg-Li alloy with RE in alkaline NaCl solution was investigated by electrochemical means, such as open circuit potential vs time curves, potentiodynamic polarization curves and electrochemical impedance spectroscopy(EIS). The result showed that Cl concentration and pH value affected the corrosion of Mg-Li alloy, and in high Cl concentration solution Cl concentration was the major factor. Corrosion of the alloy was slighter in the stronger alkaline solution, because corrosion current(Icorr) reduced, corrosion potential (Ecorr) turned to positive direction and the capacitive loops enlarged. When Cl increased, Icorr increased and capacitive loops shrinked, this means that corrosion of the alloy was more serious with the increase in Cl concentration.  相似文献   

5.
本文系统研究分析了La0.7-xPrxMg0.3Ni2.45Co0.75Mn0.1Al0.2(x=0.00—0.25)贮氢电极合金的电化学性能。电化学研究发现,随着x值的增大,合金电极的最大放电容量逐渐减小,但是合金的循环稳定性会有一定的提高。高倍率放电性能研究结果显示,随着X值的增大,合金电极的高倍率性能先提高后降。同时,电化学阻抗谱、交换电流密度Ⅰ0、极限电流密度ⅠL以及氢在合金中的扩散系数D的研究也表明,随着x值的增加,合金电极的电化学反应动力学性能首先增加,达到一个最大值后,其动力学性能又会随着x值的增大而有所下降。  相似文献   

6.
利用电化学阳极氧化的方法,在草酸溶液中,精确控制反应条件,在高纯铝片表面有序生长了纳米多孔氧化铝膜。试验中,分别采用一次阳极氧化和二次阳极氧化方法制备氧化铝膜。利用H3PO4溶液浸泡法对氧化铝膜进行扩孔处理。通过扫描电子显微镜对样品进行表征分析。结果发现,二次阳极氧化制备的氧化铝膜的孔洞分布较一次氧化的更为规则有序,并且孔径大小均匀一致。扫描电镜观察显示,氧化铝膜的扩孔过程可以去掉阻碍层,并调节孔径大小,溶去二次氧化后黏附在氧化层表面的一些杂质,从而使氧化铝模板更为规则有序,孔径均一。这种经过二次阳极氧化和扩孔处理得到多孔阳极氧化铝模板的方法简单,成本较低,可以为后续的纳米材料合成提供高质量的合成模板。  相似文献   

7.
Au, Rh and Au-Rh nanoclusters were studied on one-dimensional titania nanostructures by X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) and infrared spectroscopy (FT-IR). On titanate nanowire and tube supports the gold 4f7/2 XP emission appeared after reduction at 83.6 eV and 85.6 eV indicating two different sizes or chemical environments of gold nanoclusters. Small clusters also developed in rhodium containing samples besides the pure metallic state. Upon CO adsorption on the 1% Rh/titanate nanostructures the IR stretching frequencies characteristic of the twin (geminal) form were dominant, whereas bimetallic nanosystems featured a pronounced linear CO stretching vibration. At the same time the highest binding energy state disappeared almost completely indicating the enlargement of nanoclusters which was in agreement with SEM results. Very likely “core-shell” bimetallic clusters form, where gold covers the rhodium.  相似文献   

8.
The present paper gives an overview and review on self-organized TiO2 nanotube layers and other transition metal oxide tubular structures grown by controlled anodic oxidation of a metal substrate. We describe mechanistic aspects of the tube growth and discuss the electrochemical conditions that need to be fulfilled in order to synthesize these layers. Key properties of these highly ordered, high aspect ratio tubular layers are discussed. In the past few years, a wide range of functional applications of the layers have been explored ranging from photocatalysis, solar energy conversion, electrochromic effects over using the material as a template or catalyst support to applications in the biomedical field. A comprehensive view on state of the art is provided.  相似文献   

9.
胡飞  赵翀  思逸  熊伟 《功能材料》2015,(8):8013-8017
以合金Ti-x Nb(x=30%~70%)为基底,硝酸为电解液,采用超快阳极氧化制备出了复合纳米多孔氧化膜。通过XRD、SEM和TEM等测试技术对所制备的复合纳米多孔氧化膜进行表征,发现氧化膜的表面孔径为10~30 nm,膜背面的孔径为20~60 nm,且纳米孔的孔间距随着Nb含量和电解液浓度的增加而增大。氧化膜的生长速度30μm/h。氧化薄膜的形成与硝酸的强氧化性活化了金属表面有关。氧化膜贯穿的原因可能是由于覆盖合金表面的纳米多孔氧化物薄膜产生的压应力和极化、浓度及温度梯度所产生的拉应力,两者之间的相互作用造成的氧化膜的自剥离。  相似文献   

10.
Microbiologically influenced corrosion caused by sulfate-reducing bacteria(SRB) poses a serious threat to marine engineering facilities.This study focused on the interaction between the corrosion behavior of two aluminum alloys and SRB metabolic activity.SRB growth curve and sulfate variation with and with aluminum were performed to find the effect of two aluminum alloys on SRB metabolic activity.Corrosion of 5052 aluminum alloy and Al-Zn-In-Cd aluminum alloy with and without SRB were performed.The results showed that both the presence of 5052 and Al-Zn-In-Cd aluminum alloy promoted SRB metabolic activity,with the Al-Zn-In-Cd aluminum alloy having a smaller promotion effect compared with 5052 aluminum alloy.The electrochemical results suggested that the corrosion of the Al-Zn-In-Cd aluminum alloy was accelerated substantially by SRB.Moreover,SRB led to the transformation of Al-Zn-In-Cd aluminum alloy corrosion product from Al(OH)3 to Al2 S3 and NaAlO2.  相似文献   

11.
Zinc powder, as active material of secondary alkaline zinc electrode, can greatly limit the performance of zinc electrode due to corrosion and dendritic growth of zinc resulting in great capacity-loss and short cycle life of the electrode. This work is devoted to modification study of zinc powder with neodymium conversion films coated directly onto it using ultrasonic immersion method for properties improvement of zinc electrodes. Scanning electron microscopy and other characterization techniques are applied to prove that neodymium conversion layers are distributing on the surface of modified zinc powder. The electrochemical performance of zinc electrodes made of such modified zinc powder is investigated through potentiodynamic polarization, potentiostatic polarization and cyclic voltammetry. The neodymium conversion films are found to have a significant effect on inhibition corrosion capability of zinc electrode in a beneficial way. It is also confirmed that the neodymium conversion coatings can obviously suppress dendritic growth of zinc electrode, which is attributed to the amelioration of deposition state of zinc. Moreover, the results of cyclic voltammetry reveal that surface modification of zinc powder enhances the cycle performance of the electrode mainly because the neodymium conversion films decrease the amounts of ZnO or Zn(OH)2 dissolved in the electrolyte.  相似文献   

12.
Nanotube morphology changes in Ti-Zr alloys as Zr content increases have been investigated. Ti-Zr (10, 20, 30 and 40 wt.%) alloys were prepared by arc melting and heat treated for 24 h at 1000 °C in an argon atmosphere. TiO2 nanotubes were formed on the Ti-Zr alloys by anodization in H3PO4 containing 0.5 wt.% NaF. Electrochemical experiments were performed using a conventional three-electrode configuration with a platinum counter electrode and a saturated calomel reference electrode. Samples were embedded in epoxy resin, leaving an area of 10 mm2 exposed to the electrolyte. Anodization was carried out using a scanning potentiostat, and all experiments were conducted at room temperature. Microstructures of the alloys were examined by optical microscopy (OM), field emission scanning electron microscopy (FE-SEM) and x-ray diffraction (XRD). The Ti-Zr alloy microstructures observed by OM and FE-SEM changed from a lamellar structure to a needle-like structure with increasing Zr content. The microstructures also changed from β phase to increasing amounts of α phase as the Zr content increased. The number of large nanotubes formed by anodization decreased, and the number of small nanotubes increased, as the Zr content increased. The mean inner diameter ranged from approximately 150 to 200 nm with a tube-wall thickness of about 20 nm. The interspace between the nanotubes was approximately 60, 70, 100 and 130 nm for Zr contents of 10, 20, 30 and 40 wt.%, respectively.  相似文献   

13.
A nano-composite coating was formed using nano-Fe2O3 as pigments in different concentrations, to a specially developed alkyd based waterborne coating. The nano-Fe2O3 based composite coatings were applied on mild steel substrate by dipping. The dispersion of nano-Fe2O3 particles in coating system was investigated by SEM and AFM techniques. The effect of addition of these nano-pigments on the electrochemical behavior of the coating was investigated in 3.5% NaCl solution, using electrochemical impedance spectroscopy (EIS). Coating modified with higher concentration of nano-Fe2O3 particles showed comparatively better performance as it was evident from Rpo and Cc values after 30 days of exposure. In general, the study showed an improvement in the corrosion resistance of the nano-particle modified coatings as compared to the neat coating, confirming the positive effect of nano-particle addition in coatings.  相似文献   

14.
The corrosion behavior of leaded-bronze alloys (Cu–5Sn–5Zn–5Pb, Cu–8Sn–8Zn–8Pb and Cu–10Sn–10Zn–10Pb) in sea water was investigated using weight loss method, open-circuit potential measurements (OCP), polarization techniques and electrochemical impedance spectroscopy (EIS). The nature and morphology of the corrosion products were investigated by scanning electron microscopy (SEM) and X-ray diffraction (XRD). The results showed that the corrosion resistance decreases with decreasing copper content. The XRD indicated that the composition of patina depends on the concentration of Cu, Sn, Zn and Pb in each alloy.  相似文献   

15.
《材料科学技术学报》2019,35(8):1644-1654
The effects of heat-treatment on corrosion behavior of Mg-15Gd-2Zn-0.39 Zr alloys were investigated through microstructure characterization, corrosion tests, and scanning Kelvin probe force microscope (SKPFM) analysis. In long-term corrosion experiments, the corrosion rates of Mg-Gd-Zn-Zr alloys were mainly determined by the effects of micro-galvanic corrosion. During heat-treatment, the β-(Mg,Zn)3Gd eutectic phase in as-cast alloys transformed into a long-period stacking ordered (LPSO) phase, coupled with the precipitation of small precipitates. As heat-treatment proceeded, the local potential and the volume fraction of the LPSO phases reduced gradually compared with the eutectic phase, which resulted in a remarkable decrease of the micro-galvanic effect between the second phase and Mg matrix. As a result, the corrosion resistance of heat-treated alloys improved significantly.  相似文献   

16.
Al-Zn-In-Cd牺牲阳极材料的电化学性能研究   总被引:2,自引:0,他引:2  
通过正交实验确定出Al Zn In Cd牺牲阳极材料的最佳成分比。结果表明,Al 3.5Zn 0.02In 0.01Cd牺牲阳极材料的电化学性能指标均达到或超过国家标准。  相似文献   

17.
对4 大类12 个牌号的铜合金在南海海水中进行了8 年的暴露试验,考察了这些铜合金的抗污性能,研究了腐蚀产物膜的性质对抗污性的影响。  相似文献   

18.
对4大上牌号的铜合金在南涨海水中进行了8年的暴露试验,考究了这些铜合金的抗污性能,研究了腐蚀产物膜的的对抗污性的影响。  相似文献   

19.
This paper deals with electrochemical behaviour of Cu24Zn5Al alloy in a sodium tetraborate solution (borax), in the presence of chloride ions and benzotriazole. It was found that during anodic polarization of the investigated alloy, in a sodium tetraborate solution, at lower potentials, copper (I)-oxide formed on the alloy surface. The voltammograms show peak potential shifts corresponding to the formation of Cu2O towards more positive values with longer immersion time. It was found that chloride ions had an activating effect in a sodium tetraborate solution containing various concentrations of chloride ions (0.001, 0.005, 0.010, 0.050 and 0.100 mol dm−3 Cl). It was observed that Cu24Zn5Al alloy corroded more intensely in more concentrated solutions and with longer exposure to Cl. Investigations of the effect of inhibitor concentrations (8.4 × 10−6, 8.4 × 10−5, 8.4 × 10−4 and 8.4 × 10−3 mol dm−3 BTA in 0.1 mol dm−3 borax solution) showed that BTA had a good protective effect. The inhibiting effect of BTA was also confirmed with various times of immersion of this alloy in a 1.7 × 10−2 mol dm−3 solution of this inhibitor.  相似文献   

20.
In the past decade,the sudden rise of high-entropy alloys (HEAs) has become a research hotspot in the domain of metal materials.HEAs break through the design concept of traditional single-principal element alloys,and the four core effects,especially the high entropy and cocktail effects,make HEAs exhibit much better corrosion resistance than traditional corrosion-resistant metal materials,e.g.,stain-less steels,copper-nickel alloys,and high-nickel alloys.Currently,the corrosion resistance of HEAs causes great concern in the field of corrosion research.This article reviews the corrosion behavior and mechanism of HEAs in various aqueous solutions,revealing the correlation among the composition,microstructure and corrosion resistance of HEAs,and elaborates the influence of heat treatment,anodizing treatment and preparation methods on the corrosion behavior of HEAs.This knowledge will benefit the on-demand design of corrosion-resistant HEAs,which is an important trend of future development.Finally,perspec-tives regarding the corrosion research of HEAs are outlined to guide future studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号