首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
利用机械合金化和放电等离子烧结技术制备了Mn2-xFexP1-yGey(x=0.8、0.9,y=0.2、0.24、0.26)磁制冷材料。采用XRD、中子衍射及SEM分析手段,系统研究了该系列材料的成相与球磨时间、烧结温度、烧结压力和保温时间的关系。分析了烧结样品的相结构和显微组织,发现随着烧结温度的升高杂质相逐渐减少,形成了稳定的该系列磁制冷材料的制备工艺。对不同组份Mn2-xFexP1-yGey合金的相变过程和磁热性能进行了分析,其中Mn1.2Fe0.8P0.74Ge0.26的居里温度为277.4K接近于室温区间,滞后为3K、熵变为21.5J/(kg8 136A6 3 1K),是一种较理想的磁制冷工质材料。  相似文献   

2.
采用机械合金化结合放电等离子体烧结技术,成功制备了Mn1.2Fe0.8P0.75Ge0.25室温磁制冷材料。采用XRD、VSM对烧结样品晶体结构和磁热效应(MCE)进行了研究。结果表明该化合物具有六方Fe2P型晶体结构,其热滞为4K,居里温度为292K,并且在居里点附近有较大的磁熵变,当外加磁场为1.5T时,最大磁熵变达到18.0J/(kg.K),绝热温变达到2.7K。  相似文献   

3.
利用机械合金化(mechanical alloying,简称MA)和放电等离子烧结技术(spark plasma sintering,简称SPS技术)制备了Mn1.1Fe0.9P0.8Ge0.2室温磁致冷材料。利用XRD和SEM分析了烧结样品的相结构和显微组织.发现材料在合金化之后形成了单相结构,并在SPS烧结后保持不变。此外DSC的测量结果表明所制备烧结样品的居里温度瓦在-11℃附近,可应用于室温区磁制冷。上述结果说明利用MA和SPS技术合成Mn1.1Fe0.9P0.8Ge0.2是一种简易、有效的新途径。  相似文献   

4.
采用固相合成法高温烧结Mn3SnC和Mn3CuN两种化合物制备出相变温区连续变化的Mn3Sn1-xCuxC1-cNx系列化合物,再将不同相变温区的Mn3Sn1-xCuxC1-xNx化合物进行物理混合制备出反钙钛矿复合磁制冷材料.这种磁制冷材料在室温附近具有"平台"状的磁熵变-温度曲线,与Mn3SnC单体材料相比其磁制冷...  相似文献   

5.
以高纯钆和Gd5Si2Ge2合金为原料,采用放电等离子烧结技术制备了两组元Gdx(Gd5Si2Ge2)1-x(x=0,0.33,0.5,0.7,1)层状复合磁制冷材料.通过自制的磁热效应测量仪器直接测量了复合材料在外加磁场1.5 T下的磁热效应(ΔTad).随着复合比例的变化,材料的最大绝热温变(ΔTad)从x=0.3时的1.6 K增加到x=0.7时的2.0 K,而最大绝热温变峰的位置从286K变到了293 K.同时,与单组元的Gd5Si2Ge2合金相比,随着钆的含量增加时,复合材料的最大绝热温变峰变宽.当x=0.7时,层状复合磁制冷材料在外加磁场1.5 T下的最大绝热温变(ΔT)在260-310K范围里从1.1 K变到2.0 K,这种材料非常适合作为室温磁制冷材料.  相似文献   

6.
制备了Fe2-xCoxZr(x=0.8,0.9和1.0)系列材料并研究了材料的磁热性能,通过X射线衍射分析确定了材料为MgCu2结构的Laves相,空间群为Fd-3mS。通过GSAS精修确定了材料的晶格常数,发现材料的晶格常数随Co元素含量增加而线性减小。通过麦克斯韦方程计算了材料的磁熵变,磁熵变最大值随Co元素含量的增加而下降。通过Co元素含量的调控可以实现材料居里温度在236~320K之间进行调节。研究发现Fe2-xCoxZr材料相变类型均为二级磁相变。Fe1.2Co0.8Zr材料在0~3T磁场下磁熵变的最大值为0.27J/kg/K。Fe2-xCoxZr材料具有居里温度可调和制冷区间较大的特点,为具有较大应用潜力的无稀土磁致冷剂。  相似文献   

7.
采用传统的固相反应法制备DyMn_(1-x)Fe_xO_3多晶样品,通过测量了样品的磁化强度与温度的变化关系曲线(M-T)、磁化强度与温度的变化关系曲线(M-H)和电阻率与温度的变化曲线(ρ-T),对各组分下样品的磁性和电性进行了研究。研究结果表明,在低温区x=0和x=0.025样品表现为反铁磁态,而x=0.075样品在低温区ZFC曲线与FC曲线出现分叉,表现为铁磁反铁磁共存。分别在57,137和157 K以下观察到类Griffiths相,T_G温度以上样品都表现为顺磁特性。在外加磁场为7 T时磁熵变达到最大值,最大值分别为10,12,9 J/(kg·K)。最大制冷能力为320 J/kg(x=0.025)。综合磁熵变最大值及制冷能力数值来看,该材料可以作为磁制冷候选材料。通过对ρ-T曲线及ρ-T曲线的拟合曲线研究发现,系列样品均为半导体且加磁场后的电阻率高于零场下的电阻率,说明在低温处磁场有不利于电传导。系列样品在高温部分的导电方式均遵循小极化子的导电方式。  相似文献   

8.
La(Fe,Si)_(13)氢化物被认为是最具有应用前景的室温磁制冷工质之一,主动磁蓄冷样机上使用的理想磁制冷工质通常要求为片状块体。本工作在高达40 MPa的高压氢气气氛下烧结制备了片状La_(0.9)Ce_(0.1)Fe_(11.7-x)Mn_xSi_(1.3)(x=0,0.29,0.35,0.41)氢化物块体。X射线衍射分析表明,片状氢化物由具有立方NaZn13结构的La(Fe,Si)13相及少量α-Fe相构成,其晶格常数比母合金明显增加。Mn的掺杂有利于抑制烧结过程中α-Fe的析出,并且使样品的居里温度降低至室温附近。在0~2T的外磁场下,片状La_(0.9)Ce_(0.1)Fe_(11.35)Mn_(0.35)Si_(1.3)氢化物块体的磁熵变ΔSm在289K时达到最大值4.3J/(kg·K)。  相似文献   

9.
用溶胶-凝胶法制备了不同空位掺杂的系列样品La_(0.7-x)Ca_(0.28)Sr_(0.02)MnO_3,研究了La~(3+)空位浓度对样品居里温度和磁热效应的影响。结果表明,在La位掺入少量空位(x0.06),可以实现将样品的居里温度有效调整至室温,同时也促进了样品磁熵变的提高。当La空位掺杂x=0.06时,与未空位掺杂样品相比,居里温度由227 K提高到264 K,近室温,其磁熵变值为3.01 J·kg-1·K-1(外加磁场1 T)。该系列样品在室温附近,较低磁场下,有较强的磁制冷能力。  相似文献   

10.
采用氧化物固相法制备Mn2.25-xNi0.75CoxO4(0.8≤x≤1.2)系列NTC(negative temperature coefficient)热敏电阻粉体材料.利用激光粒度分析、XRD、SEM和电性能测试等手段,表征了煅烧材料的颗粒尺寸、陶瓷体的物相、形貌以及陶瓷材料的电学特性与Co含量的关系.结果表明:在1130~1230℃烧结温度范围内,该材料体系的B值和电阻率ρ25℃随Co含量的变化范围分别为3487~4455 K和1998~203617.cm,B值和电阻率随Co含量的增加先增大后减小.该材料系列电阻率和B值调整范围较大,是一种具有实际应用价值的NTC热敏电阻.  相似文献   

11.
通过真空电弧熔炼的方法制备了Gd_(1-x)Ho_xCo_2(x=0,0.2,0.4,0.6)系列化合物,利用XRD、SEM、VSM等分析设备对其结构及其磁性能进行了研究。结果表明,Gd_(1-x)H_xCo_2系列化合物保持纯MgCu_2类型的Laves相结构,并存在在少量的GdCo_3相。该系列化合物的居里温度随着Ho含量的增加从399 K降低到了236K,降低幅度达到了67%,但在5T外场下磁熵变从3.3J/(kg·K)增加到了4.0J/(kg·K),变化幅度不大,说明Ho元素的替代在不改变磁熵变大小的同时可以有效地调节居里温度。另外还发现该化合物在5T外场下的制冷量随着Ho含量的增加从158.3J/kg增加到了254.6J/kg,增加了60.8%。也讨论了晶体结构和磁性能之间的变化规律,为进一步调节磁性能奠定基础,使得这类材料在宽温区范围内的实际应用更有竞争力。  相似文献   

12.
Co0.8Mn0.8Ni0.9Fe0.5O4 纳米粉体的制备及热敏特性研究   总被引:1,自引:0,他引:1  
采用共沉淀法,以NH4HCO3为沉淀剂制备了Co0.8Mn0.8Ni0.9Fe0.5O4负温度系数(NTC)热敏电阻纳米粉体材料,研究了不同预烧温度对材料相结构的影响,探讨了不同烧结工艺对NTC热敏电阻材料微观结构和热敏性能的影响. 采用X射线衍射(XRD)、综合热分析(TG/DTA)、红外(FT-IR)、扫描电子显微技术(SEM)和激光粒度分析仪对制备的样品进行了表征. 结果表明,750℃预烧后的粉体为纯尖晶石相,晶粒粒度为32.1nm,颗粒粒径在50~100nm范围内. 通过对不同烧结程序的对比研究发现,当烧结程序为:840℃、1200℃各保温2h,升降温速率为1℃/min时,样品电学性能较好:ρ25℃=1183Ω*cm,B25/50=3034K. 分析表明,该烧结程序能有效改善热敏电阻材料的微观结构和热敏性能. 根据ln ρ-1/T曲线斜率计算了经不同工艺烧结后热敏电阻材料的激活能在0.26eV左右.  相似文献   

13.
(1-x)CaTiO3-xLi1/2Sm1/2TiO3陶瓷的微波介电性能研究   总被引:4,自引:1,他引:4  
采用固相法制备了(1-x)CaTiO3-x(Li1/2Sm1/2)TiO3系列微波介质陶瓷材料,研究了该体系的相组成、烧结性能和微波介电性能之间的关系.结果表明:在x=0.1~0.9mol范围内,(1-x)CaTiO3-x(Li1/2Sm1/2)TiO3体系均形成了单一的斜方钙钛矿结构;x=0.1~0.5和x=0.6~0.9组分的最佳烧结温度分别为1250和1300°C;介电常数εr、无载品质因数与谐振频率乘积Qf值、谐振频率温度系数Tf均随着x的增大而减小.当x=0.7时, 1300°C下保温5h烧结得到的材料的微波介电性能为: εr=116.5,Qf=3254GHz,Tf=42.43 ×106/°C.  相似文献   

14.
采用微波烧结制备(1-x)Ca0.61La0.26TiO3-xLa(Mg0.5Ti0.5)O3[x=0.35~0.60,(1-x)CLT-xLMT]微波介质陶瓷,研究烧结工艺和成分配比对其物相组成、显微结构和微波介电性能的影响.结果表明,与常规烧结相比,(1-x)CLT-xLMT陶瓷的微波烧结温度低100℃,烧结时间缩...  相似文献   

15.
用溶胶-凝胶法制备系列样品La0.8-xNdxNa0.2MnO3(x=0.00,0.05,0.10,0.15和0.20)钙钛矿锰氧化物.研究温度范围在240~340 K、外磁场0~1T下该系列样品的居里温度和磁熵变.发现样品的居里温度TC随x增加而减小,而且x=0.20、温度为295K时,最大磁熵变△SM为1.68 J/kg·K.实验结果表明钙钛矿锰氧化物La0.8-xNdxNa0.2MnO3有可能作为室温下的磁致冷材料的候选者.  相似文献   

16.
磁制冷是一种利用材料的磁热效应进行制冷的新型制冷技术,相比于传统气体压缩制冷,因其绿色环保、高效节能等优点而备受关注。在众多磁相变合金材料中,人们对Mn_2Sb基亚铁磁相变合金研究甚少。文章研究了Cr取代Mn后亚铁磁性Mn_(2-x)Cr_xSb_(0.95)In_(0.05)(x=0.05,0.09,0.13)合金的磁性和磁热性能。室温XRD数据表明合金在室温附近以四角Cu_2Sb型结构为主相。由于反铁磁中有高磁响应,因此从XRD图谱中能观察到少量的铁磁MnSb杂相。随着温度的降低,在这些合金中,发生了亚铁磁到反铁磁的一级磁致弹性转变。同时,在亚铁磁区域观察到两个自旋重新取向转变。由于反铁磁-亚铁磁的转变过程中磁化强度突变,使得在Mn_(1.91)Cr_(0.09)Sb_(0.95)In_(0.05)合金中在0~10 k Oe的磁场变化中获得高达1.63 J/kg·K的大磁熵变。目前的研究可能有助于研究和开发新的磁性冷材料。  相似文献   

17.
本实验研究了(1-x)(Mg0.7Zn0.3)TiO3-x(Ca0.61La0.26)TiO3(MZT-CLT)系陶瓷的微观结构和微波介电性能,通过(Ca0.61La0.26)TiO3来协调(Mg0.7Zn0.3)TiO3陶瓷的谐振频率温度系数.MZT-CLT陶瓷的主晶相为(Mg0.7Zn0.3)TiO3,第二相为Ca0.61La0.26TiO3和(Mg0.7Zn0.3)Ti2O5.烧结温度和陶瓷组成对微波介电性能影响显著,当烧结温度为1275℃时,可以获得良好的致密度,当烧结温度超过1300℃时,Zn的蒸发导致陶瓷致密度和介电性能下降.随着(Ca0.61La0.26)TiO3含量的增大,材料的介电常数增大,品质因数减小.当x=0.13,烧结温度为1275℃保温4h,(MZT-CLT)陶瓷具有优良微波介电性能,εr=26,Q.f=86000 GHz,τf=-6×10-6/℃.  相似文献   

18.
研究了Mn替代Fe对多晶Tb0.4Dy0.6Fe1.91合金棒材性能的影响.分析了Tb0.4Dy0.6(Fe1-xMnx)1.91(x=0,0.05,0.10,0.15)多晶棒材的结构、晶格常数、居里温度和磁致伸缩性能,发现Mn替代Fe后,样品仍然为MgCu2型Laves相结构.随着Mn含量从0增加到0.15,样品的晶格常数从7.335A增加到7.347A,居里温度从668K降低到526K.Mn原子的替代通过改变材料的交换相互作用、总磁矩和易磁化方向影响材料的磁致伸缩性能.实验结果显示,Tb0.4Dy0.6(Fe1-xMnx)1.91样品在石=0.10时综合性能最好.  相似文献   

19.
洪兴张洪平  赵栋梁 《功能材料》2007,38(A03):1124-1126
研究了Mn元素掺杂及热处理工艺对超磁致伸缩材料Tb0.5Dy0.5(Fe1-x)1.91(x=0~0.15)合金温度性能的影响,实验结果表明Mn掺杂对该材料居里温度影响较大,随Mn掺杂量的增加居里温度降低:在无预压应力时,Mn掺杂提高了合金的低温、低场磁致伸缩应变性能;热处理工艺对进一步提高磁致伸缩性能无明显作用。  相似文献   

20.
室温磁制冷技术是环保、高效的新型制冷技术,它在家电、工业、军事领域都有广阔的应用前景。其中磁工质是室温磁制冷技术的关键。概述了磁制冷的原理,详细介绍了GdM、La(Fe,Si)13、MnFe(PxAs1-x)、Mn3XC(N)、Heusler合金磁工质现阶段的发展状况及存在的不足,并展望了磁制冷材料的发展前景。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号