首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Olivine-type LiFePO4/C composite cathode materials were synthesized by a solid-state reaction method in an inert atmosphere. The glucose was added as conductive precursors before the formation of the crystalline phase. The effects of glucose content on the properties of as-synthesized cathode materials were investigated. The crystal structure and the electrochemical performance were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), laser particle-size distribution measurement and electrochemical performance testing. The material has a single crystal olivine structure with grain-sizes ca. 100-200 nm. SEM micrographs and the corresponding energy dispersive spectrometer (EDS) data confirm that the carbon particulates produced by glucose pyrogenation are uniformly dispersed among the LiFePO4 grains, ensuring a good electronic contact. Impedance spectroscopy was used to investigate the ohmic and kinetic contributions to the cell performance. It is found that increasing the carbon content leads to a reduction of the cell impedance due to the reduction of the charge transfer resistance. The galvanostatically charge and discharge tests show that the material obtained by adding 10% C (by mass) gives a maximum discharge capacity of 140.8mA·h·g^-1 at the same rate (C/10). The material also displays a more stable cycle-life than the others.  相似文献   

2.
Electrochemical treatment of distillery spent wash was carried out using different combinations of aluminum and iron electrodes in batch mode of operation.The spent wash was characterized for various parameters as per standard method of analysis and the treatment results were analyzed in terms of chemical oxygen demand(COD) removal efficiency of the spent wash.The experiments were performed to study the effect of operating parameters such as current density,pH of the spent wash,agitation speed,electrolysis time and the distance between the electrodes on the COD removal efficiency of the spent wash.It was observed that aluminum electrodes were more suitable for treatment of distillery spent wash as compared to iron electrodes.The maximum COD removal efficiency of 81.3% was obtained with Al-Al electrodes at the current density of 0.187 A·cm-2 and pH 3 for an electrolysis time of 2 h.  相似文献   

3.
In this work,La2NiO4+δ-Ce0.55La0.45O2?δ(denoted as LNO-xLDC)with various LDC contents(x=0,10,20,30,and 40 wt%)were prepared and evaluated as bifunctional oxygen electrodes for reversible solid oxide cells(RSOCs).Compared with the pure LNO,the optimum composition of LNO-30LDC exhibited the lowest polarization resistance(Rp)of 0.53 and 0.12Ω·cm2in air at 650 and 750℃,respectively.The enhanced electrochemical performance of LNO-30LDC oxygen electrode was mainly attributed to the extended triple phase boundary and more oxygen ionic transfer channels.The hydrogen electrode supported single cell with LNO-30LDC oxygen electrode displayed peak power densities of 276,401,and 521 mW·cm?2at 700,750,and 800℃,respectively.Moreover,the electrolysis current density of the single cell demonstrated 526.39 mA·cm?2 under 1.5 V at 800℃,and the corresponding hydrogen production rate was 220.03 mL·cm?2·h?1.The encouraging results indicated that LNO-30LDC was a promising bifunctional oxygen electrode material for RSOCs.  相似文献   

4.
The purpose of this paper was to investigate the possibility of treating C. I. Reactive Blue 19 wastewater by electrochemical oxidation via electrogenerated active chlorine, using metallic oxide coatings (dimensional stable anode, DSA) as anode. The electrolysis for the simulated wastewater was conducted at a constant current. Absorbances at 592 nm and 255 nm were measured to follow the decolorization of the dye and the degradatin of its aromatic ring. After 4 h of electrolysis under the experimental conditions: current density of 15 A·m^-2, 0.2 mol·L^-1 NaCl, 0.1 mol·L^-1 Na2SO4, 0.1 mmol·L^-1 dye, initial pH=6.4 and T=30℃, 100% decolorization of the dye and about 45% degradation of its aromatic ring were achieved, while no obvious change of total organic carbon was observed. The experimental results suggest that the decolorization of the dye and degradation of its aromatic ring were directly affected by current density, temperature, concentrations of the dye and sodium chloride, while slightly affected by initial pH and sodium sulfate concentration; the decolorization of the dye and degradation of its aromatic ring followed pseudo-first-order kinetics; and indirect electrooxidation, using electrogenerated active chlorine, predominated in the electrochemical oxidation.  相似文献   

5.
A new nanometer material, nanometer AlO(OH) loaded on the fiberglass with activated carbon fibers felt(ACF) as the carrier, was prepared by hydrolytic reaction for the removal of Cd(II) from aqueous solution using column adsorption experiment. As was confirmed by XRD determination, the hydrolysis production loaded on fiberglass was similar to the orthorhombic phase AlO(OH). SEM images showed that AlO(OH) particles were in the form of small aggregated clusters. The Thomas model was applied for estimating the kinetic parameters and the saturated adsorption ability of Cd(II) adsorption on the new adsorbent. The results showed that the maximum adsorption capacity of Cd(II) was 128.50 mg·g^-1 and 117.86 mg·g^-1 for the adsorbent mass of 0.3289 g and the adsorbent mass of 0.2867 g, respectively. The elution experiment result indicated that the adsorbed Cd ions was easily desorbed from the material with 0.1 mol·L^-1 HCl solution. Adsorption-desorption cycles showed the feasibility of repealed uses of the composited material. The adsorption capacities were influenced by pH and the initial Cd(II) concentration. The amount adsorbed was greatest at pH 6.5 and the initial Cd(II) concentration of 0.07 mg·L^-1, respectively. Nanometer AlO(OH) played a major role in the adsorption process, whereas the fiberglass and ACF were assistants in the process of removing Cd(II). In addition, the adsorption capacities for Cd(II) were obviously reduced from 128.50 mg·L^-1 to 64.28 mg·L^-1 when Pb ions were present because Pb ions took up more adsorption sites.  相似文献   

6.
In this article, the electrochemical performance of the electrodes of zinc polycrystal, Zn(002) and Zn(100) single crystals were studied by the Tafel line extrapolation of the potentio-dynamic polarization curves, the cyclic voltammetry and the charge/discharge experiment. The results shows that in 6.0 mol·L^-1 KOH solution the corrosion rate of Zn polycrystal, Zn(100) and Zn(002) single crystals decreases in turn; and the reversibility and the charge/discharge performance of Zn single crystal was superior to Zn polycrystal. The dendrite growth of the surface of Zn polycrvstal was easier than Zn single crystal during the stages of charge/discharge.  相似文献   

7.
PTFE-F-PbO2 电极在H2SO4溶液中的析氧行为   总被引:1,自引:0,他引:1  
F-PbO2 electrode and polytetrafluoroethylene (PTFE) doped F-PbO2 electrode (PTFE-F-PbO2) were prepared on a plexiglas sheet substrate by a series of procedure including chemical and electrochemical depositions. The electrochemical activities of these two electrodes for oxygen evolution (OE) reaction were examined by electrochemical tests. In comparison with F-PbO2, PTFE-F-PbO2 electrode exhibited larger active surface area and higher oxygen vacancy deficiency, which resulted in its higher electrocatalytic activity for OE. In addition, both exchange current density and activation energy of the electrodes for OE were calculated in terms of active surface area. The values of exchange current density and activation energy in 0.5 mol·L^-1 H2SO4 aqueous solution were 1.125×10^ -3 mA·cm^-2 and 18.62 kJ·mol^-1 for PTFE-F-PbO2, and 8.384×10^-4 mA·cm^- 2 and 28.98 kJ·mol^-1 for F-PbO2, respectively. Because these values are calculated on the basis of the active surface areas of the electrodes, the enhanced activity of PTFE-F-PbO2 can be attributed to an increase in oxygen vacancy deficiency of PbO2 due to doping by PTFE. The influence of PTFE adulteration on the activity of PbO2 film electrode for OE was investigated in detail in this study.  相似文献   

8.
The suspension polymerization with two organic phases was adopted to prepare spherical hyper- crosslinked resin by self-polycondensation of 4,4'-bis-(chloromethyl)- 1, 1'-biphenyl (CMB). The chemical structure,morphology and pore characteristics of the novel spherical resin were characterized with Fourier transform infrared spectroscopy (FTIR), micrograph and Brunauer-Emmett-Teller (BET). It is found that the suspension system and stirring speed impose a great influence upon the regularity and size distribution of hypercrosslinked beads. To prepare CMB resin beads with diameter of about 300 μm, the optimal condition is as follows: stirring speed 300 r·min^-1, and the volume ratio of the two organic phases (nitrobenzene/dimethyl silicon oil) 1 : 5. After the self-polycondensation and sqccedent post-crosslinking of CMB monomer, the spherical adsorbent presents high spec~al surface area (1190 m^2· g^-1) and abundant pore~volume (0.714 cm^3· g^-1), and could be potentially applied qn the adsorption of various organic molecules and synthesis of porous ion exchanger.  相似文献   

9.
Lewis acidic 1-allyl-3-methylimidazolium chloroaluminate ionic liquids were used as promising elec-trolytes in the low-temperature electrodeposition of aluminium.Systematic studies on deposition process have been performed by cyclic voltammetry and chronoamperometry.The surface morphology and X-ray diffraction(XRD) patterns of deposits prepared at different experimental conditions were also investigated.It was shown that the nu-cleation density and growth rate of crystallites had a great effect on the structure of aluminium deposited.The crys-tallographic orientation of deposits was mainly influenced by temperature and current density.Smooth,dense and well adherent aluminium coatings were obtained on copper substrates at 10-25 mA?cm?2 and 313.2-353.2 K.More-over,the current efficiency of deposition and purity of aluminium have been significantly improved,demonstrating that the ionic liquids tested have a prospectful potential in electroplating and electrorefining of aluminium.  相似文献   

10.
Cylindrical nickel metal hydride (Ni-MH) battery with high specific volume capacity was prepared by using the oxyhydroxide Ni(OH)2 and AB5 type hydrogen storage alloy and adjusting the designing parameters of positive and negative electrodes. The oxyhydroxide Ni(OH)2 was synthesized by oxidizing spherical β-Ni(OH)2 with chemical method. The X-ray diffraction (XRD) patterns and the Fourier transform infrared (PT-IR) spectra indicated that 7-NiOOH was formed on the oxyhydroxide Ni(OH)2 powders, and some H2O molecules were inserted into their crystal lattice spacing. The battery capacity could not be improved when the oxyhydroxide Ni(OH)2 sample was directly used as the positive active materials. However, based on the conductance and residual capacity of the oxyhydroxide Ni(OH)2 powders, AA size Ni-MH battery with 2560 mA.h capacity and 407 W·h·L^-1 specific volume energy at 0.2C was obtained by using the commercial spherical β-Ni(OH)2 and AB5-type hydrogen-storage alloy powders as the active materials when 10% mass amount of the oxyhydroxide Ni(OH)2 with 2.50 valence was added to the positive active materials and subsequently the battery designing parameters were adjusted as well. The as-prepared battery showed 70% initial capacity after 80 cycles at 0.5C. The possibility for adjusting the capacity ratio of positive and negative electrodes from 1 : 1.35 to 1 : 1.22 was demonstrated preliminarily. It is considered the as-prepared battery can meet the requirement of some special portable electrical instruments.  相似文献   

11.
采用湿球研磨-喷雾干燥法合成了纳米石墨包覆的球形LiFePO_4材料。该材料呈现了大小较为均匀的球形颗粒,颗粒度较小。性能测试表明该材料具有优异的电化学性能,最佳样品C在0.1 C时的放电比容量为160.9 m A·h·g~(-1),在高倍率5 C下的比容量仍为120.5 m A·h·g~(-1),显示了良好的比容量维持率。该法制备细小而致密的球形颗粒,并通过纳米石墨包覆增强导电性,大大提高了LiFePO_4材料的电化学性能,此方法简便、高效,有工业化应用的前景。  相似文献   

12.
In this work, SiO_2 nanoplates with opened macroporous structure on carbon layer(C-mSiO_2) have been obtained by dissolving and subsequent regrowing the outer solid SiO_2 layer of the aerosol-based C-SiO_2 double-shell hollow spheres. Subsequently, triple-shell C-mSiO_2-C hollow spheres were successfully prepared after coating the Cm SiO_2 templates by the carbon layer from the carbonization of sucrose. When being applied as the anode material for lithium-ion batteries, the C-mSiO_2-C triple-shell hollow spheres deliver a high capacity of 501 mA ·h·g~(-1) after100 cycles at 500 m A·g~(-1)(based on the total mass of silica and the two carbon shells), which is higher than those of C-mSiO-12(391 m A·h·g~(-1)) spheres with an outer porous SiO_2 layer, C-SiO_2-C(370 m A·h·g) hollow spheres with a middle solid SiO_2 layer, and C-SiO_2(319.8 m A·h·g~(-1)) spheres with an outer solid SiO_2 layer. In addition,the battery still delivers a high capacity of 403 m A·h·g~(-1) at a current density of 1000 m A·g~(-1) after 400 cycles.The good electrochemical performance can be attributed to the high surface area(246.7 m~2·g~(-1)) and pore volume(0.441 cm~3·g~(-1)) of the anode materials, as well as the unique structure of the outer and inner carbon layer which not only enhances electrical conductivity, structural stability, but buffers volume change of the intermediate SiO_2 layer during repeated charge–discharge processes. Furthermore, the SiO_2 nanoplates with opened macroporous structure facilitate the electrolyte transport and electrochemical reaction.  相似文献   

13.
以MnSO4、Bi(NO3)3为原料,在碱性条件下与NaClO反应,制备了掺杂Bi(V)的MnO2电极材料,实验比较了NaClO、Bi(NO3)3、NaOH浓度,反应时间等条件改变对电极材料充放电性能的影响。实验表明,掺杂了Bi(V)的MnO2试样,经恒电流充放电测试其充放电容量可达272 mAh.g-1,远高于未掺杂的MnO2电极材料,且二次放电容量仍可达一次容量的93%。表明在本实验条件下制备的掺杂少量Bi(V)的MnO2电极材料,放电容量明显提高,且循环性能也有一定的改善。  相似文献   

14.
以固相法制备出了磷酸亚铁锂-磷酸钒锂复合正极材料.采用X-射线衍射仪(XRD)、电子扫面电镜(SEM)、激光粒度分析仪、碳硫分析仪以及X-光电子能谱仪等对制备出的复合材料进行表征,发现该材料以磷酸亚铁锂和磷酸钒锂的晶形结构为主,其中有少量的杂质成分;该材料颗粒粒度较细、粒度分布窄且均匀,颗粒表面光滑、碳包裹状况良好,同其它方法制备的复合材料比较在碳含量差不多的情况下具有较优的导电率.对材料进行了电化学性能表征认为该材料的电化学性能比较优异,0.1C放电容量达到190 mA·h·g-1以上,10C可以达到120 mA·h·g-1,20C放电容量仍有85 mA·h·g-1且循环稳定性均较好;1C进行1000次循环之后仍然保持120 mA·h·g-1的容量,具有较高的实用价值.  相似文献   

15.
王捷  李圆  赵海雷 《化工学报》2020,71(4):1844-1850
通过软模板法(表面活性剂十六烷基三甲基溴化铵,CTAB)结合后续空气气氛热处理制备出纳米颗粒组装三维Co3O4微米花负极材料。研究中采用X射线衍射分析(XRD)、场发射扫描电子显微镜(FESEM)、循环伏安测试(CV)、恒流充放电测试以及交流阻抗测试(EIS)对合成样品进行表征分析。研究结果显示,Co3O4微米花材料独特的结构优势赋予其优良的电化学性能,在100 mA·g-1电流密度下电极具备约920 mA·h·g-1的循环可逆比容量;在500 mA·g-1电流密度下循环200次后的循环可逆比容量为757 mA·h·g-1,容量几乎无衰减。大电流循环性能测试显示,所制备电极即使在2 A·g-1电流密度下依旧具有476 mA·h·g-1的循环可逆比容量。简易、有效且低成本化的高性能微米花结构过渡金属氧化物负极材料制备工艺将大大加速转换型电极材料的实际有效应用。  相似文献   

16.
以尿素为沉淀剂,以乙二醇为溶剂,通过溶剂热法制备出多级前躯体Ni0.8Mn0.1Co0.1CO3,通过焙烧该前躯体和LiOH·H2O的混合物制备出高比容量的锂离子正极材料LiNi0.8Mn0.1Co0.1O2。采用XRD、FESEM及恒流充放电测试对材料的结构、形貌和电化学进行表征,结果表明,合成的产物形貌均一,有高结晶度。在0.1 C倍率下,放电比容量为194.6 mAh g-1;当放电倍率提高到2.0 C时,该材料仍然具有78.4mAhg-1的放电比容量,并且该材料在各个倍率下具有良好的稳定性。在1.0 C的放电倍率下,经过50次循环,放电容量保持率为92.5%。  相似文献   

17.
采用二次水热法将纳米二硫化钴负载于石墨烯上,并通过结构表征和电化学性能测试,探讨了纳米二硫化钴/石墨烯材料作为锂离子电池负极的性能。电容量测试结果表明:在电流密度为100 mA/g条件下,二硫化钴/石墨烯复合材料的首周充放电容量分别为1 610 mA·h/g和774 mA·h/g,测算出的库伦效率为48.1%;循环性能测试结果表明:经过50次循环测算后的复合材料的放电比容量为302 mA·h/g,容量保持率为33.4%;倍率性能测试结果表明:当电流密度回复到100 mA/g时,复合材料的比容量恢复至550 mA·h/g。实验制备的纳米二硫化钴/石墨烯复合材料在锂电池负极的应用上表现出了优异的循环性能和倍率性能。  相似文献   

18.
Phosphate material LiMnPO_4 is popular for its high energy density(697 W·h·kg~(-1)) and safety. When LiMnPO_4 crystal grows, the potential barrier along b and c axis is strong, which makes the crystal grow along b axis to form a one-dimensional chain structure. However, the main migration channel of lithium ions in olivine structure is plane(0 1 0). By shortening the growth in the direction of b axis and enhancing the diffusion along the directions of a and c, two-dimensional nanosheets that are more conducive to the migration of lithium ions are formed. The dosage of polyols is the key factor guiding the dispersion of the crystals to the(0 1 0) plane. X-ray diffraction(XRD), Scanning electron microscopy(SEM), transmission electron microscopy(TEM) and other means are used to characterize the samples. After experiments, we found that when the ratio of polyol/water was 2:1, the morphology of the synthesized sample was 20–30 nm thick nanosheets, which had the best electrochemical performance. At 0.1 C, the discharge specific capacity reaches 148.9 m A·h·g~(-1), still reaches 144.3 mA·h·g~(-1) at the 50 th cycle. and there is still 112.5 m A·h·g~(-1) under high rate(5C). This is thanks to the good dispersion of the material in the direction of the crystal plane(0 1 0). This can solve the problem of low conductivity and ionic mobility of phosphate materials.  相似文献   

19.
α-MnO2纳米线的制备及其电化学性能研究   总被引:1,自引:0,他引:1  
以KMnO4为锰源,采用水热反应在HCl溶液中制备α-MnO2纳米线.探讨了水热反应温度、水热反应时间等对α-MnO2纳米线合成的影响,对制备产物进行了XRD和SEM分析,并初步探索了α-MnO2的电化学性质.结果表明:最佳水热反应时间为24 h、最佳水热反应温度为240℃;α-MnO2纳米线具有良好的电容性能,在1....  相似文献   

20.
用微乳液法制备了纳米聚苯胺,并将其与活性炭混合制备聚苯胺/活性炭电极。用透射电镜对聚苯胺的形貌进行了表征,用循环伏安法及恒流充放电法对所制电极的电化学性能进行了研究。结果表明:纳米球形聚苯胺的粒径在30~40nm之间,所制得的电极比容为610.3F·g-1(0.5mol/LH2SO4),显著高于纯活性炭电极的比容171.2F·g-1;在5mA·cm-2的充放电电流密度下,充放电1000次后比容为首次放电比容的71.3%;这表明纳米聚苯胺的加入能显著提高电极的电化学性能。用此组装的非对称型超级电容器的性能也优于用纯活性炭组装的对称型超级电容器,表明纳米聚苯胺是一种性能优异的超级电容器电极材料。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号