首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
氢氧化钠/尿素/硫脲溶剂体系对纤维素溶解性能研究   总被引:11,自引:4,他引:7  
通过设计正交实验,研究不同组成的氢氧化钠/尿素/硫脲溶剂体系对纤维素的溶解性能,确定了该溶剂体系中各组分的最佳含量,并通过X-射线衍射分析、红外光谱分析、热重分析等手段,表征了该溶剂体系获得的再生纤维素膜的结构和性能。结果表明:该溶剂体系对纤维素有良好的溶解性能,且溶解的纤维素再生后为纤维素Ⅱ,但其热稳定性低于原纤维素。  相似文献   

2.
Summary The 6 wt.% NaOH/4 wt.% urea aqueous solution was proved to be an aqueous non-derivatizing solvent for cellulose by 13C NMR. O-(2-hydroxyethyl)cellulose (HEC) was prepared by a totally homogeneous hydroxyethylation of cellulose using this new solvent for the first time, and the distribution of substituents within anhydroglucose units (AGU) was examined by 13C NMR. It was found that the relative reactivity of the hydroxyl groups within AGU and the new hydroxyl group was in the order C-x > C-6 > C-2 > C-3, an analogous functionalization pattern as HEC obtained by the heterogeneous slurry process. The ethylene oxide efficiency in this homogeneous etherification reaction was 20 – 30%.  相似文献   

3.
Aeromonas (A) gum, an acidic heteropolysaccharide, formed aggregates easily in NaCl aqueous solution. A novel solvent of the A gum, which can prevent aggregation, was found to be 0.20M urea/0.25M NaOH aqueous solution. The weight‐average molecular weight (Mw), radius of gyration (〈s21/2), and intrinsic viscosity ([η]) of the samples were determined in 0.20M urea/0.25M NaOH aqueous solution at 25°C by light scattering (Mw, 〈s21/2) and viscometry ([η]). The values of Mw, 〈s21/2, and [η] were close to those in 0.20M lithium chloride/dimethylsulfoxide, in which the A gum exists as a semiflexible single chain, implying the same conformation for the A gum in 0.20M urea/0.25M NaOH aqueous solution. The results revealed that 0.20M urea/0.25M NaOH aqueous solution is a good solvent, which effectively avoids the aggregates of the A gum in aqueous solution. Moreover, it can be used to investigate the solution properties and chain conformation of water‐insoluble polysaccharides or the polysaccharides that are easily aggregated in aqueous systems. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 97: 1710–1713, 2005  相似文献   

4.
Regenerated cellulose/chitin blend films (RCCH) were satisfactorily prepared in 6 wt % NaOH/4 wt % urea aqueous solution by coagulating with 5 wt % CaCl2 aqueous solution then treating with 1 wt % HCl. The structure, miscibility, and mechanical properties of the RCCH films were investigated by infrared, scanning electron microscopy, ultraviolet spectroscopies, X‐ray diffraction, tensile test, and differential scanning analysis. The results indicated that the blends were miscible when the content of chitin was lower than 40 wt %. Moreover, the RCCH blend film achieved the maximum tensile strength in both dry and wet states of 89.1 and 43.7 MPa, respectively, indicating that the tensile strength and water resistivity of the RCCH film containing 10–20 wt % chitin was slightly higher than that of the RC film unblended with chitin. Structural analysis indicated that strong interaction occurred between cellulose and chitin molecules caused by intermolecular hydrogen bonding. Compared to the mechanical properties of chitin film, those of the blend films containing 10–50 wt % chitin were significantly improved. This work provided a novel way to obtain directly chitin material blended in the aqueous solution. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 1679–1683, 2002  相似文献   

5.
Cellulose‐based fibers were prepared by electrospinning from cellulose dissolved in NaOH/urea in the presence of a small amount of polyol binders. The as‐spun products were examined with SEM. Pure cellulose solution did not produce fibrous materials, because it often formed spherical nanoparticles with diameters ranging from 100 to 300 nm. However, bicomponent fibrous materials were obtained successfully from mixtures of cellulose and HMPEG or PVA by electrospinning. The cellulose/HMPEG electrospun fibers had average diameters of 400 nm. The content of NaOH and urea as well as the stiffness of cellulose chains were found to have significant effect on the electrospinning process.

  相似文献   


6.
采用新型碱复合溶剂NaOH/硫脲/尿素水溶液作为溶剂溶解纤维素,对纤维素溶液的流变性能进行探索,从而为纤维素/NaOH/硫脲/尿素溶液纺丝提供理论依据。研究结果表明,纤维素溶液表现出非牛顿流体的性质,溶液的粘流活化能随纤维素质量分数以及剪切速率的不同而有所差异,纤维素溶液的结构黏度指数随着温度的升高、纤维素质量分数的增大而增大。5~25℃是所测的纤维素溶液纺丝的适宜温度范围,随着温度的升高,凝胶点开始出现,且凝胶点随着温度的升高向高频率的方向移动。随着纤维素质量分数的增大,纤维素溶液凝胶温度降低。  相似文献   

7.
Ang Lue  Lina Zhang  Antje Potthas 《Polymer》2011,52(17):3857-3864
In our previous study, the rapid dissolution of cellulose in alkali/urea aqueous solution at low temperature induced by a dynamic self-assembly process has been demonstrated [1]. The cellulose solution was meta-stable, and its stability could be influenced by system fluctuations (temperature, concentration or time). In the present work, cellulose dissolved in 4.6wt% LiOH/15.0wt% urea aqueous solution pre-cooled to −12 °C was studied by means of dynamic light scattering (DLS). The results revealed that cellulose existed as single inclusion complexes (ICs) associated with LiOH and urea hydrate which could surround the ICs at their surface. And the ICs were stiff, as revealed by results from transmission electron microscopy (TEM) and light scattering (LS). When there was a system fluctuation, the self-association of cellulose with each other took place, resulted from the destruction of the urea shell, and leading to the aggregation of the ICs. For that reason, the ICs stability could be evaluated by the aggregation behaviour. In our findings, the hydrodynamic radius (Rh,app) for the cellulose dispersion in dilute solution shifted to higher values with an increase of the temperature, the concentration or the storage time, indicating an IC aggregation phenomenon.  相似文献   

8.
All-cellulose composites (ACCs) were prepared by partially dissolving cellulose in the filter paper using NaOH/thiourea aqueous solution. The effects of dissolution time, thiourea ratio, and temperature on the properties of ACCs were investigated. ACCs were characterized by scanning electron microscope, attenuated total reflectance Fourier transform infrared spectroscopy, Raman spectroscopy, X-ray diffraction, and tensile tests. The results revealed that the fibers in ACCs were tightly intertwined. The crystalline form of cellulose in ACCs was transformed from type I to type I/II mixture, and the crystallinity decreased from 77.32 to 51.40%. The tensile strength of ACCs was remarkably improved to 23.16 MPa. The results confirmed ACCs had a high potential for practical applications in the packaging field.  相似文献   

9.
Blend membranes of chitin/cellulose from 12 : 50 to 12 : 250 were successfully prepared from cotton linters in 1.5M NaOH/0.65M thirourea solution system. Two coagulation systems were used to compare with each other, one coagulating by 5 wt % H2SO4 (system H), and the other by 5 wt % CaCl2 and then 5 wt % H2SO4 (system C). The morphology, crystallinity, thermal stabilities, and mechanical properties of the blend membranes were investigated by electron scanning microscopy, atomic absorption spectrophotometer, infrared spectroscope, elemental analysis, X‐ray diffraction, different scanning calorimeter, and tensile tests. The cellulose/chitin blends exhibited a certain level of miscibility in the weight ratios tested. There were great differences between the two blends H coagulated with H2SO4 and C coagulated with CaCl2 and H2SO4, respectively. The membranes H have a denser structure, higher thermal stability, tensile strength (σb), and crystallinity (χc), and values of σb (90 MPa for chitin/cellulose 12 : 150) were significantly superior to that of both chitin and regenerated cellulose membrane. However, the blend membranes C have much better breaking elongations (?) than that of membranes H, and relatively large pore size (2re = 210 μm), owing to the removal of a water‐soluble calcium complex of chitin as pore former from the membranes C. When the percentage content of chitin in the blends was from 5 to 7.5%, the values of breaking elongation for the blend membranes H and C all were higher than that of unblend membranes, respectively. The blends provide a promising way for application of chitin as a functional film or fiber in wet and dry states without derivates. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 2025–2032, 2002  相似文献   

10.
Regenerated cellulose was prepared from microcrystalline cellulose (MCC) via dissolution in three well‐known nonderivatizing systems: ferric chloride/sodium tartarate/sodium hydroxide (FeTNa), sodium hydroxide/thiourea (NaOH/thiourea), and N‐methylmorpholine‐N‐oxide (NMMO) systems. The effect of regeneration using the different systems on the supramolecular structure of the regenerated celluloses was studied using X‐ray diffraction and Fourier transform infrared (FTIR). The effect of regeneration on supermolecular structure, morphology, and thermal stability of regenerated celluloses were studied using scanning electron microscopy (SEM) and thermogravimetric analysis (TGA). The effect of regeneration systems used on the chemical reactivity of cellulose toward carboxymethylation, acetylation, and cyanoethylation reactions was briefly studied. The results showed dependence of all the aforementioned properties on the dissolution reagent used in spite of that all studied reagents cause the same change in cellulose crystalline structure (from cellulose I to cellulose II). The degree of polymerization, crystallinity, and thermal stability of the regenerated cellulose (RC) samples were in the following order: NaOH/thiourea RC > FeTNa RC > NMMO RC. SEM micrograph showed unique surface for the NMMO RC sample. The reactivity of the different regenerated cellulose samples toward carboxymethylation, cyanoethylation, and acetylation depended mainly on the reaction system and conditions used rather than on crystallinity of regenerated cellulose. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

11.
Cellulose membranes and cellulose/casein blend membranes were successfully prepared from a new solvent system (6 wt % NaOH/4 wt % urea aqueous solution) by coagulation with a sulfuric acid aqueous solution. The structures and properties of the membranes were characterized by Fourier transform infrared spectroscopy, scanning electron microscopy (SEM), wide-angle X-ray diffraction, differential scanning calorimetry, and a tensile test. The experimental results showed that the suitable coagulation condition was 5 wt % H2SO4 for 5 min. When the casein content of the mixture was less than 15 wt %, the blend membranes were miscible because of the interactions between the hydroxyl groups of cellulose and the peptide bonds of casein. The blend membranes with 10 wt % casein had good miscibility, higher crystallinity, and the highest mechanical properties and thermal stability. In this case, the tensile strength and breaking elongation of the blend membranes were 109 MPa and 16%, respectively, and its pore size, obtained by SEM, was 290 nm, which suggests that the blend membranes provide a potential application for the field of separation technology. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 81: 3260–3267, 2001  相似文献   

12.
Regenerated cellulose microspheres (RCM) with controllable sizes and architectures are prepared via electrospraying from environmental‐friendly NaOH/Urea aqueous system. The particle size and shape of RCM is mainly dependent on the interplay among the electrical force, surface tension, and viscous force. Particle size can be reduced to a certain extent by increasing voltage and decreasing surface tension, electrode spacing, solution concentration, degree of polymerization, and flow rate. The deformation of droplets, which is peculiarly prone to occur for low viscosity and long electrode spacing, results in elongated spheres, tear‐shaped particles, wedge‐shaped particles, and banding shaped particles besides micorspheres. The sophericity and uniformity of particles generally become worse as a result of the deformation of droplets. RCM possess good porosity and large specific surface area after regeneration. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40656.  相似文献   

13.
采用碱/尿素/水体系、碱/尿素/硫脲/水体系分别制备纤维素溶液,在溶解的不同阶段用超声波进行处理,并利用光学显微镜、偏光显微镜和X射线衍射对溶解效果进行表征。研究结果表明:溶解之前对纤维素原料的超声波处理主要是对纤维形态结构和超分子结构的破坏,略微增大溶解度;溶解过程中对纤维素溶液超声波处理则可以强化润胀,促进分散,显著增大纤维素的溶解度;在碱/尿素/水体系中超声波对溶解的促进作用强于在碱/尿素/硫脲,水体系中。  相似文献   

14.
NaOH/硫脲/尿素预处理对棉纤维TEMPO选择性氧化的影响   总被引:1,自引:0,他引:1  
采用NaOH/硫脲/尿素体系对棉纤维进行预处理,再进行选择性氧化,可以有效提高氧化棉纤维的羧基生成量。对比研究预处理棉纤维与普通棉纤维经2,2,6,6-四甲基哌啶氮氧自由基(TEMPO)选择性氧化后的羧基含量、纤维形态以及黏度。结果表明,经NaOH/硫脲/尿素体系预处理能够加快氧化反应速率,增加羧基生成量,但对纤维有一定的损伤。其中,羧基生成量随着纤维质量分数的增加呈先增加后减少的趋势,当纤维素质量分数为6%时,羧基生成量最大,棉纤维的可及度和反应性提高。纤维形态分析表明,经NaOH/硫脲/尿素体系预处理的棉纤维润胀溶解程度要大于未预处理的氧化棉纤维;在TEMPO的氧化条件下,氧化棉纤维的相对黏度随着纤维素质量分数增加而增加;当纤维素质量分数较高时,氧化过程中氧化棉纤维的羧基生成量和降解程度都近似于原纤维。  相似文献   

15.
Large amounts of textile waste are generated every year and disposed of through landfill or incineration, leading to numerous environmental and social issues. In this work, the dissolution of three typical waste cotton fabrics (t-shirts, bed sheets and jeans) in NaOH/urea aqueous solution, H2SO4 aqueous solution, and LiCl/DMAc solution was investigated. Compared to different types of cotton fabrics, the effects of three solvents on the dissolution of fabrics were more obvious, leading to the significant changes in the structure and properties of regenerated cellulose films. Cotton fabrics (about 2%–5%) were rapidly dissolved (8 min) in H2SO4 and NaOH/urea solvents after acid pretreatment, while the dissolution in LiCl/DMAc solvent did not need any pretreatment, but a lower cellulose concentration (1%), higher dissolution temperature (80°C), and longer dissolution time (24 h) were required. The films produced from bed sheets in NaOH/urea solution exhibited the highest tensile strength, thermal stability, and water vapor barrier property. It was because of the stronger cellulose chain entanglement and hydrogen bonds induced by the higher cellulose concentration in NaOH/urea solution. Therefore, this work proves the feasibility to recycle waste cotton fabrics into biodegradable cellulose films, which can be potentially used in various food and agricultural applications.  相似文献   

16.
Dissolution of starch in urea/NaOH aqueous solutions was studied by using polarizing microscope and viscometry. The experimental results revealed that starch could dissolve in urea (2–20 wt %) and NaOH (10–1 wt %) aqueous solutions at temperature ranging from ?12 to 25 °C, where the optimized dissolution condition was in the aqueous solution of mixed urea 14% and NaOH 4% at 0 °C for 30 min or above. Under the conditions, the starch solubility could be 99.0 and 92.1% as the starch weight percent was 1 and 10%, respectively. Measurements for the molecular weight and amylose content of the starch before and after the dissolution indicated that there was no serious degradation during the process. The results from determinations of X‐ray diffraction, Fourier transform infrared, and rapid visco analysis revealed that the recovered starch from the starch solutions was an amorphous solid with a part of V‐type pattern (single‐helix). The urea/NaOH aqueous solvent may have potential significance for starch processing and modification. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43390.  相似文献   

17.
Dong Ruan 《Polymer》2008,49(4):1027-1036
Cellulose was dissolved rapidly in 9.5 wt% NaOH/4.5 wt% thiourea aqueous solution pre-cooled to −5 °C, as a result of the formation of an inclusion complex (IC) associated with cellulose, NaOH and thiourea, which could bring cellulose to the aqueous system. To clarify the rheological behaviors of the system dissolved at low temperature, this cellulose solution was investigated by dynamic viscoelastic measurement. The shear storage modulus (G′) and loss modulus (G″) as a function of the angular frequency (ω), concentration (c), temperature (T) and weight-average molecular weight (Mw) were analyzed and discussed. The results revealed that gels could form in the cellulose solution at either high temperature or low temperature, or for longer time. Interestingly, 4 wt% cellulose solution having cellulose Mw of 12.0 × 104 remained at liquid state for longer time (12 days) at the temperature ranging from 0 to 5 °C. The gels already formed at elevated temperature were irreversible, i.e., after cooling to lower temperature including the temperature of cellulose dissolution (−5 °C), they could not be dissolved to become liquid. The Arrhenius analysis of the temperature dependence of viscosity in the cellulose solution indicated that a high apparent activation energy (Ea) occurred at 0 to −5 °C, suggesting the relatively stable IC structure. However, the viscosity of the cellulose solution increased slowly with an increase in the temperature at 0-40 °C, leading to the negative Ea values. The results suggested that the cellulose solution in NaOH/thiourea system is complex to differ from normal polymer systems.  相似文献   

18.
A series of amphoteric celluloses (QACMCs) were prepared from sodium carboxymethyl cellulose (CMC) and 2,3-epoxypropyltrimethylammonium chloride (EPTMAC) with a cationic degree of substitution (DScat) of 0.24–1.06 and a carboxymethyl degree of substitution (DSani) of 0.60. The structures of the samples were characterized by FTIR and NMR spectroscopy, which revealed that DScat depended on the ratio of EPTMAC to CMC in the reaction mixture and that the substituent distribution of the cationic group at the C2, C3, and C6 positions of the QACMCs ranked as follows: C2 > C6 > C3. The QACMCs dissolved over a wide range of pH levels and exhibited flocculation ability against kaolin suspensions. In particular, the samples with high DScat exhibited excellent flocculation performance. In addition, the flocculation characteristics of the QACMCs depended on the pH of the kaolin suspension.  相似文献   

19.
陈玉  危裕东 《应用化工》2014,(10):1863-1866
花生壳用5%的NaOH溶液改性作吸附剂处理亚甲基蓝染料废水,考察pH值、吸附剂投加量、染料浓度和温度及吸附时间对染料吸附性能的影响。结果表明,吸附最佳的工艺条件为:温度25℃,吸附剂投加量0.3 g,亚甲基蓝的初始浓度3.5 g/mL,反应时间135 min,pH值7。此时改性花生壳对亚甲基蓝的吸附率达99.57%。  相似文献   

20.
研究了不同配比下,2种型号的聚阴离子纤维素(PAC)与2种型号的羟丙基甲基纤维素(HPMC)复配水溶液的性质。结果表明,复配后溶液粘度表现出了协同增效作用。经过红外与紫外分析,以及PAC、黄原胶复配产生相反现象的比较分析,证明这种协同增效作用是由于在溶液中PAC与HPMC分子间形成氢键缔合的缘故。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号