首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The mechanical properties and the scratch resistance of titanium oxide (TiO2) thin films on a glass substrate have been investigated. Three films, with crystalline (rutile and anatase) and amorphous structures, were deposited by the filtered cathodic vacuum arc deposition technique on glass, and characterized by means of nanoindentation and scratch tests. The different damage modes (arc-like, longitudinal and channel cracks in the crystalline films; Hertzian cracks in the amorphous film) were assessed by means of optical and focused ion beam microscopy. In all cases, the deposition of the TiO2 film improved the contact-mechanical properties of uncoated glass. Crystalline films were found to possess a better combination of mechanical properties (i.e. elastic modulus up to 221 GPa, hardness up to 21 GPa, and fracture strength up to 3.6 GPa) than the amorphous film. However, under cyclic sliding contact above the critical fracture load, the amorphous film was found to withstand a higher number of cycles. The results are expected to provide useful insight for the design of optical coatings with improved contact-damage resistance.  相似文献   

2.
Miao-I. Lin 《Thin solid films》2010,518(10):2732-6078
(AlCrTaTiZr)Ox films were deposited at 350 °C by DC magnetron sputtering from high-entropy alloy target. Oxygen concentration increases with oxygen flow ratio, and saturates near 67 at.%. As-deposited films have an amorphous structure. Their hardness fall in the range of 8-13 GPa. All amorphous oxide films maintain their amorphous structure up to 800 °C for at least 1 h. After 900 °C 5 h annealing, crystalline phases with the structures of ZrO2, TiO2, or Ti2ZrO6 form. Annealing enhances mechanical properties of the films. Their hardness and modulus attain to the values about 20 and 260 GPa, respectively. The resistivity of the metallic films is around 102 μΩ cm but drastically rises to 1012 μΩ cm when oxygen concentration increases.  相似文献   

3.
We report on preparation and properties of anatase Nb-doped TiO2 transparent conducting oxide films on glass and polyimide substrates. Amorphous Ti0.96Nb0.04O2 films were deposited at room temperature by using sputtering, and were then crystallized through annealing under reducing atmosphere. Use of a seed layer substantially improved the crystallinity and resistivity (ρ) of the films. We attained ρ = 9.2 × 10− 4 Ω cm and transmittance of ~ 70% in the visible region on glass by annealing at 300 °C in vacuum. The minimum ρ of 7.0 × 10− 4 Ω cm was obtained by 400 °C annealing in pure H2.  相似文献   

4.
Thin films of ZrO2 and Y2O3-doped ZrO2 were deposited using a novel yet simple layer-by-layer technique by means of electrostatic assembling and surface precipitation via dipping substrates alternately in cationic and anionic precursor solutions. Uniform films have been made. A constant growth rate of 5.4 ± 0.3 nm per deposition cycle for the dehydrated nanocrystalline films was achieved. This generic technique can be adapted to make other oxide films and novel multilayers or functionally-graded coatings.  相似文献   

5.
Kaiqing Luo  Limin Wu  Bo You 《Thin solid films》2010,518(23):6804-6810
Highly-crystalline zirconia (ZrO2) nanoparticle was functionalized with 3-(N-aminoethyl) aminopropyltrimethoxysilane (AAPTMS) and dispersed in water at primary particle size level under basic condition (pH 13-14). The aqueous ZrO2 nanoparticle dispersion was cast on a polycarbonate substrate with 1,4-butanediol digylcidyl ether as a cross-linker. Nanoparticle films with as high as 81 wt.% of ZrO2 were obtained through heating the cast dispersion at 120 °C, which are highly transparent. The refractive index ranges from 1.70 to 1.77 at wavelength of 632 nm with the decrease of the amount of AAPTMS attached to ZrO2 nanoparticles. Nanoindentation tests show that the hardness of the film reaches 1.7 GPa. In addition, both punched tape abrasion and nanoscratch tests reveal that the films exhibit prominent scratch resistant performance.  相似文献   

6.
In the present research, self-cleaning Al2O3–TiO2 thin films were successfully prepared on glass substrate using a sol–gel technique for photocatalytic applications. We investigated the phase structure, microstructure, adhesion and optical properties of the coatings by using XRD, SEM, scratch tester and UV/Vis spectrophotometer. Four different solutions were prepared by changing Al/Ti molar ratios such as 0, 0.07, 0.18 and 0.73. Glass substrates were coated by solutions of Ti-alkoxide, Al-chloride, glacial acetic acid and isopropanol. The obtained gel films were dried at 300 °C for 10 min and subsequently heat-treated at 500 °C for 5 min in air. The oxide thin films were annealed at 600 °C for 60 min in air. TiO2, Ti3O5, TiO, Ti2O, α-Al2O3 and AlTi phases were determined in the coatings. The microstructural observations demonstrated that Al2O3 content improved surface morphology of the films and the thickness of film and surface defects increased in accordance with number of dipping. It was found that the critical load values of the films with 0, 0.07, 0.18 and 0.73 Al/Ti molar ratios were found to be 11, 15, 22 and 28 mN, respectively. For the optical property, the absorption band of synthesized powders shifted from the UV region to the visible region according to the increase of the amount of Al dopant. The oxide films were found to be active for photocatalytic decomposition of methylene blue.  相似文献   

7.
In this work Eu-doped TiO2 thin films prepared by reactive magnetron co-sputtering of Ti-Eu metallic target have been studied. The results of photoluminescence (PL) and its correlation with microstructure have been described. Structural properties were examined by X-ray diffraction (XRD) and Atomic Force Microscopy (AFM). XRD studies have shown that thin films consisted of TiO2-anatase and AFM images display their high quality and dense nanocrystalline structure. PL spectra, measured at room temperature, show a dominating strong red luminescence corresponding to 5D0-7F2 transition at ∼ 617 nm and ∼ 623 nm. The evolution of photoluminescence and microstructure of the thin films has been examined as they were additionally annealed in an air ambient.  相似文献   

8.
We discuss the fabrication of highly conductive Ta-doped SnO2 (Sn1 − xTaxO2; TTO) thin films on glass by pulse laser deposition. On the basis of the comparison of X-ray diffraction patterns and resistivity (ρ) values between epitaxial films and polycrystalline films deposited on bare glass, we proposed the use of seed-layers for improving the conductivity of the TTO polycrystalline films. We investigated the use of rutile TiO2 and NbO2 as seed-layers; these are isostructural materials of SnO2, which are expected to promote epitaxial-like growth of the TTO films. The films prepared on the 10-nm-thick seed-layers exhibited preferential growth of the TTO (110) plane. The TTO film with = 0.05 on rutile TiO2 exhibited ρ  = 3.5 × 10− 4 Ω cm, which is similar to those of the epitaxial films grown on Al2O3 (0001).  相似文献   

9.
Transparent and conducting zirconium-doped zinc oxide films have been prepared by radio frequency magnetron sputtering at room temperature. The ZrO2 content in the target is varied from 0 to 10 wt.%. The films are polycrystalline with a hexagonal structure and a preferred orientation along the c axis. As the ZrO2 content increases, the crystallinity and conductivity of the film are initially improved and then both show deterioration. Zr atoms mainly substitute Zn atoms when the ZrO2 content are 3 and 5 wt.%, but tend to cluster into grain boundaries at higher contents. The lowest resistivity achieved is 2.07 × 10− 3 Ω cm with the ZrO2 content of 5 wt.% with a Hall mobility of 16 cm2 V− 1 s− 1 and a carrier concentration of 1.95 × 1020 cm− 3. All the films present a high transmittance of above 90% in the visible range. The optical band gap depends on the carrier concentration, and the value is larger at higher carrier concentration.  相似文献   

10.
ThexB2O3 · (20-x) P2O5 · 80SiO2 (in mol%) glass films withx=0, 10 and 20 have been prepared from metal alkoxides by carrying out the coating in a dry atmosphere. These coating films have shown a larger value of load at scratch and a smaller shrinkage during heat-treatment by replacing P2O5 in the films with B2O3. It has been found that B2O3 more effectively reduces the glass transition temperature of SiO2 glass than P2O5. The concentrations of sodium ions, which migrated from soda-lime-silica glass substrates during the film formation, were higher in phosphosilicate and borophosphosilicate films than in borosilicate and pure silica films. This finding should be ascribed to the gettering effects of phosphorus for sodium ions.  相似文献   

11.
Eu3+ (2.5 at.%) and Tb3+ (0.005-0.01 at.%) co-doped gadolinium and yttrium oxide (Gd2O3 and Y2O3) powders and films have been prepared using the sol-gel process. High density and optical quality thin films were prepared with the dip-coating technique. Gadolinium (III) 2,4-pentadionate and yttrium (III) 2,4-pentadionate were used as precursors, and europium and terbium in their nitrate forms were used as doping agents. Chemical and structural analyses (infrared spectroscopy, X-ray diffraction and high-resolution transmission electron microscopy) were conducted on both sol-gel precursor powders and dip-coated films. The morphology of thin films heat-treated at 700 °C was studied by means of atomic force microscopy. It was shown that the highly dense and very smooth films had a root mean roughness (RMS) of 2 nm ± 0.2 (A = 0.0075 Tb3+) and 24 nm ± 3.0 (B = 0.01 Tb3+). After treatment at 700 °C, the crystallized films were in the cubic phase and presented a polycrystalline structure made up of randomly oriented crystallites with grain sizes varying from 20 to 60 nm. The X-ray induced emission spectra of Eu3+- and Tb3+-doped Gd2O3 and Y2O3 powders showed that Tb3+ contents of 0.005, 0.0075 and 0.01 at.% affected their optical properties. Lower Tb3+ concentrations (down to 0.005 at.%) in both systems enhanced the light yield.  相似文献   

12.
Titanium dioxide (TiO2) thin films were prepared on Galvanized Iron (GI) substrate by plasma-enhanced atomic layer deposition (PE-ALD) using tetrakis-dimethylamido titanium and O2 plasma to investigate the photocatalytic activities. The PE-ALD TiO2 thin films exhibited relatively high growth rate and the crystal structures of TiO2 thin films depended on the growth temperatures. TiO2 thin films deposited at 200 °C have amorphous phase, whereas those with anatase phase and bandgap energy about 3.2 eV were deposited at growth temperature of 250 °C and 300 °C. From contact angles measurement of water droplet, TiO2 thin films with anatase phase and Activ™ glass exhibited superhydrophilic surfaces after UV light exposure. And from photo-induced degradation test of organic solution, anatase TiO2 thin films and Activ™ glass decomposed organic solution under UV illumination. The anatase TiO2 thin film on GI substrate showed higher photocatalytic efficiency than Activ™ glass after 5 h UV light exposure. Thus, we suggest that the anatase phase in TiO2 thin film contributes to both superhydrophilicity and photocatalytic decomposition of 4-chlorophenol solution and anatase TiO2 thin films are suitable for self-cleaning applications.  相似文献   

13.
Preparation of TiO2 and SiO2 films for optical applications was attempted using conventional rf magnetron sputtering in the sputtering ambient with various O2/Ar+O2 ratios and at substrate temperatures between room temperature and 400 °C. X-ray photoelectron spectroscopy (XPS) and optical spectroscopy investigations indicated that oxygen addition in the sputtering ambient was essential for growing TiO2 films with stoichiometric compositions and good transmittance, while SiO2 films had a stoichiometric composition of O/Si ratio=2.1-2.2 and were highly transparent in the visible wavelength region, independent of gas composition in the growing ambient. It was also identified from scanning electron microscope (SEM), atomic force microscope (AFM) and Fourier transform infrared spectroscopy (FTIR) measurements that the structural characteristics of both TiO2 and SiO2 films were significantly improved with O2 addition in the sputtering ambient, showing smoother surface morphologies and higher resistances to water absorption when compared with films grown without O2 addition. Heating of the substrate between 200 and 400 °C considerably increased the refractive index of TiO2 layers, resulting in dense structures along with an improvement of crystallinity. For optical applications, AR coatings composed of 2-4 multi-layers on glass were designed and manufactured by stacking in turn the SiO2 and TiO2 films at room temperature and O2/Ar+O2=10%, and the performance of the produced coatings was compared with simulation results.  相似文献   

14.
CVD diamond coatings were deposited on to γ-TiAl surfaces using a microwave plasma enhanced CVD to improve wear properties and the performance of γ-TiAl. Diamond coatings were directly deposited on to γ-TiAl substrates and deposited on to TiC, Ti5Si3, Al2O3 + TiO2, and Si interlayers prepared on γ-TiAl substrates. The diamond coatings deposited directly on γ-TiAl suffered severe delamination and cracked. Those deposited on TiC and Ti5Si3 interlayers partially delaminated, whereas those deposited on Al2O3 + TiO2 and Si interlayers adhered well to the underlying surfaces. The diamond films obtained were characterized using scanning electron microscopy, Raman spectroscopy, and X-ray diffraction. Raman spectra showed that polycrystalline and nanocrystalline diamond films grew on γ-TiAl. Residual internal stresses of the diamond coatings deposited on interlayered-γ-TiAl were estimated experimentally from Raman spectra. The coatings prepared on Al2O3 + TiO2/γ-TiAl and Si/γ-TiAl showed lower residual stresses.  相似文献   

15.
High density TiO2 nanotube film with hexagonal shape and narrow size distribution was fabricated by templating ZnO nanorod array film and sol-gel process. Well-aligned ZnO nanorod array films obtained by aqueous solution method were used as template to synthesize ZnO/TiO2 core-shell structure through sol-gel process. Subsequently, TiO2 nanotube array films survived by removing the ZnO nanorod cores using wet-chemical etching. Polycrystalline anatase TiO2 nanotube films were ∼ 1.5 μm long and ∼ 100 nm in inter diameter with a wall thickness of ∼ 10 nm.  相似文献   

16.
Titanium oxide (TiO2) thin films are prepared by the sol-gel method and annealed at 600 °C by conventional (CTA) and rapid thermal annealing (RTA) processes on fluorine-doped tin oxide -coated glass substrates for application as the work electrode for the dye-sensitized solar cells (DSSC). TiO2 thin films are crystallized using a conventional furnace and the proposed RTA process at annealing rates of 5 °Cmin−1 and 600 °Cmin−1, respectively. The TiO2 thin films are characterized by X-ray diffraction, scanning electron microscopy and Brunauer-Emmett-Teller analysis. Based on the results, the TiO2 films crystallized by RTA show better crystallization, higher porosity and larger surface area than those of CTA. The short-circuit photocurrent and open-circuit voltage values increased from 5.2 mAcm−2 and 0.6 V for the DSSC with the CTA-derived TiO2 films to 8.3 mAcm−2 and 0.68 V, respectively, for the DSSC containing RTA-derived TiO2 films.  相似文献   

17.
Pure and different ratios (1, 3, 5, 7 and 10%) of boron doped TiO2 thin films were grown on the glass substrate by using sol–gel dip coating method having some benefits such as basic and easy applicability compared to other thin film production methods. To investigate the effect of boron doped on the physical properties of TiO2, structural, morphological and optical properties of growth thin films were examined. 1% boron-doping has no effect on optical properties of TiO2 thin film; however, optical properties vary with > 1%. From X-ray diffraction spectra, it is seen that TiO2 thin films together with doping of boron were formed along with TiB2 hexagonal structure having (111) orientation, B2O3 cubic structure having (310) orientation, TiB0·024O 2 tetragonal structure having rutile phase (110) orientation and polycrystalline structures. From SEM images, it is seen that particles together with doping of boron have homogeneously distributed and held onto surface.  相似文献   

18.
DC reactively sputtered TiO2 layers on SnO2:F substrates were investigated by Raman and surface photovoltage spectroscopy. The stoichiometry and layer thicknesses were investigated by elastic recoil detection analysis. The deposition temperature, the O2/(O2 + Ar) ratio and the deposition time were varied systematically. With increasing temperature, the layers become crystalline with the rutile modification dominating. Rutile phase preferentially forms on vertical facets of SnO2 crystallites. Anatase phase starts to form during prolonged deposition and at lower O2/(O2 + Ar) ratios. The energy of the exponential absorption tails below the band gap, a measure of the defect density of the films, is determined by the deposition temperature and not by other parameters if the deposition temperature is relatively high, irrespective of the content of crystalline phases or the value of the band gap. Charge separation takes place at length scales significantly shorter than the layer thicknesses (diffusion length less than 6 nm). TiO2 films sputtered at 380 °C show rectifying behaviour with a carbon contact.  相似文献   

19.
2-6 mol% ZrO2 was added to a base glass composition of P2O5 31.25, CaO 43.75, TiO2 25 (mol%) at the expense of TiO2. The prepared glasses were crystallized to bulk glass ceramics containing the major phases of β-Ca3(PO4)2 and CaTi4(PO4)6. DTA was utilized to determine the appropriate phase separation-nucleation and crystallization temperatures. The crystalline products and resulting microstructures were examined by XRD and SEM. The β-Ca3(PO4)2 phase was dissolved out by leaching the resulting glass ceramics in HCl, leaving a porous skeleton of CaTi4(PO4)6. It was shown that ZrO2 addition resulted in reduction of volume porosity and mean pore diameter while the specific surface area was increased. The smallest median pore diameter and largest surface area were 8.6 nm and 32 m2 g−1 respectively obtained for the specimen containing 6 mol% ZrO2. The ZrO2 addition also improved the chemical durability and bending strength of porous glass ceramics.  相似文献   

20.
We have studied the structural and optical properties of thin films of TiO2, doped with 5% ZrO2 and deposited on glass substrate (by the sol-gel method). The dip-coated thin films have been examined at different annealing temperatures (350 to 450 °C) and for various layer thicknesses (63-286 nm). Refractive index and porosity were calculated from the measured transmittance spectrum. The values of the index of refraction are in the range of 1.62-2.29 and the porosity is in the range of 0.21-0.70. The coefficient of transmission varies from 50 to 90%. In the case of the powder of TiO2, doped with 5% ZrO2, and aged for 3 months in ambient temperature, we have noticed the formation of the anatase phase (tetragonal structure with 14.8 nm grains). However, the undoped TiO2 exhibits an amorphous phase. After heat treatments of thin films, titanium oxide starts to crystallize at the annealing temperature 350 °C. The obtained structures are anatase and brookite. The calculated grain size, depending on the annealing temperature and the layer thickness, is in the range (8.58-20.56 nm).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号