首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
在均苯四甲酸二酐-二氨基二苯醚(PMDA-ODA)分子结构中引入刚性对苯二胺(PDA),通过无规共聚法和共混法制备PI薄膜,采用XRD、TMA、TGA和万能试验机对薄膜聚集态结构及物理性能进行表征。结果表明:引入PDA后PI薄膜的拉伸强度和弹性模量提高,断裂伸长率下降,热膨胀系数和玻璃化转变温度降低。与无规共聚PI相比,共混法制备的PI热膨胀系数更低,弹性模量更高,热膨胀系数和弹性模量分别为9.2×10~(-6)/℃和3.7 GPa,且衍射峰强度更大,玻璃化转变温度更高。说明采用共混法制备的PMDA-ODA/PDA薄膜可以提高分子聚集态结构的有序化程度,改善其性能。  相似文献   

2.
为了制备满足新型电子封装材料相关性能要求的联苯型聚酰亚胺(PI)薄膜,将含有苯并噁唑结构单元的2-(4-氨基苯基)-5-氨基苯并噁唑(DAPBO)引入到以3,3′,4,4′-联苯四甲酸二酐(s-BPDA)、对苯二胺(PDA)和4,4′-二氨基二苯醚(ODA)为单体合成的分子结构中,通过无规共聚法制备聚酰胺酸(PAA),再进行亚胺化得到PI薄膜,并表征其相关性能。结果表明:通过引入DAPBO二胺单体,该系列PI薄膜的多项物理性能得到显著改善。其中,DAPBO含量的增加促使该系列PI薄膜的力学性能和热学性能提高,而热膨胀系数(CTE)减小。当二胺单体中DAPBO的含量达到100%时,PI薄膜的拉伸强度可达278 MPa,CTE可降至7.47×10-6/K。  相似文献   

3.
以两种不同二胺、二酐单体为原料,通过两步法制备了4种聚酰亚胺薄膜,研究了不同重复单元结构对聚酰亚胺薄膜性能的影响。结果表明:相比含二苯酮基的聚酰亚胺薄膜,含三氟甲基的聚酰亚胺薄膜具有更低的介电常数,同时保持较高的拉伸强度。其中由4,4′-二氨基-2,2′-双三氟甲基联苯(TFMB)与4,4′-联苯醚二酐(ODPA)聚合得到的聚酰亚胺薄膜介电常数最低,热分解温度高于550℃,拉伸强度为81.9 MPa,综合性能良好。  相似文献   

4.
以3,3′,4,4′-联苯四羧酸二酐(BPDA)、对苯二胺(pPDA)、均苯四甲酸二酐(PMDA)、4,4′-二氨基二苯醚(ODA)4种单体为原料,制备出一系列pPDA-BPDA组分占不同摩尔百分含量的无规嵌段共缩聚聚酰亚胺薄膜。通过力学性能、热性能、电性能测试对薄膜的性能进行了研究。结果表明,随着pPDA-BPDA刚性嵌段引入量的增加,聚酰亚胺薄膜的弹性模量和拉伸强度得到较大提高,而其断裂伸长率呈现先增加后下降趋势;热稳定性增强;击穿场强在pPDA-BPDA组分摩尔百分含量为50%时达到最大,但均低于未引入嵌段时的薄膜的击穿场强。  相似文献   

5.
采用3种异构硫醚二酐(TDPA)和二胺单体2,2′-二(三氟甲基)-4,4′-二氨基联苯(TFDB)进行缩聚反应制备聚酰亚胺树脂,然后制得相应的聚酰亚胺薄膜,并对其热性能、力学性能、光学性能进行了对比研究。结果表明:3,4′-TDPA和4,4′-TDPA制备的聚酰亚胺薄膜都具有较高的玻璃化转变温度和良好的可见光透过率。  相似文献   

6.
为了制备兼具有序度高和热力学性能稳定的聚酰亚胺(PI)薄膜,在联苯四甲酸二酐-对苯二胺(BP-DA-PDA)体系中引入均苯四甲酸二酐(PMDA)单体,通过无规共聚法制备了PI薄膜,采用XRD、TMA、DMA、TGA、棱镜耦合仪和万能试验机对PI薄膜聚集态结构和物理力学性能进行分析.结果表明:不同二酐组成对PI薄膜的聚集态结构和热力学性能有显著影响,随着PMDA-PDA链段组分的增加,分子链有序度得到提高,分子链间距从0.469 nm降低至0.436 nm;双折射值在0.17~0.23内呈上升趋势,玻璃化转变温度(Tg)在379.00~439.05℃内先下降后上升,热膨胀系数(CTE)在0~7×10-6 K-1内先上升后下降,拉伸强度和5%热分解温度(T5%)分别在165~226 MPa和576.8~590.4℃内呈下降趋势.当PMDA摩尔分数为60%时,薄膜的双折射率达到最高值0.22471,Tg为439.05℃,CTE为0.0125×10-6 K-1,耐热指数(THRI)达到302.0℃,T5%达到576.8℃,综合热力学性能优异.  相似文献   

7.
以4,4′-二氨基-2,2′-双三氟甲基苯(TFMB)和3,3′,4,4′-联苯四羧酸二酐(BPDA)为原料制备聚酰胺酸,采用氮杂环类喹啉(QL)促进其在较低温度下亚胺化,并对QL用量、最高亚胺化温度及固化时间进行了优化.利用红外光谱法测定所得聚酰亚胺(PI)薄膜的亚胺化程度.结果表明:当QL添加量为BPDA物质的量的两倍时,聚酰胺酸在200℃下固化4 h,亚胺化程度即可超过99%;在250℃下处理0.5 h除去残留溶剂和QL后,PI的热稳定性大幅提高,而透光率基本不变.与300℃高温下亚胺化制备的PI薄膜相比,采用QL促进亚胺化的PI薄膜5%热失重温度(T5%)、玻璃化转变温度(Tg)和拉伸强度仅略有下降,而断裂伸长率提高,400 nm处的透光率从4.5%提高到34.4%.  相似文献   

8.
针对先进柔性覆铜板(FCCL)领域对热塑性黑色聚酰亚胺薄膜的应用需求,采用含有生色亚胺(-NH-)基团的芳香族二胺单体4,4′-二胺基二苯胺(NDA)分别与一系列二酐单体,包括4,4′-(六氟异亚丙基)双邻苯二甲酸酐(6FDA)、2,2-双[4-(3,4-二羧基苯氧基)苯基]丙烷二酐(BPADA)以及氢化3,3′,4,4′-联苯四甲酸二酐(HBPDA)等聚合制备了3种有机可溶性PI(SPI)树脂,然后采用SPI/DMAc溶液在相对较低温度下(80~250℃)制备了PI薄膜.系统研究上述特征基团的引入对PI薄膜光学性能、热性能以及电学性能的影响机制.结果表明:制备的SPI树脂在极性非质子性溶剂,如N-甲基吡咯烷酮(NMP)、N,N-二甲基乙酰胺(DMAc)中具有良好的溶解性.制备的SPI薄膜具有本征深色特性,其在500 nm波长处的透光率(T500)小于5%,明度(L*)低于60.此外,该系列薄膜具有良好的耐热性能,玻璃化转变温度(Tg)最高可达375.9℃,氮气中5%失重温度(T5%)高于500℃.该系列薄膜还具有良好的电绝缘特性,其体积电阻率(ρv)均超过1015Ω·cm.  相似文献   

9.
以三官能度的1,3,5-三(4-氨基苯氧基)苯(TAPOB)为交联剂,在3,3′,4,4′-联苯四甲酸二酐(BPDA)和4,4′-二氨基二苯醚(ODA)体系聚酰亚胺(PI)薄膜中构建微支化交联结构,制备出一系列具有不同TAPOB含量的PI薄膜,研究了TAPOB含量对薄膜力学性能、热力学性能、介电性能和吸水率的影响.结果表明:TA-POB的引入可明显提高BPDA/ODA体系PI薄膜的综合性能,交联结构的存在有利于提高薄膜的力学性能、降低热膨胀系数(CTE)和吸水率,微支化结构则对降低介电常数有一定的作用.  相似文献   

10.
采用4,4’-(六氟异亚丙基)双邻苯二甲酸酐(6FDA)分别与3种分子结构中含有刚性酰胺键的芳香族二胺单体通过一步高温溶液缩聚法制备了3种可溶性聚酰亚胺(PI)树脂。采用上述树脂的N,N-二甲基乙酰胺(DMAc)溶液制备了3种透明PI薄膜。对PI薄膜进行了衰减全反射傅里叶红外光谱、热重分析、动态机械分析、热机械分析、紫外-可见光谱和黄度指数等测试。结果表明:3种PI薄膜具有良好的光学透明性,紫外截止波长(λcut)均低于380 nm,500 nm波长处的透光率(T500)超过80%。此外,该系列薄膜还表现出了良好的耐热稳定性,玻璃化转变温度(Tg)均超过了320℃,5%失重温度(T5%)均超过了520℃。3种PI薄膜的线性热膨胀系数(CTE)均低于50×10-6/K,表明刚性酰胺键的引入可显著提高上述溶液可加工型含氟PI薄膜的高温尺寸稳定性。  相似文献   

11.
本研究以4,4’-二氨基苯酰替苯胺(DABA)和4,4’-二氨基-2,2’-二甲基联苯(m-TB)与均苯四甲酸二酐(PMDA)和4,4,-氧双邻苯二甲酸酐(ODPA)为原料,成功合成了有机发光二极管(OLED)柔性基板用聚酰亚胺(PI)薄膜。结果表明:当二胺与二酐摩尔比为0.990、加料时间为120 min、反应温度为0~30℃、搅拌速度为200~250 r/min、反应时间为240 min时,聚酰胺酸合成过程凝胶量少,黏度满足工业化合成要求。经400℃热亚胺化后,所得PI薄膜的玻璃化转变温度为450℃,1%热失重温度为554℃,热膨胀系数为4.1×10-6 K-1,拉伸强度为326.9 MPa,拉伸模量为9 572.8 MPa,电气强度为623 kV/mm,介电常数为3.251,这些参数指标满足OLED柔性基板的工业应用要求。  相似文献   

12.
以2,2′-双(三氟甲基)-4,4′-二氨基联苯(TFMB)和氯化偏苯三酸酐(TMAc)为原料通过酰基化反应得到含三氟甲基酰胺型四羧酸二酐(TA-TFMB),再与4,4′-二氨基二苯醚(ODA)和TFMB两种二胺通过一步法共聚制备了一系列聚(酰胺-酰亚胺)(PAI)薄膜,并对薄膜进行动态热机械分析(DMA)、差示扫描量热分析(DSC)、热重分析(TGA)及光学性能测试。结果表明:PAI薄膜具有良好的热性能和光学性能,玻璃化转变温度为307.0~320.5℃,氮气氛围下,5%热分解温度为449.0~471.0℃;PAI-ODA的线性热膨胀系数(CTE)为17.63×10~(-6)/K,与普通铜箔的CTE(17.0×10~(-6)K)相一致;PAI-TFMB具有最高的透光率(85.43%),PAI薄膜颜色参数中的b*值和雾度指数(Haze值)分别低至7.37和0.56。  相似文献   

13.
以3,3′,4,4′-联苯四羧酸二酐(BPDA)、1,3-双(4-氨基苯氧基)苯(TPER)、3,4′-二氨基二苯醚(3,4′-ODA)、邻苯二甲酸酐(PA)为原料制备了一种共聚封端热塑性聚酰亚胺(TPI)薄膜,采用DSC、TG、万能拉伸试验机、DMA等对其性能进行测试和分析。结果表明:共聚封端TPI薄膜的加工性能提高,同时保持了较高的热稳定性和较好的拉伸性能。其中加入3%PA封端剂制备的树脂综合性能最好,具有较低的熔点(328.8℃)、结晶温度(311.6℃)、损耗模量(4.1×108Pa)和较高的玻璃化转变温度(210.1℃),采用该树脂制备的TPI薄膜综合性能最佳。  相似文献   

14.
将3,3′-二甲基-4,4′-二氨基二环己基甲烷(DMDC)、4,4′-二氨基二苯醚(ODA)与3,3′,4,4′-四羧基二苯醚二酐(ODPA)进行反应得到聚酰胺酸溶液,通过改变二胺单体的配比,采用热亚胺化法制备了系列聚酰亚胺薄膜,在保证聚酰亚胺薄膜常规的优势性能前提下,改善聚酰亚胺的颜色、可加工性能和溶解性,并对其进行表征与性能分析。结果表明:该聚酰亚胺薄膜的光学性能、力学性能良好;脂肪族柔性单体DMDC的引入降低了聚酰亚胺的玻璃化转变温度Tg,提高了薄膜在DMAc、DMF、NMP、CHCl_3溶剂中的溶解性,扩大了聚酰亚胺在光电领域的应用范围。  相似文献   

15.
为解决填料在高黏度聚酰胺酸(PAA)中易团聚、分散性差的问题,本研究以3,3′,4,4′-联苯四甲酸二酐(BPDA)和对苯二胺(PDA)为原料,采用酸酐水解法在较高固含量下合成了低黏度的聚酰胺酸溶液。在此基础上,通过填料的液相法超声分散预处理和高效球磨混合工艺,制备了氮化硼质量分数为0~40%的氮化硼/聚酰亚胺(BN/PI)复合薄膜,系统考察了填料的分散性以及复合薄膜的力学、耐热、导热等性能。结果表明:聚酰胺酸的低黏化及填料混合分散工艺赋予了填料良好的分散性,并对BN/PI复合薄膜的性能产生重要影响。当填料质量分数为40%时,复合薄膜的力学强度约为140 MPa,玻璃化转变温度为385.2℃,导热系数高达0.741 W/(m·K),相比无填料添加的纯PI膜提高了338%。  相似文献   

16.
试验合成了两种新型的N-苯基取代苯并咪唑二胺,区别在于N-苯基的邻位分别由甲基和氟原子取代.将新型二胺分别与二酐4,4′-(六氟异丙烯)二酞酸酐(6FDA)和4,4′-氧双邻苯二甲酸酐(ODPA)通过两步热亚胺法制备聚苯并咪唑酰亚胺(PBII)薄膜,并对新型二胺单体及PBII薄膜进行了性能测试与表征.结果表明:新型PBII薄膜表现出良好的耐热性(玻璃化转变温度Tg=341~381℃)和拉伸强度(σ=95~135 MPa).不同邻位取代的N-苯基破坏了分子的有效堆积,使得PBII薄膜的溶解性和光学透明性得到改善.  相似文献   

17.
采用对苯二胺(p PDA)、4,4’-二氨基二苯醚(ODA)、均苯四甲酸二酐(PMDA)制备了p PDA/ODA-PMDA无规共缩聚型聚酰亚胺薄膜,研究了其树脂合成条件、亚胺化方式以及p PDA含量对PI膜性能的影响。结果表明:聚酰胺酸的黏度与反应温度成反比,化学亚胺法可以提高薄膜的热稳定性;随着p PDA含量的增加,PI薄膜的拉伸强度和尺寸稳定性得到明显改善。当p PDA含量为10%~15%时,PI薄膜的综合性能满足设计要求。  相似文献   

18.
以双酚A为原料,采用先硝化再还原的方法合成出2,2-双(3-氨基-4-羟基苯基)丙烷(BAHPP)。以BAHPP和4,4′-二氨基二苯醚(ODA)为二胺单体,3,3′,4,4′-二苯醚四酸二酐(ODPA)为二酐单体,经低温溶液缩聚反应得到一系列共聚聚酰胺酸,再经热酰亚胺化程序升温制备出一系列含羟基的共聚聚酰亚胺(CPI)薄膜。采用核磁共振波谱仪(NMR)、红外光谱(IR)、紫外-可见分光光度计(UV-Vis)、示差扫描量热仪(DSC)、热重分析(TGA)等对CPI进行结构与性能表征,考察两种二胺单体的摩尔分数对共聚聚酰亚胺光学性能、力学性能、热性能和溶解性的影响。结果表明:随着ODA摩尔分数的增加,CPI薄膜在500 nm处的光透过率逐渐增加,薄膜颜色逐渐变浅。随着BAHPP摩尔分数的增加,CPI的玻璃化转变温度(T_g)、拉伸强度和拉伸模量增加,但热稳定性降低。所有CPI在有机溶剂中均表现出较好的耐化学药品性。  相似文献   

19.
通过采用硅烷偶联剂连接于独特设计的PI高分子主链,再原位接枝SiO_2纳米粒子的方法,制备了一种耐高温光学透明的半芳香型聚酰亚胺(PI)/SiO_2复合薄膜。结果表明:该PI/SiO_2复合薄膜中的SiO_2在较高的含量下仍能保持良好的分散性。经410℃退火后,PI/SiO_2复合薄膜仍能保持优良的光学性能和热稳定性,其热分解温度(Td)(0.1%失重)高于420℃,玻璃化转变温度(Tg)高于350℃,热膨胀系数与无机玻璃相当。  相似文献   

20.
首先合成了一种含芴基、羟基以及苯醚键的二胺单体9,9′-双[4-(4-氨基-2-羟基苯氧基)苯基]芴(BAHOPF),再以BAHOPF和3,5-二氨基苯甲酸(DABA)为二胺单体、六氟二酐(6FDA)为二酐单体,通过缩聚反应和热亚胺化法制备了一系列聚酰亚胺(PI)薄膜。采用热重分析(TGA)、傅里叶变换红外光谱(FTIR)、X射线衍射(XRD)、核磁共振波谱(NMR)、紫外-可见光谱(UV-Vis)、差示扫描量热法(DSC)等测试手段表征了制备的二胺单体和PI薄膜的结构与性能。结果表明:制备的PI薄膜结晶度较低;随着芴基比例的增大,PI薄膜的透明度和力学性能有所提高;所有PI薄膜都表现出良好的热性能,其中5%热失重温度为309~464℃,10%热失重温度为400~510℃,玻璃化转变温度(Tg)约为350℃,且制备的PI薄膜具有较好的溶解性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号