首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The influence of submicronic silicon-carbide additives and heat treatment on the wear of electrolytic nickel-phosphorus coatings is investigated. The coating wear is of abrasive-oxidative type: predominantly abrasive for composite NiP-SiC coatings and predominantly oxidative for NiP coatings without added silicon.  相似文献   

2.
The present work studies the effect of reinforcing additives of submicron-size silicon carbide and thermal treatment on fretting wear of nickel-phosphorus (NiP) electroplated coatings. The tests are conducted under a 500-μm shear of the friction contact. The tribotests show that all coatings under study undergo abrasive-oxidative wear. Thermal treatment is found to reduce the friction coefficient and wear rate of the coatings under fretting, whereas the increased content of the SiC additive leads to increased friction coefficient and wear rate. The annealed NiP coatings have a lower wear rate compared to the composite NiP-SiC coatings.  相似文献   

3.
The work considers the effect of additives of hardening submicron silicon carbides and heat treatment on the fretting corrosion in NaCl solution of nickel-phosphorus (NiP) coatings produced by electrolytic deposition. Tests are performed at amplitudes 100 and 500 μm. Pitting reveals the abrasive nature of the wear of all of the studied coatings. Introduction of silicon carbides into NiP coatings increases the number of pits in fretting corrosion. The pitting of NiP coatings is distributed regularly over the subsurface and pits are not so numerous. As the loading grows, fretting corrosion intensifies, though the friction coefficient declines in the majority of cases.  相似文献   

4.
The two-body abrasive wear of electroless nickel (EN), EN-silicon carbide, and EN-alumina composite coatings have been investigated using a scratch test with a diamond indenter. The coatings were heat treated at temperatures of 100–500° C. The hardness of the coatings increased with heat treatment temperature from 500 HV100 for the as-deposited condition to 1008 HV100 when fully hardened. Scratch testing showed that the as-deposited coating had scratch tracks with a high degree of plasticity, signs of microploughing and tensile cracking and was characterised as a ductile failure. On the other hand, the heat-treated coatings showed chipping and cracking on the edge of the scratch tracks, failing in a brittle manner. The heat-treated EN-silicon carbide coatings, however, exhibited no cracking nor chipping, believed to be due to its higher fracture toughness than the other heat-treated coatings, attributable to its lower phosphorus content. The volume of material removed from the silicon carbide scratch track was 1/3 of the volume removed from the steel substrate at a 20 N load, and showed the best wear/ scratch resistance of any of the coatings tested.  相似文献   

5.
Ni-Fe-W合金镀层的结构形貌及摩擦学性能研究   总被引:2,自引:0,他引:2  
利用脉冲电沉积的方法制备了Ni-Fe-W合金镀层,讨论了镀液中W的含量对Ni-Fe-W合金镀层组织结构的影响,以及镀液成分对镀层硬度及厚度的影响。分析了Ni-Fe-W合金镀层在干摩擦条件下摩擦因数随载荷以及速度的变化情况,并与Ni-W合金镀层以及硬铬镀层进行了比较,探讨了干摩擦条件下Ni-Fe-W合金镀层的摩擦磨损机制。在高速轻载时,Ni-Fe-W合金镀层在摩擦过程中会生成有弥散强化作用的中间硬质相和起固体润滑作用的氧化物,使其磨损表现为轻微的磨粒磨损。  相似文献   

6.
Carbon nitride thin films may become good competitors for diamond-like carbon, due to their high hardness, high wear resistance, and low friction coefficient. At present, there are only a few studies of the effect of CN x coating hardness and internal stress on its tribological properties, such as coating life and frictional behaviour. This work deals with tribological and mechanical properties of a carbon nitride coating prepared by ion-beam-assisted deposition (IBAD). Friction coefficients in the range of 0.10–0.12 were observed for the best CN x coatings sliding against silicon nitride under ambient conditions. A nonlinear correlation between coating life and its internal stress and hardness was found.  相似文献   

7.
Abstract

Laser cladded coatings have been used extensively to extend the service life of components exposed to severe abrasive wear. One of the main wear resistant materials used in laser cladding is ceramic–metallic composite. Despite extensive use of this class of material, there is very limited knowledge regarding mechanical degradation mechanisms, such as cracking and plastic deformation, under different wear conditions. In this investigation a mixture of nickel alloy and tungsten carbide powders were used to deposit the coating. Two types of tungsten carbide powders with spherical and angular carbides were employed. The microstructures of the coatings were analysed thoroughly by optical microscopy, electron probe microanalysis and wavelength dispersive spectrometry. Failure and cracking mechanisms of laser cladded coatings under normal and tangential loading were systematically investigated using scratch testing. In the nickel alloy matrix, fine mixed secondary carbides were formed due to partial dissolution and formation of the secondary tungsten carbide during laser cladding. These secondary carbides were rich in chromium, tungsten and nickel and had a blocky and/or bar-like shape. Failure mechanisms associated with scratch testing were dependent on the microstructure and carbide morphology, applied stress and location of carbide particles with regard to the scratch groove. Owing to the high binder mean free path between the carbide particles, plastic deformation of the binder was the dominant failure mechanism. Additionally, partial or whole fragmentation of carbides, carbide/binder interface cracking and limited binder fracture were observed.  相似文献   

8.
碳纳米管镍基复合刷镀层的组织和性能   总被引:7,自引:0,他引:7  
研究了碳纳米管镍基复合刷镀层的组织、显微硬度和耐磨性等。结果表明:与常规镀层相比,含有碳纳米管的复合镀层组织明显细化,显微硬度有较大的提高,硬度热稳定性和耐磨性得到了明显的提高。  相似文献   

9.
研究了镀液Si3N4浓度,阴极电流密度、pH值、温度和搅拌方式等工艺参数对Ni—Si3N4复合镀层微粒含量和镀层硬度的影响,在盘销摩擦磨损实验机上对镀层进行了磨损实验。通过实验确定了Ni-Si3N4复合电镀的最佳工艺。结果表明:随着Si3N4共析量的增多复合镀层硬度提高,耐磨性增强;在浸油润滑的条件下,复合镀层的摩擦因数低于纯镍镀层,复合镀层的磨损量小于普通镀镍层。磨痕表面观察表明复合镀层的磨损以磨料磨损为主。  相似文献   

10.
WC-Fe composite coatings were prepared on IC45/080A47 steel substrates by argon arc cladding technique. Minute amounts of La were added into the coating, and the microstructure was investigated to find the relation to rare earth. Results show that RE does not change the categories of phases, and the main components remain α-Fe, Fe3W3C, WC and W2C. However, the distribution of carbide particles is optimised. It reduces the agglomeration and bridging in the cladding layer's structure, makes the particles distribute homogeneously and restrains the dissolution of WC and the formation of fishbone shaped dendritic carbides. It promotes the formation of granular carbide and refines grains. It also reserves the WC particles in the composite coating and improves the average hardness and wear resistance.  相似文献   

11.
Tribocorrosion behaviour of heat-treated NiP and NiP–SiC composite coatings was investigated in a 0.6 M NaCl solution. The tribocorrosion tests were performed in a linear sliding tribometer with an electrochemical cell interface. It was analyzed the influence of SiC particles dispersion in the NiP matrix on current density developed, on coefficient of friction and on wear volume loss. The results showed that NiP–SiC composite coatings had a lower wear volume loss compared to NiP coatings. However, the incorporation of SiC particles into the metallic matrix affects the current density developed by the system during the tribocorrosion test. It was verified that not only the volume of co-deposited particles (SiC vol.%) but also the number of SiC particles per coating area unit (and consequently the SiC particles size) have made influence on the tribocorrosion behaviour of NiP–SiC composite coatings.  相似文献   

12.
A range of carbon coatings with different hardness and modulus was compared for wear and frictional behaviours using one-side-carbon-coated Ti-6Al-4V alloy couples tested under conditions of combined impact and sliding contact. Carbon films with hardness over 10 GPa were found to cause far greater volume loss of the uncoated counterpart, and the volume loss was approximately proportional to the extent of hardness deviation above 10 GPa. The coefficient of friction was shown to correlate positively with coating hardness. The tendency of a softer coating to possess a greater sp2 or graphite-like content provides more effective solid lubrication in a wet environment, hence minimising both wear and friction. The corresponding low film modulus also provides an optimal structural integrity of the composite system by minimising the elastic modulus mismatch between the film and the underlying substrate.  相似文献   

13.
超细SiC对Ni-P化学合金镀层组织结构的影响   总被引:2,自引:0,他引:2  
在化学镀Ni-P合金溶液中添加不同粒径的超细SiC粒子进行化学镀,制备了三种Ni-P-SiC化学复合镀层;通过扫描电镜、X射线衍射仪、透射电镜和示差扫描量热分析仪对镀层的形貌和组织结构及其转变进行了表征。结果表明:化学复合镀层镀态下为非晶态结构,在一定温度热处理后晶化产生Ni3P和镍晶体,晶化温度几乎不受SiC粒子影响;在较高温度下镍与SiC发生反应生成Ni-Si化合物,SiC粒径越小,与镍发生反应的起始温度越低;400℃热处理复合镀层的最终产物中除了镍和Ni3P以外还有Ni3Si和游离碳。  相似文献   

14.
《Wear》2006,260(1-2):25-29
Using a gas tungsten arc welding (GTAW) process, in situ synthesis TiC particles reinforced Fe-based alloy composite coating has been produced by preplaced FeCrBSi alloy, graphite and ferrotitanium powders. The microstructure and wear properties of the composite coatings were studied by means of scanning electron microscopy (SEM), X-ray diffractometer (XRD) and wear test. The effects of thickness of the pre-placed powder layer on the microstructure, hardness and wear resistance of the composite coatings were also investigated. The results indicated that TiC particles were produced by direct metallurgical reaction between ferrotitanium and graphite during the GTAW process. TiC particles with sizes in the range of 3–5 μm were dispersed in the matrix. The volume fraction of TiC particles and microhardness gradually increased from the bottom to the top of the composite coatings. The TiC-reinforced composite coatings enhance the hardness and wear resistance. The highest wear resistance of the composite coating with a 1.2 mm layer was obtained.  相似文献   

15.
The appropriate selection of bulk materials and coatings of valve components is an important factor for the economic success of oil and gas production activities in the petrochemical field. Materials and coatings are important because particle erosion and surface wear are associated to corrosion by hydrogen sulphide during oil and gas flow. The wear of high pressure valves of gas system will lead to pollution, safety problems and cost increases. The most common solution of these problems is the deposition of hard materials as tungsten carbide or chromium carbide by thermal spray. These coatings are deposited by high velocity oxygen fuel (HVOF) thermal spray process to obtain a very high hardness with excellent cohesion and adhesion. Tungsten carbide cobalt–chromium based coating, chromium carbide nickel–chromium coating as well as Inconel 625 have been adopted in the specifications of petrochemical companies and their behaviour and wear, erosion and corrosion properties are reported in the literature.

This paper addresses the experimental study, surface analysis and functional characterisation of HVOF coatings innovative for the specific application such as NiAl and composite material WC/intermetallic compounds containing Ni, Cr, Co and Mo. These coatings have been systematically submitted to corrosion and functional tests based on the determination of the behaviour of the coatings in H2S and CO2 atmosphere and to wear and erosion according to standard ASTM G75-95 (slurry test); material loss and surface damage have been determined; the coatings have been completely characterised from the point of view of the structure (morphology, porosity, hardness, wear) and of the surface properties by means of a prototype 3-dimensional (3-D) stylus micro-geometrical surface analysis system; their corrosion and functional behaviour have been compared with the behaviour of the above mentioned coatings.

The slurry test allows a clear discrimination among the performances of analysed coatings. Namely, WC/Mo compound, because of its carbide content, shows fairly good behaviour in an erosive environment and higher erosion resistance than Inconel 625 and NiAl; all the tested coatings show similar behaviour in a corrosive environment.  相似文献   


16.
《Wear》2006,260(7-8):705-710
Using a gas tungsten arc welding (GTAW) process, in situ synthesis TiC particles reinforced Fe-based alloy composite coating has been produced by pre-coated FeCrBSi alloy, graphite and ferrotitanium powders on the substrate. The microstructure and wear properties of the composite coatings were studied by means of scanning electron microscopy (SEM), X-ray diffractometer (XRD) and wear test. The effects of thickness of the pre-coated powder layer on the microstructure, hardness and wear resistance of the composite coatings were also investigated. The results indicated that TiC particles were produced by direct metallurgical reaction between ferrotitanium and graphite during the GTAW process. TiC particles with sizes in the range of 3–5 μm were dispersed in the matrix. The volume fraction of TiC particles and microhardness gradually increased from the bottom to the top of the composite coatings. The TiC-reinforced composite coatings enhance the hardness and wear resistance. The highest wear resistance of the composite coating with a 1.2 mm layer was obtained.  相似文献   

17.
The surface degradation of tungsten carbide based thermal spray coatings when exposed to fine-particle slurry abrasion has been investigated. The coatings that were studied contain binder-phase constituents consisting of either nickel or cobalt. The coatings were deposited onto test cylinders using a detonation gun device. After applying approximately 0.15 mm thickness of thermal spray coating, the coatings were ground, then diamond polished to achieve surface roughnesses of 0.03 μm Ra or less. The coatings were exposed to a three-body abrasive wear test involving zirconia particles (less than 3 μm diameter) in a water-based slurry. Results show that preferential binder wear plays a significant role in the wear of these tungsten carbide coatings by fine abrasives. In the comparison presented here, the coating containing nickel-based binder with a dense packing of primary carbides was superior in terms of retaining its surface finish upon exposure to abrasion. The coating containing a cobalt binder showed severe surface degradation.  相似文献   

18.
针对铝合金硬度低、耐磨性差的问题,采用电弧喷涂分别在6061铝合金基体表面喷涂Al和Al-Ni-Mm-Co涂层,采用显微硬度计、扫描电子显微镜、X射线衍射仪分别对涂层硬度、涂层显微结构、涂层成分进行分析。采用球-盘式往复摩擦试验机考察涂层在脂润滑下的摩擦学性能,并对磨痕形貌和表面主要元素进行观察。结果表明,Al-Ni-Mm-Co涂层的减摩性和抗磨性能均优于6061铝合金和Al涂层,其优异的摩擦学性能归结为摩擦表面形成的Al2O3、NiO、CoO等氧化保护层,主要的磨损形式为疲劳磨损。  相似文献   

19.
为提高汽车制动盘耐磨和高温氧化性能,延长其使用寿命,采用激光熔覆技术在中碳钢表面制备了以WC颗粒为增强相的Ni基复合涂层.借助SEM和XRD等表征手段对制动盘表面涂层进行了组织和物相分析,利用维氏硬度计测试了制动盘表面涂层截面显微硬度分布,通过摩擦磨损实验研究了制动盘表面涂层的磨损性能.研究表明,制动盘表面涂层主要由γ-(Ni,Fe)固溶体、均匀分布WC颗粒和碳化物抗磨损相组成.涂层平均显微硬度HV0.2670,显微硬度值波动较小较为平稳,证明涂层组织比较均匀.在多种强化效果共同作用下,制动盘表面涂层的磨损量与基材相比明显减小,仅为基材的20%,抗磨损性能显著提高.  相似文献   

20.
真空阴极电弧沉积(Ti,Al)N薄膜的应用研究   总被引:6,自引:0,他引:6  
为了提高TiN涂层刀具的耐磨性,采用钛铝合金靶,以真空阴极电弧沉积法制备了(Ti,Al)N涂层,对膜层形貌成分,组织结构及硬度进行了测试及研究,并试验了(Ti,Al)N涂层高速钢钻头及YG6硬质合金刀具的使用寿命,结果表明:(Ti,Al)N涂层硬度高达HV0.1,15,3700,(Ti,Al)N涂层使高速钢钻头及YG6硬质合金刀具的使用寿命显著提高。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号