共查询到20条相似文献,搜索用时 0 毫秒
1.
采用溶胶-凝胶法,以聚丙烯酸为络合剂制备纳米尺寸的锂离子电池LiNi1/3Co1/3Mn1/3O2正极材料。考察了聚丙烯酸与阳离子配比和烧结温度对产物LiNi1/3Co1/3Mn1/3O2结 构 与 电 化 学 性 能 的 影 响。结果表明,烧结温度700℃可制备出晶体发育完整、粒径80nm、分 布 均 匀 的α-NaFeO2层 状 结 构 的LiNi1/3Co1/3Mn1/3O2。当聚丙烯酸与金属阳离子摩尔比值为0.75,首次放电比容量达到169.2mAh/g,30次循环后容量保持率为89.3%。 相似文献
2.
运用"溶胶-喷雾干燥-煅烧"新技术合成了正极材料LiNi0.8Co0.1Mn0.1O2,采用XRD、SEM、电化学阻抗谱(EIS)及充放电测试研究了煅烧温度对所制材料结构和电性能的影响。结果表明,在750~850℃都可制备得到纯相LiNi0.8Co0.1Mn0.1O2。其中,800℃所合成样品具有适宜的晶粒大小、最佳的晶化程度和阳离子有序度,最小的电荷传递阻抗,最大的锂离子扩散系数和最佳的电化学表现。该样品0.2C首次放电容量达到189.1mAh·g-1,以5C循环的放电比容量仍可达到136mAh·g-1,第30周0.2C放电容量达初始容量的97.5%,显示出高容量、良好的倍率与循环性能。 相似文献
3.
4.
以共沉淀法、喷雾干燥法制备了三元正极材料LiNi_(1/3)Co_(1/3)Mn_(1/3)O_2,应用基于密度泛函理论的第一性原理计算方法,与实验制备的LiNi_(1/3)Co_(1/3)Mn_(1/3)O_2进行对比,对3种不同的预想结构模型(堆叠结构、随机排列结构、超晶格结构)进行研究。实验结果表明,两种方法制备的三元材料都具有良好的层状结构,其中共沉淀法制备的层状结构更加明显,而喷雾干燥法制备的材料中过渡金属元素比更接近LiNi_(1/3)Co_(1/3)Mn_(1/3)O_2的化学计量比。计算结果表明,随机排列的结构模型能量最低、最稳定,与实验制备的三元正极材料结构最为相似。 相似文献
5.
6.
高镍三元正极材料LiNi0.8Co0.1Mn0.1O2(NCM811)具有平台电位高、能量密度大、成本低等优点,在动力锂离子电池市场具有广阔的应用前景。然而,该材料存在阳离子混排、表面不稳定、热稳定性差等缺点,导致电池在使用过程中出现容量衰减快、循环性能差、安全性能低等问题,严重阻碍了其大规模应用综述了NCM811材料的结构特征、存在问题及改性研究进展,重点介绍了离子掺杂、表面包覆、结构设计等改性方法对其电化学性能的影响,并展望了其未来发展趋势和应用前景。 相似文献
7.
以氢氧化钠为沉淀剂,采用共沉淀法合成了Ni1/3Co1/3Mn1/3(OH)2前驱体,前驱体和LiOH·H2O充分混合高温烧结制备了锂离子电池正极材料LiNi1/3Co1/3Mn1/3O2.采用X射线衍射(XRD)、扫描电子显微镜(SEM)和电化学性能测试对LiNi1/3Co1/3Mn1/3O2正极材料的结构、微观形貌及电化学性能进行了表征.XRD结果表明,所合成的LiNi1/3Co1/3Mn1/3O2物相单一无杂相,具有标准的α-NaFeO2型层状结构.SEM测试显示,颗粒粒度均一,粒径大约在0.5μm,粒径分布窄.以20mA/g电流密度放电,充放电电压在2.8~4.4 V之间,首次放电比容量达到181mAh/g,80次循环之后放电比容量仍然保持在172mAh/g;循环伏安测试显示,LiNi1/3Co1/3Mn1/3O2反应中主要是Ni2 /Ni4 、Co3 /Co4 2个电对在起作用,锰的价态保持不变,起到支撑结构的作用. 相似文献
8.
通过改变煅烧过程中的气氛条件,以简单的固相法合成工艺获得了优异性能的LiNi0.8Co0.1Mn0.1O2(NCM811)材料,并探究了不同O2流量对样品的结构和电化学性能的影响。结果表明,当O2流量为0.1 L/min时,所合成的LiNi0.8Co0.1Mn0.1O2样品具有最低的阳离子混乱程度和较大的晶面间距。该样品在1 C、4.3 V下循环100次后的放电容量为174 mA·h·g?1,容量保持率高达98.3%;在更高的2 C倍率下循环100次后的保持率也达96.8%,并在高截止电压条件下表现良好。从实验结果还可得出,过低的O2流量不利于Ni2+转化为Ni3+,从而造成较高的阳离子混排度,而过高的O2流量则会使所合成LiNi0.8Co0.1Mn0.1O2材料的晶胞体积减小,不利于Li+的脱嵌。 相似文献
9.
10.
采用共沉淀-高温固相烧结法,控制合成条件,以不同的沉淀剂(Na2CO3、NaOH)制备出正极材料。通过XRD、SEM及电池测试系统对不同沉淀剂制备的正极材料进行结构、形貌和电化学性能的表征,对比两者存在的优缺点。研究结果表明,以NaOH为沉淀剂制备的正极材料有更好的层状结构,形貌也更好,充放电性能和倍率性能也较好。其首次放电比容量达到了187.9mAh/g,最高可达196.2mAh/g,50次充放电循环后,容量保持率为81.6%;以Na2CO3为沉淀剂制备的正极材料的放电比容量较低,但容量保持率较高,为85.3%。 相似文献
11.
锂离子电池正极材料LiNi1/3Co1/3Mn1/3O2的合成及性能 总被引:1,自引:0,他引:1
采用氢氧化物共沉淀法合成了LiNi1/3Co1/3Mn1/3(OH)2前驱体,然后以Ni1/3Co1/3Mn1/3(OH)2和LiOH·H2O为原料,合成出了层状锂离子电池正极材料LiNi1/3Co1/3Mn1/3O2.通过XRD、SEM和电化学测试对LiNi1/3-Co1/3Mn1/3O2材料的结构、形貌及电化学性能进行了测试和表征.结果表明,800℃烧结12h所合成的样品粒度大小分布比较均匀,该材料以0.2C充放电,其首次放电容量为150mAh·g-1,循环30次后容量为137mAh·g-1. 相似文献
12.
利用球型Ni(OH)2、纳米Co3O4和Al(NO3)3,低温预烧结,固相合成高性能LiNi0.80Co0.15Al0.05O2正极材料.通过XRD,SEM对样品进行结构和形貌研究,采用TG对样品进行热分析,结果显示在空气气氛下,该固相合成的LiNi0.80Co0.15Al0.05O2材料具有良好的层状结构,反映层状结构的006/012和018/110两组峰分裂明显.CV测试结果显示,样品具有良好的氧化还原性.将样品制备成扣式电池进行充放电测试,540℃预烧结12 h,720℃烧结26 h样品表现出最佳电化学性.0.2 C倍率下,首次放电容量达到184.5 mAh/g,首次库伦效率为86.6%,测试结果高于传统固相法;1 C倍率充放电,首次放电容量为159.9 mAh/g,50次循环后容量保持率达到96%,样品具有良好的循环性能. 相似文献
13.
14.
以Ni(CH3COO)2·4H2O和Mn(CH3COO)2·4H2O为原料,分别在400、500℃分解3、7h得到镍锰复合氧化物前驱体,再与锂源Li2CO3混匀,在800℃煅烧12h,600℃退火24h得到LiNi0.5Mn1.5O4正极材料。XRD、SEM、EIS和恒流充放电测试结果表明,在400℃、7h制备的前驱体与Li2CO3合成的LiNi0.5Mn1.5O4性能最佳。室温下以0.1C倍率充放电,首次放电比容量达到141.5mAh/g,循环30次后容量保持率为98.55%;以1C倍率充放电,首次放电比容量为120.34mAh/g,循环30次后放电比容量为112.09mAh/g。 相似文献
15.
以聚偏氟乙烯-六氟丙烯(Poly(vinylidene fluoride-hexafluoropropylene),PVDF-HFP)为聚合物基体,新戊二醇二丙烯酸酯(Neopentyl glycol diacrylate,NPGDA)为交联剂,在引发剂偶氮二异丁腈(2,2′-Azobis(2-methylpropionitrile),AIBN)的作用下通过室温现场聚合法制备凝胶电解质用于锂离子电池。探索不同质量比PVDF-HFP/NPGDA对凝胶电解质性能和LiNi_(0.5)-Co_(0.2)Mn_(0.3)O_2三元正极锂离子电池性能的影响。结果表明,当质量比为1∶1时,凝胶电解质具有较高的离子电导率,为8.45mS·cm~(-1),锂离子迁移数为0.78,电化学窗口为4.5V。在电流密度30mA·g~(-1)恒流充放电,首次放电比容量为143mAh·g~(-1),循环50次后仍高达135.3mAh·g~(-1)。电流密度为300mA·g~(-1)时,放电比容量为100.2mAh·g~(-1)。 相似文献
16.
采用共沉淀法制备粒径10 μm左右的前驱体Ni0.8Co0.15Al0.05(CO3)x(OH)y,然后采用该前驱体和LiOH·H2O成功制备了锂离子电池正极材料LiNi0.8Co0.15Al0.05O2(LiNCA),并详细研究了煅烧氛围、煅烧温度和煅烧方式等条件对LiNCA电化学性能的影响。研究表明,在O2中煅烧获得的LiNCA放电容量达到170 mAh·g-1,50次循环后容量保持率达到95%,性能明显优于空气氛围中煅烧得到的LiNCA。在O2氛围下,700~750℃温度范围煅烧得到的LiNCA性能最好,煅烧温度过高或过低,LiNCA性能均明显下降。将前驱体在O2氛围中450℃条件预煅烧,然后与LiOH·H2O在700~750℃混合煅烧的煅烧方式,得到的LiNCA放电容量明显提高,可达190 mAh·g-1。 相似文献
17.
以Ni(NO3)2·6H2O,Co(NO3)2·6H2O,Mn(CH3COO)2·4H2O,LiOH·H2O为原料,采用NaOH-Na2CO3共沉淀的方法,在空气中合成了三元层状锂离子电池正极材料LiNi1/3Co1/3Mn1/3O2.采用XRD研究了所合成材料的结构.考查了不同烧结温度对材料电化学性能的影响.结果表明,所合成的材料具有典型的α-NaFeO2层状结构特征,900℃下合成的材料具有最优的循环性能,初始放电容量为169.4mAh/g,初次库仑效率为83.2%,且20次循环后,容量保持率达到96.3%. 相似文献
18.
锂离子电池正极材料LiNi1/3Co1/3Mn1/3O2的制备与表征 总被引:1,自引:0,他引:1
以乙酸锂、硝酸镍、硝酸钴和乙酸锰为原料,通过高温固相法,分别采用一次烧结和二次烧结合成了LiNi1/3Co1/3Mn1/3O2。采用X射线衍射、扫描电镜分析以及电化学测试等手段对LiNi1/3Co1/3Mn1/3O2的微观结构、表面形貌和电化学性能进行了研究。结果表明,高温固相法能得到结晶良好的LiNi1/3Co1/3Mn1/3O2,但二次烧结提高了材料的I(003)/I(104)值,降低了c/a值,得到的LiNi1/3Co1/3Mn1/3O2具有更完善的层状结构和更优良的电化学性能。 相似文献
19.
以Li(CH3COO).2H2O、Ni(CH3COO)2.4H2O、Mn(CH3COO)2.4H2O和H2C2O4.2H2O为原料,聚乙二醇20000为分散剂,采用化学合成法制备了具有立方尖晶石结构的锂离子电池正极材料LiNi0.5Mn1.5O4。通过XRD、SEM和充放电测试对样品进行表征。850℃下焙烧制备的LiNi0.5Mn1.5O4样品电化学性能最佳,在3.5~4.9V电压范围内以0.2、0.5、1、2和5C充放电,其首次放电比容量分别为132.9、117.3、111.2、104.8和91mAh/g,20次循环后容量保持率分别为93.2%、98.9%、97.4%、97.3%和95.5%。 相似文献
20.
为改善LiNi0.5Co0.2Mn0.3O2(NCM)锂离子电池三元正极材料的电化学性能,采用液相蒸发法将WO3包覆于NCM表面,得到NCM@WO3复合正极材料。通过XRD、SEM和TEM对NCM@WO3复合材料的结构和形貌进行表征,利用充放电测试、循环伏安及交流阻抗测试对其电化学性能进行表征。结果表明,当WO3包覆量为3wt%时,NCM@WO3复合材料性能最佳,在0.5 C下的首次放电比容量为179.9 mA·hg-1,不可逆容量损失降低至42.4 mA·hg-1,循环50圈后容量保持率为98.3%。WO3的包覆提高了锂离子扩散速率,减少了电极材料与电解液的副反应,NCM@WO3复合材料的电化学性能得到提升。 相似文献