首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 15 毫秒
1.
This paper presents two hybrid genetic algorithms (HGAs) to optimize the component placement operation for the collect-and-place machines in printed circuit board (PCB) assembly. The component placement problem is to optimize (i) the assignment of components to a movable revolver head or assembly tour, (ii) the sequence of component placements on a stationary PCB in each tour, and (iii) the arrangement of component types to stationary feeders simultaneously. The objective of the problem is to minimize the total traveling time spent by the revolver head for assembling all components on the PCB. The major difference between the HGAs is that the initial solutions are generated randomly in HGA1. The Clarke and Wright saving method, the nearest neighbor heuristic, and the neighborhood frequency heuristic are incorporated into HGA2 for the initialization procedure. A computational study is carried out to compare the algorithms with different population sizes. It is proved that the performance of HGA2 is superior to HGA1 in terms of the total assembly time.  相似文献   

2.
The particle swarm optimization (PSO) approach has been successfully applied in continuous problems in practice. However, its application on the combinatorial search space is relatively new. The component assignment/sequencing problem in printed circuit board (PCB) has been verified as NP-hard (non-deterministic polynomial time). This paper presents an adaptive particle swarm optimization (APSO) approach to optimize the sequence of component placements on a PCB and the assignment of component types to feeders simultaneously for a pick-and-place machine with multiple heads. The objective of the problem is to minimize the total traveling distance (the traveling time) and the total change time of head nozzle. The APSO proposed in the paper incorporates three heuristics, namely, head assignment algorithm, reel grouping optimization and adaptive particle swarm optimization. Compared with the results obtained by other research, the performance of APSO is not worse than the performance of genetic algorithms (GA) in terms of the distance traveled by the placement head.  相似文献   

3.
Lee CH 《ISA transactions》2004,43(4):539-547
This paper investigates the design of low order robust controllers based on an H performance index using a real-code genetic algorithm. In H controller design, the major disadvantage of the existing methods is that they lead to high-order controllers. This is the gap between theory and practice. Therefore the purpose of this paper is to design a low order controller with similar performance to the H optimal controllers, which can find sufficiently wide use in engineering practice. We first design the H optimal controller using Glover and Doyle's results, and obtain the corresponding performance index γ Second, the desired low order controller with several parameters is chosen, e.g., a first-order controller, or a PID controller. Finally, we use the real-code genetic algorithm to find the optimal controller parameters that preserve the performance index γ Computational simulations illustrate the effectiveness of the proposed approach.  相似文献   

4.
A hybrid genetic algorithm approach to mixed-model assembly line balancing   总被引:2,自引:1,他引:2  
Assembly line balancing has been a focus of interest to academics in operation management for the last four decades. Mass production has saved huge costs for manufacturers in various industries for some time. With the growing trend of greater product variability and shorter life cycles, traditional mass production is being replaced in assembly lines. The current market is intensely competitive and consumer-centric. Mixed-model assembly lines are increasing in many industrial environments. This study deals with mixed-model assembly line balancing for n models, and uses a classical genetic algorithm approach to minimize the number of workstations. We also incorporated a hybrid genetic algorithm approach that used the solution from the modified ranked positional method for the initial solution to reduce the search space within the global space, thereby reducing search time. Several examples illustrate the approach. The software used for programming is C++ language .  相似文献   

5.
This paper presents the application of genetic algorithms to the performance optimization of asynchronous automatic assembly systems (AAS). These stochastic systems are subject to blocking and starvation effects that make complete analytic performance modeling difficult. Therefore, this paper extends genetic algorithms to stochastic systems. The performance of the genetic algorithm is measured through comparison with the results of stochastic quasi-gradient (SQM) methods to the same AAS. The genetic algorithm performs reasonably well in obtaining good solutions (as compared with results of SQM) in this stochastic optimization example, even though genetic algorithms were designed for application to deterministic systems. However, the genetic algorithm's performance does not appear to be superior to SQM.  相似文献   

6.
Model Predictive Control is a valuable tool for the process control engineer in a wide variety of applications. Because of this the structure of an MPC can vary dramatically from application to application. There have been a number of works dedicated to MPC tuning for specific cases. Since MPCs can differ significantly, this means that these tuning methods become inapplicable and a trial and error tuning approach must be used. This can be quite time consuming and can result in non-optimum tuning. In an attempt to resolve this, a generalized automated tuning algorithm for MPCs was developed. This approach is numerically based and combines a genetic algorithm with multi-objective fuzzy decision-making. The key advantages to this approach are that genetic algorithms are not problem specific and only need to be adapted to account for the number and ranges of tuning parameters for a given MPC. As well, multi-objective fuzzy decision-making can handle qualitative statements of what optimum control is, in addition to being able to use multiple inputs to determine tuning parameters that best match the desired results. This is particularly useful for multi-input, multi-output (MIMO) cases where the definition of "optimum" control is subject to the opinion of the control engineer tuning the system. A case study will be presented in order to illustrate the use of the tuning algorithm. This will include how different definitions of "optimum" control can arise, and how they are accounted for in the multi-objective decision making algorithm. The resulting tuning parameters from each of the definition sets will be compared, and in doing so show that the tuning parameters vary in order to meet each definition of optimum control, thus showing the generalized automated tuning algorithm approach for tuning MPCs is feasible.  相似文献   

7.
This paper proposes an integrated intelligent system that builds a fault diagnosis inference model based on the advantage of rough set theory and genetic algorithms (GAs). Rough set theory is a novel data mining approach that deals with vagueness and can be used to find hidden patterns in data sets. Based on this approach, minimal condition variable subsets and induction rules are established and illustrated using an application for motherboard electromagnetic interference (EMI) test fault diagnosis. This integrated system successfully integrated the rough set theory for handling uncertainty with a robust search engine, GA. The result shows that the proposed method can reduce the number of conditional attributes used in motherboard EMI fault diagnosis and maintain acceptable classification accuracy. The average diagnostic accuracy of 80% shows that this hybrid model is a promising approach to EMI diagnostic support systems .  相似文献   

8.
To produce an electronic product, both assembly operations and machining operations are required in the process plan. In most cases, the assembly operations and machining operations need to be combined in a continued order with an integrated sequence. This is different from the traditional process planning approaches in which machining operations and assembly operations are separated as two independent tasks with no interactions. For an electronic product, the two types of operations and the associated costs may affect each other in an interactive way. Therefore, the sequence planning of assembly operations and machining operations must be analyzed with an integrated model. In this research, a graph-based model is presented to represent the assembly and machining operations in an integrated model. The related operation cost functions are developed to evaluate the costs for the integrated assembly and machining sequences. The integrated sequence planning problem is solved using a genetic algorithm approach with an objective of lowest operation costs. As a result, the assembly operations and machining operations can be planned in an integrated sequence suitable for producing electronic products. The result shows that the developed method using the genetic algorithm approach is efficient for solving the integrated sequence planning problem. Example products are demonstrated and discussed.  相似文献   

9.
Optimization of cutting parameters is valuable in terms of providing high precision and efficient machining. Optimization of machining parameters for milling is an important step to minimize the machining time and cutting force, increase productivity and tool life and obtain better surface finish. In this work a mathematical model has been developed based on both the material behavior and the machine dynamics to determine cutting force for milling operations. The system used for optimization is based on powerful artificial intelligence called genetic algorithms (GA). The machining time is considered as the objective function and constraints are tool life, limits of feed rate, depth of cut, cutting speed, surface roughness, cutting force and amplitude of vibrations while maintaining a constant material removal rate. The result of the work shows how a complex optimization problem is handled by a genetic algorithm and converges very quickly. Experimental end milling tests have been performed on mild steel to measure surface roughness, cutting force using milling tool dynamometer and vibration using a FFT (fast Fourier transform) analyzer for the optimized cutting parameters in a Universal milling machine using an HSS cutter. From the estimated surface roughness value of 0.71 μm, the optimal cutting parameters that have given a maximum material removal rate of 6.0×103 mm3/min with less amplitude of vibration at the work piece support 1.66 μm maximum displacement. The good agreement between the GA cutting forces and measured cutting forces clearly demonstrates the accuracy and effectiveness of the model presented and program developed. The obtained results indicate that the optimized parameters are capable of machining the work piece more efficiently with better surface finish.  相似文献   

10.
以带有控制器的Petri网为建模工具对柔性生产调度中的离散事件建模,利用遗传算法和模拟退火算法获得调度结果,并通过Petri网进行控制.用于解决作业车间的加工受到机床、操作工人等生产资源制约条件下的优化调度.以生产周期为目标进行的优化调度,将遗传算法和模拟退火相结合.通过多种交叉、变异、概率更新选择、再分配策略等遗传和模拟操作,得到目标的最优或次优解.对算法进行了仿真研究,仿真结果表明该算法是有效性.  相似文献   

11.
This paper considers a single batch machine dynamic scheduling problem, which is readily found in the burn-in operation of semiconductor manufacturing. The batch machine can process several jobs as a batch simultaneously, within the capacity limit of the machine, and the processing time is represented by the longest processing time among all jobs in a batch. For a single batch machine problem with arbitrary job release time, we proposed an improved algorithm (merge-split procedure) to refine the solution obtained by the LPT-BFF heuristic, and two versions of a hybrid genetic algorithm (GA) are introduced in this paper. Each version of the hybrid GA diversifies job sequences using the GA operators in stage 1, forms batches in stage 2, and finally sequence the batches in stage 3. The difference is that merge-split procedures are involved in the second version of the hybrid GA. Computational experiments showed that the hybrid GA would obtain satisfactory average solution quality and the merge-split procedures would be good at reinforcing the solution consistency of the hybrid GA.  相似文献   

12.
In this paper the problem of permutation flow shop scheduling with the objectives of minimizing the makespan and total flow time of jobs is considered. A Pareto-ranking based multi-objective genetic algorithm, called a Pareto genetic algorithm (GA) with an archive of non-dominated solutions subjected to a local search (PGA-ALS) is proposed. The proposed algorithm makes use of the principle of non-dominated sorting, coupled with the use of a metric for crowding distance being used as a secondary criterion. This approach is intended to alleviate the problem of genetic drift in GA methodology. In addition, the proposed genetic algorithm maintains an archive of non-dominated solutions that are being updated and improved through the implementation of local search techniques at the end of every generation. A relative evaluation of the proposed genetic algorithm and the existing best multi-objective algorithms for flow shop scheduling is carried by considering the benchmark flow shop scheduling problems. The non-dominated sets obtained from each of the existing algorithms and the proposed PGA-ALS algorithm are compared, and subsequently combined to obtain a net non-dominated front. It is found that most of the solutions in the net non-dominated front are yielded by the proposed PGA-ALS.  相似文献   

13.
E-commerce, as an emerging marketing mode, has attracted more and more attention and gradually changed the way of our life. However, the existing layout of distribution centers can't fulfill the storage and picking demands of e-commerce sufficiently. In this paper, a modified miniload automated storage/retrieval system is designed to fit these new characteristics of e-commerce in logistics. Meanwhile, a matching problem, concerning with the improvement of picking efficiency in new system, is studied in this paper. The problem is how to reduce the travelling distance of totes between aisles and picking stations. A multi-stage heuristic algorithm is proposed based on statement and model of this problem. The main idea of this algorithm is, with some heuristic strategies based on similarity coefficients, minimizing the transportations of items which can not arrive in the destination picking stations just through direct conveyors. The experimental results based on the cases generated by computers show that the average reduced rate of indirect transport times can reach 14.36% with the application of multi-stage heuristic algorithm. For the cases from a real e-commerce distribution center, the order processing time can be reduced from 11.20 h to 10.06 h with the help of the modified system and the proposed algorithm. In summary, this research proposed a modified system and a multi-stage heuristic algorithm that can reduce the travelling distance of totes effectively and improve the whole performance of e-commerce distribution center.  相似文献   

14.
In this paper, we consider the problem of extended permutation flowshop scheduling with the intermediate buffers. The Kanban flowshop problem considered involves dual-blocking by both part type and queue size acting on machines, as well as on material handling. The objectives considered in this study include the minimization of mean completion time of containers, mean completion time of part types, and the standard deviation of mean completion time of part types. An attempt is made to solve the multi-objective problem by using a proposed genetic algorithm, called the “non-dominated and normalized distance-ranked sorting multi-objective genetic algorithm” (NDSMGA). In order to evaluate the NDSMGA, we have made use of randomly generated flowshop scheduling problems with input and output buffer constraints in the flowshop. The non-dominated solutions for these problems are obtained from each of the existing methods, namely multi-objective genetic local search (MOGLS), elitist non-dominated sorting genetic algorithm (ENGA), gradual priority weighting genetic algorithm (GPWGA), modified MOGLS, and the NDSMGA. These non-dominated solutions are combined to obtain a net non-dominated solution set for a given problem. Contribution in terms of number of solutions to the net non-dominated solution set from each of these algorithms is tabulated, and the results reveal that a substantial number of non-dominated solutions are contributed by the NDSMGA.  相似文献   

15.
In this paper, we consider the problem of extended permutation flowshop scheduling with the intermediate buffers. The Kanban flowshop problem considered involves dual-blocking by both part type and queue size acting on machines, as well as on material handling. The objectives considered in this study include the minimization of mean completion time of containers, mean completion time of part types, and the standard deviation of mean completion time of part types. An attempt is made to solve the multi-objective problem by using a proposed genetic algorithm, called the “non-dominated and normalized distanceranked sorting multi-objective genetic algorithm” (NDSMGA). In order to evaluate the NDSMGA, we have made use of randomly generated flowshop scheduling problems with input and output buffer constraints in the flowshop. The non-dominated solutions for these problems are obtained from each of the existing methods, namely multi-objective genetic local search (MOGLS), elitist non-dominated sorting genetic algorithm (ENGA), gradual priority weighting genetic algorithm (GPWGA), modified MOGLS, and the NDSMGA. These non-dominated solutions are combined to obtain a net non-dominated solution set for a given problem. Contribution in terms of number of solutions to the net non-dominated solution set from each of these algorithms is tabulated, and the results reveal that a substantial number of non-dominated solutions are contributed by the NDSMGA.  相似文献   

16.
De-manufacturing (DM) is a process to separate a product into components and materials that will be maintained, replaced, reused, or recycled. Disassembling a selected set of parts in a product, defined as selective-disassembly, is an essential need in product DM. Although it is necessary to have an efficient and optimized sequence planning for selective-disassembly to reduce DM-related cost, it is more important to consider de-manufacturability for product life cycle cost at the early stage of a product development. However, the product analysis related to DM is generally regarded as a post-process in product development. Current product development environments require all industry in a supply chain to concurrently develop their specialized components corresponding to the end item requirement within a short time frame. Therefore, it is an emerging issue to add global concurrent de-manufacturability analysis into product development environments. An efficient sequence planning approach and a supporting tool are highly demanded. This paper presents a hybrid approach to selective-disassembly sequence planning for DM, which is based on both topological disassemblability and tool accessibility. In addition, a Web-based application on a three-tier Internet environment is implemented for the global concurrent de-manufacturability analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号