首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
为解决参数不确定性四轮独立驱动电动汽车发生执行器及传感器故障时车辆侧向稳定性控制问题,提出一种H鲁棒容错控制方法。运用故障矩阵函数引入车辆连续性故障,建立了考虑执行器及传感器故障的二自由度车辆参数不确定性动力学模型。运用线性矩阵不等式求解方法设计车辆侧向稳定性H鲁棒容错控制器,保证车辆动力学系统渐近稳定性及抗干扰能力,实现控制系统H鲁棒性能满足给定的干扰衰减指标。搭建CarSim与MATLAB/Simulink联合仿真实验平台,验证控制器的有效性。仿真实验表明,所设计H鲁棒容错控制器能有效提升了车辆的侧向稳定性及安全性,对车辆故障具有良好的容错控制能力。  相似文献   

2.
针对分布式驱动电动汽车动力学模型参数非线性扰动影响转矩控制的问题,提出一种新的转矩自适应分层控制方法。建立四轮独立驱动电动汽车二自由度车辆动力学模型及车辆期望动力学模型,设计线性二次型最优控制器实现车辆对理想二自由度模型横摆稳定性参数的跟踪控制,计算出主动附加横摆控制力矩。针对车辆动力学模型参数扰动情况,基于李雅普诺夫稳定性理论,运用自适应控制算法提升线性二次型最优控制器的自适应能力,减小控制对象参数变动造成的控制偏差。搭建CarSim与MATLAB/Simulink联合仿真平台验证了该方法的有效性。仿真实验表明,所设计自适应抗扰转矩控制器可有效提升四轮独立驱动电动汽车的横摆稳定性。  相似文献   

3.
基于线性变参数建模的汽车横摆力矩增益调度控制   总被引:1,自引:0,他引:1  
提出一种基于线性变参数(Linear parameter-varying,LPV)方法的汽车横摆力矩鲁棒增益调度控制方案.建立横摆力矩误差动态模型,选择路面附着系数和汽车纵向速度为调度变量,将误差动态模型转化为关于路面附着系数和汽车纵向速度及其组合的LPV模型,将鲁棒增益调度横摆力矩控制器的设计转化为对多胞模型16个顶点的线性H( 控制器设计.通过求解17个线性矩阵不等式可以求得共同的Lyapunov矩阵,在保证系统二次稳定性和二次H( 性能指标的前提下对每一个顶点离线设计了H( 控制器,在线根据工况加权各顶点控制器获得该工况下的全局控制器.8自由度模型的非线性仿真表明基于LPV的鲁棒增益调度控制器比单一的H( 控制器对工况变化具有更强的适应性.  相似文献   

4.
研究了当车速以及轮胎刚度变化时的分布式驱动电动汽车的操控稳定性问题.针对时变的纵向速度,建立了以车速为调度变量的线性变参数(LPV)模型并设计了鲁棒增益调度控制器以保证车辆的性能.考虑到轮胎的非线性,提出了 一种模糊融合策略,利用估计的车辆滑移角对控制器的输出进行加权,以使其更好地适应轮胎的变化并能够实时调整其控制变量...  相似文献   

5.
针对四轮独立驱动电动汽车转向控制效果与所搭建车辆动力学模型参数紧密相关的问题,提出一种车辆动力学模型参数自校正转向控制系统设计方法。采用递推最小二乘法对车辆动力学模型关键参数进行实时辨识,有效地解决了车辆动力模型参数时变及非线性扰动影响的问题。设计加权最小方差自校正车辆转向控制器,实现对车辆转向横摆稳定性进行实时优化的目标。通过建立加权最小方差控制目标函数,计算出优化横向稳定性所需附加横摆力矩,并实时修正车辆四轮独立驱动转矩,有效提升了四轮独立驱动电动汽车转向工况操纵稳定性。搭建CarSim与Matlab/Simulink联合仿真平台,对所设计自校正四轮转向控制系统进行仿真分析验证。仿真结果表明,该加权最小方差自校正转向控制器能有效提升四轮独立驱动电动汽车的行驶稳定性。  相似文献   

6.
针对四轮毂电机独立驱动汽车各轮力矩解耦可控的特点,分析车辆转向受力对四轮独立驱动电动汽车行驶稳定性的影响,提出四轮独立驱动电动汽车转向稳定性控制策略,为四轮独立驱动电动汽车四轮转矩协调控制,提升整车行驶稳定性提供了思路.基于模型跟踪控制的思想,采用分层控制思想设计控制器,控制器包含参考模型、顶层控制器、底层控制分配器.采用带质心侧偏角约束的2自由度车辆模型作为参考模型,设计出一种新的非线性联合滑模变结构主动控制的顶层控制器,该方法可以在一定程度上实现车辆横摆角速度和质心侧偏角的解耦控制,避免了横摆角速度和质心侧偏角的较大变化,从而保证汽车稳定性.在底层控制分配器中,采用基于轮胎稳定裕度最大化的最优分配方法.在Carsim软件中,搭建四轮轮毂电机独立驱动电动汽车模型,在Simulink软件中搭建控制策略模型.针对双移线工况,Carsim/Simulink联合仿真的结果表明,滑模变结构控制器具有较好的收敛性,控制分配模块可以实现四轮力矩的优化分配,能够提升车辆在极限工况下的稳定性.研究将为轮毂电机驱动车辆分布式协调控制提供理论支撑.  相似文献   

7.
四轮轮毂电机驱动电动汽车各轮驱动力矩独立可控,可通过控制前轴左右两轮的力矩差实现前轮转向。以四轮轮毂电机驱动智能电动汽车为研究对象,针对线控转向系统执行机构失效时的轨迹跟踪和横摆稳定性协同控制问题,提出一种基于差动转向与直接横摆力矩协同的容错控制方法。该方法采用分层控制架构,上层控制器首先基于时变线性模型预测控制方法求解期望前轮转角和附加横摆力矩,然后考虑转向执行机构建模不确定性以及路面干扰,设计基于滑模变结构控制的前轮转角跟踪控制策略。下层控制器以轮胎负荷率最小化为目标,利用有效集法实现四轮转矩优化分配。最后,分别在高速换道和双移线工况下仿真验证了该控制方法的有效性和实时性。  相似文献   

8.
针对四轮独立驱动电动汽车驱动系统故障的危险工况,给出一种基于车载传感器信号和无迹卡尔曼滤波器的故障诊断方法。进而,针对在车辆驱动系统部分电机故障情况下,在低附着系数路面上横摆稳定控制中,仍采用跟踪期望横摆率和侧向速度的横摆控制方法会导致车辆失稳的问题,设计出一种基于障碍李雅普诺夫函数的容错控制方法,该方法通过选取障碍李雅普诺夫函数约束车辆横摆率和侧向速度,以解决现有通过跟踪横摆率和侧向速度的横摆容错控制方法仍存在失稳风险的问题。给出的故障诊断和容错控制方法,能够实时诊断车辆驱动系统电机故障,通过车轮转矩的重新分配,可使车辆较快回到稳定状态,提高汽车行驶稳定性。通过不同车轮电机故障工况的仿真,验证了所提出故障诊断与容错控制方法的有效性。  相似文献   

9.
以提高轮毂电机驱动电动汽车转向稳定性为目的 ,针对传统PID算法扰动抑制能力不足,利用神经网络提高基于PID的横摆力矩和滑移率控制系统的稳定性,并针对神经网络收敛速度慢、易陷入局部最优解的问题,提出利用粒子群算法对控制器参数进行优化并对权值进行改进的神经网络PID方法.以四轮轮毂电机独立驱动电动汽车为研究对象,以跟踪期望的横摆角速度为控制目标,基于Carsim/Simuink联合仿真平台,对建立的四轮独立驱动电动汽车横向运动学模型及提出的控制策略进行不同工况下的对比验证,结果表明提出的控制方法优化了传统PID控制算法,振动频率幅值小、能更好地逼近理想值,可改善车辆转向性能、提高稳定性以避免事故的发生.  相似文献   

10.
四轮独立驱动电动汽车被认为是目前最有发展前景的电动汽车驱动方案之一.由于采用轮毂电机独立驱动,提高系统的可操作性,使得轮胎产生的能量消耗可以独立控制,为汽车节能控制提供了发展潜力.而精确的四轮独立驱动电动汽车轮胎纵、横向滑移能耗模型是实现节能控制的关键与理论基础.针对轮胎纵、横向滑移能耗模型的研究有待进一步深入,针对四轮独立驱动电动汽车的能耗仿真建模的研究也需要进一步完善.针对四轮独立驱动电动汽车轮胎的纵、横向能耗特性,分析其能耗机理,搭建轮胎纵、横向能耗模型;基于滑移能耗模型与电动汽车能耗特性,得到改进的整车能耗模型;在Carsim/Simulink联合仿真环境中,搭建四轮独立驱动电动汽车整车模型与能耗模型,为四轮独立驱动电动汽车能耗研究提供精确可靠的仿真平台;不同工况下的仿真结果证明了考虑横向滑移能耗进行能量优化控制的必要性.  相似文献   

11.
针对具有强非线性特性的航空发动机控制问题,提出将基于保护映射理论的控制方法用于航空发动机控制系统设计中。首先,基于某型涡扇发动机非线性模型建立线性变参数LPV(linear parameter varying)模型。然后,采用基于保护映射理论的控制方法设计调度参数变化范围内的增益调度控制器,在设计过程中,只需通过任意给定的初始控制器参数就可以自动得到满足性能要求的控制器参数集合,避免了在多个平衡点进行控制器设计。最后,以非线性模型为被控对象,在飞行包线内的不同工作点进行仿真验证,结果表明,基于保护映射理论的控制方法在解决航空发动机控制系统的非线性问题时具有显著的效果。  相似文献   

12.
针对传感器及执行器故障对EPS助力性能的影响,提出一种EPS主动容错控制方法。建立含参数不确定性、传感器与执行器故障的EPS系统模型,将系统不确定性转化为故障估计误差系统的扰动,基于未知输入观测器及线性矩阵不等式推导故障估计误差系统稳定并对扰动具有鲁棒性的充分条件,采用LMI区域极点配置法提升故障估计性能;在此基础上,针对执行器故障设计控制律补偿容错控制算法,针对传感器故障设计信号重构容错控制算法。Matlab/Simulink环境下的仿真结果表明,当传感器与执行器单独或同时发生故障时,设计的故障估计算法均可较为准确地估计故障幅值,故障估计的误差较小;针对不同故障对助力性能的影响,提出的容错控制方法均可使故障EPS系统的助力性能有所恢复。基于LabVIEW PXI的硬件在环试验进一步验证容错控制应用于EPS系统的有效性,提升汽车转向行驶的安全性及可靠性。  相似文献   

13.
针对四轮独立驱动电动汽车直线行驶跑偏及行驶稳定性问题,提出驱动转矩协调控制策略。该策略采用分层控制逻辑,上层控制逻辑层负责车速跟随控制、附加横摆力矩计算、驱动防滑控制;下层控制逻辑层负责驱动转矩协调分配。基于车辆动力学软件Carsim和MATLAB/Simulink搭建四轮独立驱动电动汽车协调控制系统仿真模型,在高附着、低附着和对开路面等典型工况进行仿真,结果表明,相比于转矩平均分配及无控制,协调控制策略使车辆横摆角速度保持在0±0.05(°)/s,且车轮滑转率控制在最优滑转率范围内,提高了车辆直驶稳定性。  相似文献   

14.
为了使四轮轮毂电机电动汽车在对开路面行驶时能够充分利用路面条件,实现更大的驱动力矩,研究了车辆在对开路面行驶时所能达到的最大驱动力矩,基于模糊控制原理控制车辆的附加转角保证车辆行驶的稳定性,并根据驾驶员的驾驶意图制定了四轮驱动力矩分配规则。基于Matlab/Simulink搭建七自由度整车模型及整车驱动力矩分配器模型,仿真实验表明,所制定的分配规则能充分利用轮毂电机电动汽车四轮力矩独立可控的优势,在能分别达到四轮最大力矩的同时,使车辆稳定行驶。  相似文献   

15.
针对主动悬架执行器故障,基于终端滑模和二阶超螺旋滑模算法,研究不同路面激励及不同执行器故障下悬架系统特性,实现主动悬架容错控制的目的.首先建立了七自由度悬架模型和非线性液压执行器模型,将悬架系统分为簧载质量运动的内部动力学和含有执行器子系统的外部动力学;然后引入非奇异快速终端滑模控制器来抑制簧载质量运动加速度,并利用超螺旋滑模控制器来跟踪终端滑模产生的期望控制力,使主动悬架在外部干扰及执行器故障工况下仍能保持期望性能;最后利用Lyapunov方程证明了超螺旋滑模控制器的稳定性.仿真结果表明:控制算法能有效提升车辆振动系统的性能;相比于传统的H∞控制,二阶滑模能更有效地提升系统的可靠性.  相似文献   

16.
针对轮毂电机驱动电动汽车非簧载质量与侧倾稳定性之间的非线性关系,分析不同路面激励下非簧载质量对轮毂电机驱动电动汽车侧翻稳定性的影响,提出分层防侧翻控制策略。考虑轮毂电机驱动电动汽车四轮独立驱动特点,建立包括主动悬架在内的汽车侧翻动力学模型,确定适用于不平整路面的绊倒型侧翻因子;以某轮毂电机驱动SUV为对象,分析非簧载质量与侧翻稳定性之间的关系;根据四轮独立驱动的特点,设计分层控制器,选取典型汽车侧翻工况进行实例仿真。研究结果表明:在平整路面上,非簧载质量与车辆侧翻稳定性成正态分布关系;在不平整路面上,非簧载质量对车辆侧翻稳定性的影响存在耦合关系;提出的防侧翻分层控制器,可有效提升车辆在不平整路面行驶时的防侧翻能力。  相似文献   

17.
顾燕  王萍 《机电信息》2009,(36):119-119,147
四轮独立驱动技术是微型纯电动汽车的核心技术,简述了四轮独立驱动控制的基本概要。综述了国内外四轮独立控制技术的现状,分析了四轮独立驱动控制技术的发展趋势。  相似文献   

18.
为了解决传统集成控制框架灵活性和可扩展性不足以及传统汽车底盘控制系统不适用于新型分布式轮毂电机驱动纯电动汽车的问题,提出了基于多Agent的四轮独立驱动纯电动汽车的底盘智能动态综合控制系统框架,分析了框架各个层次的功能和相互关系。以底层控制层中直接横摆力矩控制Agent为例,搭建控制器Agent模型。在MATLAB/Simulink和Carsim联合仿真环境中对前轮转向角阶跃输入工况进行仿真试验。仿真结果表明,搭建的控制器Agent较好地实现了预期的动力学控制目标,有效改善了车辆的横向操纵稳定性能,奠定了控制框架的基础。  相似文献   

19.
建立了电动助力转向(EPS)系统和二自由度车辆的线性变参数(LPV)模型,设计了LPV/H∞鲁棒控制器,重点考虑了EPS系统本身参数摄动对其性能的影响;基于MATLAB对所采用的控制方法进行了仿真。仿真结果表明,LPV/H∞控制方法比一般的H∞方法具有更好的鲁棒性,可使转向系统的助力性能和路感得到提高,车辆的转向操纵稳定性也得到明显改善;基于LabVIEW PXI系统建立了EPS系统硬件在环试验台,在硬件在环试验台上,采用共轭梯度法实现了LPV/H∞控制方法的硬件在环试验,试验结果同样证明了所采用的控制算法的有效性。  相似文献   

20.
为了实现四轮独立驱动电动汽车的动力最优分配,需要汽车中央控制单元实时采集电动汽车的各个车轮速度。实验中利用单片机设计了一种对四轮独立驱动电动汽车进行转速采集的装置。通过单片机自带的增强型脉冲累加模块和周期中断定时器模块,设计下位机程序对脉冲进行累加计数,实现了对电动汽车电机转速的精确测量,最后实验验证了设计的可行性,该设计可以为汽车主控制器控制后续执行机构的高精度动作提供基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号