首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
混杂纤维延性水泥基材料单轴受压力学特性   总被引:1,自引:1,他引:0  
针对纤维增强延性水泥基材料(ECC)在高强度等级下的抗压韧性退化问题,在传统ECC体系中附加微细钢纤维,制备混杂聚乙烯醇(PVA)-钢纤维增强延性水泥基材料.通过圆柱体抗压试验研究混杂纤维延性水泥基材料的单轴受压力学特性.结果表明:随着钢纤维掺量的增加,材料受压应力-应变曲线的上升段斜率呈增大趋势,而曲线下降段逐渐平缓,残余应力水平显著提升;混杂纤维延性水泥基材料的单轴抗压强度、弹性模量和峰值应变随钢纤维掺量增加小幅提升,而材料抗压韧性指标的提升效果较为显著;PVA纤维与钢纤维混杂在改善ECC抗压韧性方面具有独特优势,实现了高强ECC的抗压韧性.  相似文献   

2.
为抑制地震荷载作用下梁柱节点剪切裂缝的形成和梁纵向钢筋的滑移,提高梁柱节点抗震性能,采用PVA-钢混杂纤维增强水泥基复合材料替代普通混凝土是可选措施之一。设计8个梁柱节点试件,其中6个试件采用PVA-钢混杂纤维增强水泥基复合材料,2个对比试件分别采用单掺PVA纤维增强水泥基复合材料与普通混凝土,进行拟静力试验以研究混杂纤维的掺加对梁柱节点抗震性能的影响。通过改变纤维掺量,在循环往复荷载作用下,观测试件裂缝开展及破坏过程,研究其滞回性能、骨架曲线、延性性能及耗能能力。试验结果表明:纤维的掺加可有效抑制梁柱节点剪切裂缝的形成与发展,显著提高梁柱节点的承载能力、延性及耗能能力;混杂纤维增强水泥基复合材料梁柱节点在峰值荷载前后的抗震性能均优于单掺PVA纤维增强水泥基复合材料梁柱节点。  相似文献   

3.
刘雁宁  张涛  李杉 《混凝土》2022,(1):112-115
对混掺聚乙烯醇纤维(PVA)与12 mm两端直勾型精细钢纤维的水泥基复合材料进行立方体抗压和哑铃试件轴向拉伸试验,分析纤维掺量对混掺纤维水泥基复合材料抗压、抗拉强度和韧性的影响规律。结果表明:混掺精细钢纤维可以提高水泥基复合材料的立方体抗压强度、抗拉强度和韧性;随着精细钢纤维的增加,其抗压强度、抗拉强度和极限拉应变呈先增大后降低的趋势,当精细钢纤维掺量为1.2%时,28 d立方体抗压强度平均值比单掺PVA纤维提高了61.9%;当精细钢纤维掺量为0.8%时,28 d抗拉强度和极限拉应变分别比单掺PVA纤维提高了56.9%和240%。  相似文献   

4.
高强高延性水泥基复合材料在使用阶段最不利影响之一是高温,但是目前对该水泥高温方面的性能研究较为局限。在常温(20℃)、200℃、400℃、600℃、800℃的温度下研究了聚乙烯醇纤维(PVA)、钢纤维、碳酸钙晶体纤维等多种纤维混杂下的高强高延性水泥基复合材料延展性。研究结果表明,常温条件下利用钢纤维替代PVA纤维将导致高强高延性水泥基复合材料的拉伸性能降低,利用碳酸钙晶体纤维适量代替PVA,可以提高水泥复合材料的延展性;高温对上述材料的抗拉强度值具有不利影响,其中PVA纤维随温度呈指数衰减的趋势;钢纤维能够延缓材料抗拉强度的衰减速率;在高温作用下,虽然碳酸钙能够提高材料本身的抗拉强度,但是在衰减速度方面并没有降低,仍旧随着温度的升高衰减速度变快。  相似文献   

5.
立方体抗压强度和劈裂抗拉强度试验,是研究聚乙烯醇纤维对水泥基复合材料拉压比性能影响的最直接的方法。立方体试件的尺寸为100 mm×100 mm×100 mm,PVA纤维掺量分别为0、0.5%、1.0%、1.5%、2.0%,粉煤灰掺量为30%、50%。试验结果表明,掺入PVA纤维对立方体抗压强度影响不显著,而劈裂抗拉强度则提高了4264%~135.12%,拉压比提高36.82%~134.27%;30%粉煤灰掺量的水泥基复合材料比50%粉煤灰掺量的水泥基复合材料抗压强度高20%以上,但对劈裂抗拉强度影响不明显。PVA纤维水泥基复合材料立方体抗压试块裂缝开展路径较多,不易破碎,抗压韧性显著增强。  相似文献   

6.
近年来发展起来的高延性纤维增强水泥基复合材料(ECC)在土木工程领域得到广泛应用。常用的ECC材料多为单掺纤维体系,难以实现高强度与高延性的匹配。为适应工程结构对材料性能的多重需求,可采用纤维混杂办法来提升材料力学性能。围绕不同尺寸纤维混杂、不同本构关系纤维混杂对相关研究现状进行了综述。讨论了混杂纤维水泥材料力学性能研究中存在的若干问题,在此基础上对高延性混杂纤维水泥基复合材料力学性能研究提出建议。  相似文献   

7.
改善工程材料韧性和耐久性,提高框架梁柱节点抵抗变形和破坏的能力,是提高框架结构抗震韧性的有效途径之一。采用PVA-钢混杂纤维增强水泥基复合材料代替普通混凝土应用到梁柱边节点,考虑轴压比和加密区体积配箍率的影响,设计6个配筋PVA-钢混杂纤维增强水泥基复合材料、1个配筋单掺PVA纤维增强水泥基复合材料和1个钢筋混凝土梁柱边节点试件进行拟静力试验,分析其破坏形态、滞回曲线、骨架曲线、延性、耗能能力、钢筋应变和梁端塑性铰区转角,探讨混杂纤维的加入对梁柱边节点抗震性能的影响。结果表明:与钢筋混凝土节点和单掺PVA纤维增强水泥基复合材料节点相比,PVA-钢混杂纤维增强水泥基复合材料节点的承载力高、变形能力大、延性好、耗能能力强,抗震性能显著提升。当试验轴压比从0.12增加到0.24,梁端塑性铰区产生一定的外移,塑性性能发挥更充分,同时试件的变形能力、延性、耗能能力增加。在加密区体积配箍率减小的情况下,试件仍表现出良好的抗震性能。  相似文献   

8.
王睿  张品乐 《混凝土》2024,(2):126-132+141
将钢纤维、国产PVA纤维和日本PVA纤维按照适宜比例进行配制,不同纤维材料性能相互补充、取长补短,可以更好发挥出混杂纤维增强水泥基材料(HFRCC)的力学性能,有利于其成本控制,具有广泛应用前景。通过正交试验极差结果择优和信噪比S/N稳定性择优两种方法分析粉煤灰掺量、水胶比、砂胶比、钢纤维掺量、国产PVA掺量和日产PVA掺量对混杂纤维增强水泥基材料(HFRCC)抗拉强度和抗弯强度的影响规律,对比两种方法的结果,并建立各因素和响应量之间的回归关系,与和易性工程性能相结合,给出HFRCC的最优配合比。结果表明:信噪比S/N稳定性择优方案更加准确和全面。粉煤灰掺量、钢纤维掺量、国产PVA掺量和日产PVA掺量对HFRCC的响应量影响较大,水胶比和砂胶比影响较小;建立数学模型预测和优选配合比,HFRCC抗拉强度最大可以达到6.36 MPa,抗弯强度最大可以达到13.90 MPa,预测值和试验值之间的相对误差绝对值均接近3%,且和易性能较好。研究结果可以为混杂纤维增强水泥基材料(HFRCC)的制备提供依据。  相似文献   

9.
在混杂纤维总体积掺量为2%的条件下,改变钢纤维、聚丙烯纤维和聚乙烯醇纤维的体积掺量,设计制作了两类混杂纤维水泥基试块,通过轴心受压试验,分别研究钢-聚丙烯和聚乙烯醇-聚丙烯混杂纤维水泥基复合材料的轴心受压应力-应变关系,并提出了不同纤维掺量变化对峰值应力、峰值应变影响的计算式。结果表明:钢纤维和聚乙烯醇纤维能提高试块的抗压强度,聚丙烯纤维能显著提高试块的峰值应变,当聚丙烯纤维体积掺量大于0. 5%时,混杂纤维水泥基复合材料的抗压强度会低于基体。  相似文献   

10.
高延性水泥基复合材料(High Ductility Cementitious Composites,HDCC)是指在弯曲和拉伸荷载作用下具有应变硬化特性的水泥基复合材料,具有单轴拉伸延性好,耐久性能优异等优点。在材料设计中用大掺量的粉煤灰来替代水泥,以实现更加优异的高延性。本文研究了在聚乙烯醇(polyvinyl alcohol,PVA)纤维体积掺量为1.2%和1.4%时,同时掺入高炉矿渣与粉煤灰制备高延性水泥基复合材料,通过改变高炉矿渣与粉煤灰的掺量,得到试件的抗压强度、抗折强度与弯曲韧性,用以对比矿渣与粉煤灰不同质量比例对高延性水泥基复合材料力学性能、弯曲韧性和表面裂纹特征的影响规律。结果显示,当矿渣和粉煤灰掺量分别为总胶凝材料质量的40%和10%时,试件呈现出良好的应变硬化与多缝开裂特性,最大挠度达到10.79mm,极限拉应变为1.26%,裂纹数量达到14条。表明了矿渣的掺入有利于在保证高延性水泥基复合材料具有应变硬化特性的前提下,可以有效提高高延性水泥基复合材料中的强度和弯曲韧性,对于此类材料的工程应用十分有益。  相似文献   

11.
为进一步研究工程用水泥基复合材料(ECC)与超高强钢筋组合成的超高强钢筋ECC梁(UHSRRE梁)的受弯性能,对3根UHSRRE梁、1根普通强度钢筋增强ECC梁(RECC梁)和1根普通强度钢筋增强混凝土梁(RC梁)进行弯曲试验,分析弯曲试验现象、ECC应变、延性性能和特征弯矩,并研究纵筋配筋率对UHSRRE梁承载力的影响。结果表明:UHSRRE梁和RECC梁的控裂能力比RC梁的控裂能力强; 与RECC梁相比,UHSRRE梁并未因采用超高强钢筋而使其控裂能力明显下降; UHSRRE梁截面应变基本符合平均应变的平截面假定,梁受拉区边缘的ECC应变小于ECC单轴受拉极限应变,梁受拉区的ECC始终不退出工作; UHSRRE梁受拉区和受压区边缘ECC应变的最大值、受压区高度和特征弯矩(除开裂弯矩)都随纵筋配筋率增加而变大; 随纵筋配筋率增加,UHSRRE梁的能量延性系数先增后减; 当UHSRRE梁具有适当纵筋配筋率时,其延性性能可优于RECC梁的延性性能。  相似文献   

12.
分别采用活性粉末混凝土(RPC)和渗浇钢纤维混凝土(SIFCON)两种制备工艺,根据水泥基材料结构的多尺度特征,研究了由碳酸钙晶须和微钢纤维复合增强的超高韧性水泥基材料(Ultra-High-Toughness Cementitious Composite,简称UHTCC)的制备技术,测试UHTCC不同配比的抗压强度、抗折强度、抗弯强度以及单轴拉伸性能,采用折压比、韧性指数等多个指标对UHTCC的韧性进行了评价。试验表明:UHTCC的抗压强度、抗折强度、抗弯强度以及延性和韧性都远高于普通钢纤维混凝土,其抗弯强度最高达65.1MPa、韧性指数I20最高达49.21,单轴拉伸试验时呈现明显的假应变硬化行为,极限拉应变可达4%~8%。相对而言,利用SIFCON工艺制得的水泥基材料韧性更高。  相似文献   

13.
采用超声波脉冲法研究了单轴受压条件下钢-聚乙烯醇(PVA)纤维混杂增强延性水泥基材料(以下简称混杂纤维延性材料)的破坏机理.结果表明:混杂纤维延性材料加载前的初始波速主要受制于基材,波速与弹性模量、抗压强度均具有良好相关性;加载过程中,纵波波速受应力-应变发展的影响不显著,而横波波速的变化较为明显;单掺PVA纤维体系进入应力下降段后横波波速出现陡降,而混杂纤维体系的横波波速表现为平稳的渐退式下降;单掺纤维延性材料主要产生劈裂破坏,主裂缝平行于轴压方向,而混杂纤维延性材料的主裂缝倾斜于轴向,裂缝迂曲度明显增大,材料塑性变形能力显著提升.另外,采用超声脉冲法检测混杂纤维延性材料受压破坏过程的有效性在试验过程中得到了验证.  相似文献   

14.
PVA纤维直径对水泥基复合材料抗拉性能的影响   总被引:6,自引:1,他引:6  
研究了由2种性能相似、直径不同的聚乙烯醇(PVA)纤维增强的水泥基复合材料的单轴抗拉性能.试验结果表明:材料抗拉性能受纤维直径影响显著,在基材配比、纤维掺量均相同时,采用直径较大(d_f=39μm)PVA纤维的复合可获得应变硬化与多点开裂模式,其极限抗拉应变可达到2.6%;而采用直径较小(d_f=15μm)PVA纤维的复合材料却表现出明显的应变软化与单点开裂模式,其极限抗拉应变仅为0.1%左右;当采用细PVA纤维时,复合材料的抗拉强度有所提高;其主要原因是纤维的粗细影响了纤维的桥接应力.保证纤维从水泥石中拔出而非断裂是优化纤维桥接性能的基本条件.  相似文献   

15.
水泥基材料抗拉强度低、韧性差是其易于开裂、导致结构耐久性低劣的主要原因之一。高模量聚乙烯醇(PVA)纤维可增强水泥基材料韧性,使其呈现准应变硬化和多缝开裂特征,从而改善结构耐久性。本文通过四点弯曲试验得出了不同加载速率和不同配比应变硬化水泥基复合材料(PVA-SHCC)的力-变形曲线并用CONSOFT软件计算断裂能。结果表明,硅灰使材料的抗压强度有所提高,但最大抗弯承载力和变形下降,断裂能随之降低;甲基纤维素使PVA-SHCC脆性增大;随着加载速率的降低,材料表现出更好的应变硬化性能,微裂缝条数增多。  相似文献   

16.
钢筋超高性能混合钢纤维混凝土梁受剪性能研究   总被引:1,自引:0,他引:1  
刁波  封云  叶英华  杨松霖 《工业建筑》2012,42(11):6-10,15
自密实超高性能钢纤维混凝土具有高强、高韧、高流动性和高耐久性的优势,但其抗拉强度仍远低于抗压强度。通过静力加载试验,研究超高性能纤维混凝土梁的抗弯性能,以及配置550 MPa受拉纵筋时超高性能钢纤维混凝土无腹筋梁,在剪跨比分别为2.5、3时的受剪性能。试验梁的钢纤维体积率为2%,其中超细钢纤维和端弯钢纤维以3∶1比例混合,基体混凝土强度大于C100的强度,梁试件采取自密实成型和常温标准养护方法。试验结果表明:与无钢纤维混凝土梁相比,混合钢纤维超高性能混凝土梁的极限荷载和延性得到明显改善。无腹筋梁的初裂荷载提高了25%~180%、裂缝宽度0.2 mm时的荷载提高了73%~183%、极限荷载提高了68%~317%、延性提高了3.2倍~4.4倍。  相似文献   

17.
姚山  赵毕红  韩宁 《混凝土》2012,(6):91-95
采用常规的材料及通用的工艺力法,通过加入不同纤维、降低水胶比、去除粗骨料等方法配制抗压强度接近100 MPa的高性能纤维增强水泥基复合材料,并进行抗压强度、抗折强度、抗拉强度、静力弹性模量等力学性能试验,结果表明:高性能纤维增强水泥基复合材料不但具有较高抗压强度,其韧性及变形能力良好,适应现代工程结构的发展需要。  相似文献   

18.
将钢纤维增强水泥基复合材料看作水泥砂浆基体和钢纤维夹杂组成的复合材料,采用扩展有限元法模拟了定向钢纤维增强水泥基复合材料受拉破坏的全过程.研究采用混合同余法生成随机数建立了钢纤维随机生成算法,进而生成了不同纤维掺量的定向钢纤维水泥砂浆细观数值模型.在考虑钢纤维与砂浆基体黏结滑移作用的基础上,模拟了定向钢纤维水泥砂浆受拉断裂全过程,得到了拉伸应力-应变全曲线.通过开展直拉试验,对细观数值模拟结果进行了验证.研究表明,细观数值模拟得到的全曲线结果与试验结果吻合较好,建立的细观模型有助于进一步揭示钢纤维增强水泥基复合材料的拉伸破坏机理.  相似文献   

19.
短纤维增强超高韧性水泥基复合材料(Engineered Cementitious Composites,通常称为ECC材料)可以将传统水泥基材料在抗拉荷载下单一裂纹的宏观开裂模式转化为多条细密裂缝的微观开裂模式,其极限拉伸应变可达2%甚至达6%,具有典型的应变硬化特性、显著的韧性特征和优良的耐久性能。纤维编织网增强混凝土(Textile Reinforced Concrete,简称TRC)同样是一种新型的纤维增强水泥基复合材料,在这种复合材料结构中,直接将纤维粗纱沿混凝土结构中的应力主向连续布置,纤维对基体的增强效果得到了显著提高。采用纤维编织网与PVA短纤维相结合研究开发新型混凝土结构防裂新技术,结合PVA短纤维增强ECC和纤维编织网两种材料的优点,可以获得更为优良的抗裂和控制裂缝的能力,从而极大程度地提高混凝土结构的耐久性和使用寿命。通过四点弯曲试验,研究纤维编织网表面处理方法、水胶比、PVA纤维掺量对此种复合材料裂缝控制能力和承载能力的影响,并与TRC的弯曲性能作了比较。  相似文献   

20.
为了研究聚乙烯醇(PVA)纤维增强型水泥基复合材料高温后的力学性能,对30组共90个试件进行了力学性能试验,测得材料的立方体抗压强度、抗折强度、弹性模量、轴心抗压强度以及棱柱体单轴抗压应力-应变全曲线,并与相应基体的力学性能进行对比分析。结果表明:当加热温度低于200 ℃时,PVA纤维的掺入可有效改善水泥基复合材料的抗折强度和棱柱体单轴受压峰值荷载后的延性性能和韧性性能,降低弹性模量,对立方体抗压强度和棱柱体轴心抗压强度影响不大;温度高于200 ℃后,抗折强度、弹性模量和峰值荷载后的延性性能与韧性性能与基体接近,立方体抗压强度和轴心抗压强度均低于基体,轴心抗压强度下降幅度远远大于立方体抗压强度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号