首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The purpose of this study was to evaluate the effects of resident islet macrophage activation on beta cell function. Treatment of freshly isolated rat islets with TNF-alpha and LPS results in a potent inhibition of glucose-stimulated insulin secretion. The inhibitory actions of TNF + LPS are mediated by the intraislet production and release of IL-1 followed by IL-1-induced inducible nitric oxide synthase (iNOS) expression by beta cells. The IL-1R antagonist protein completely prevents TNF + LPS-induced nitrite production, iNOS expression and the inhibitory effects on glucose-stimulated insulin secretion by rat islets. Resident macrophages appear to be the source of IL-1, as a 7-day culture of rat islets at 24 degrees C (conditions known to deplete islets of lymphoid cells) prevents TNF + LPS-induced iNOS expression, nitrite production, and the inhibitory effects on insulin secretion. In addition, macrophage depletion also inhibits TNF + LPS-induced IL-1alpha and IL-1beta mRNA expression in rat islets. Immunocytochemical colocalization of IL-1beta with the macrophage-specific marker ED1 was used to provide direct support for resident macrophages as the islet cellular source of IL-1. IL-1beta appears to mediate the inhibitory actions of TNF + LPS on beta cell function as TNF + LPS-induced expression of IL-1beta is fourfold higher than IL-1alpha, and Ab neutralization of IL-1beta prevents TNF + LPS-induced nitrite production by rat islets. These findings support a mechanism by which the activation of resident islet macrophages and the intraislet release of IL-1 may mediate the initial dysfunction and destruction of beta cells during the development of autoimmune diabetes.  相似文献   

2.
Proinflammatory cytokines are implicated as effector molecules in the pathogenesis of IDDM. Interleukin-6 (IL-6) alone or in combination with IL-1beta inhibits glucose-stimulated insulin release from isolated rat pancreatic islets by unknown mechanisms. Here we investigated 1) if the effects of IL-6 are mimicked by ciliary neurotrophic factor (CNTF), another member of the IL-6 family of cytokines signaling via gp130, 2) the possible cellular mechanisms for these effects, and 3) if islet endocrine cells are a source of CNTF. CNTF (20 ng/ml) potentiated IL-1beta-mediated (5-150 pg/ml) nitric oxide (NO) synthesis from neonatal Wistar rat islets by 31-116%, inhibition of accumulated insulin release by 34-49%, and inhibition insulin response to a 2-h glucose challenge by 31-36%. CNTF potentiated IL-1beta-mediated NO synthesis from RIN-5AH cells by 83%, and IL-1beta induced islet inducible NO-synthase (iNOS) mRNA expression fourfold. IL-6 (10 ng/ml) also potentiated IL-1beta-mediated NO synthesis and inhibition of insulin release, whereas beta-nerve growth factor (NGF) (5 or 50 ng/ml) had no effect. mRNA for CNTF was expressed in rat islets and in islet cell lines. In conclusion, CNTF is constitutively expressed in pancreatic beta-cells and potentiates the beta-cell inhibitory effect of IL-1beta in association with increased iNOS expression and NO synthesis, an effect shared by IL-6 but not by beta-NGF. These findings indicate that signaling via gp130 influences islet NO synthesis associated with iNOS expression. We hypothesize that CNTF released from destroyed beta-cells during the inflammatory islet lesion leading to IDDM may potentiate IL-1beta action on the beta-cells.  相似文献   

3.
Interleukin-1 (IL-1) impairs insulin secretion from pancreatic islets and may contribute to the pathogenesis of insulin-dependent diabetes mellitus. IL-1 increases islet expression of nitric oxide (NO) synthase, and the resultant overproduction of NO participates in inhibition of insulin secretion because NO synthase inhibitors, e.g. NG-monomethyl-arginine (NMMA), prevent this inhibition. While exploring effects of IL-1 on islet arachidonic acid metabolism, we found that IL-1 increases islet production of the 12-lipoxygenase product 12-hydroxyeicosatetraenoic acid 12-(HETE). This effect requires NO production and is prevented by NMMA. Exploration of the mechanism of this effect indicates that it involves increased availability of the substrate arachidonic acid rather than enhanced expression of 12-lipoxygenase. Evidence supporting this conclusion includes the facts that IL-1 does not increase islet 12-lipoxygenase protein or mRNA levels and does not enhance islet conversion of exogenous arachidonate to 12-HETE. Mass spectrometric stereochemical analyses nonetheless indicate that 12-HETE produced by IL-1-treated islets consists only of the S-enantiomer and thus arises from enzyme action. IL-1 does enhance release of nonesterified arachidonate from islets, as measured by isotope dilution mass spectrometry, and this effect is suppressed by NMMA and mimicked by the NO-releasing compound 3-morpholinosydnonimine. Although IL-1 increases neither islet phospholipase A2 (PLA2) activities nor mRNA levels for cytosolic or secretory PLA2, a suicide substrate which inhibits an islet Ca(2+)-independent PLA2 prevents enhancement of islet arachidonate release by IL-1. IL-1 also impairs esterification of [3H8]arachidonate into islet phospholipids, and this effect is prevented by NMMA and mimicked by the mitochondrial ATP-synthase inhibitor oligomycin. Experiments with exogenous substrates indicate that NMMA does not inhibit and that the NO-releasing compound does not activate islet 12-lipoxygenase or PLA2 activities. These results indicate that a novel action of NO is to increase levels of nonesterified arachidonic acid in islets.  相似文献   

4.
5.
Interleukin (IL)-1 beta-mediated damage to beta-cells in isolated islets of Langerhans depends upon de novo synthesis of proteins that have not been fully identified. Further, IL-1 beta-induced and tumor necrosis factor alpha-induced islet damage partly depends on the intracellular production of the nitric oxide (NO) radical. IL-1 beta has also been reported to induce the synthesis of cellular defense proteins, e.g., heme-oxygenase and heat shock proteins 70 and 90. Nicotinamide, while in itself inactive, inhibited IL-1 beta-induced NO production in a time- and dose-dependent manner. To enable the identification of IL-1 beta-induced proteins with possible protective and deleterious effects, we characterized the effects of IL-1 beta, nicotinamide, and NO synthesis inhibition by L-arginine depletion on rat islet protein expression detected by high-resolution two-dimensional gel electrophoresis. More than 1,600 proteins were reproducibly detected in control rat islets. Incubation with IL-1 beta-, nicotinamide-, or L-arginine-depleted control medium upregulated 29, 3, and 1 protein, respectively, and downregulated 4, 0, and 1 protein, respectively. Addition of nicotinamide and L-arginine depletion reduced the upregulation of 16 and 20 IL-1 beta-induced proteins, respectively. The identity of these proteins is under study. The demonstrated changes in protein expression caused by IL-1 beta +/- nicotinamide and L-arginine depletion may form the basis for identification of proteins with possible protective and deleterious roles in the initial beta-cell destruction in insulin-dependent diabetes mellitus.  相似文献   

6.
7.
Interleukin-1 beta (IL-1 beta) significantly inhibits insulin secretion from glucose stimulated islet cells. The mechanism for this inhibition has been hypothesized to be due to stimulation of the inducible form of nitric oxide synthase and a resulting increase in nitric oxide (NO) concentration. Ways to block the effect of IL-1 beta have focused on blocking the binding of IL-1 beta to the IL-1 receptor and the use of antioxidants to neutralize increases in NO. This report focuses on a 33 residue peptide synthesized based on the C-terminal region of the IL-1 beta molecule, a reported binding site of the IL-1 beta molecule, and the redoxcycling antioxidant pyrroloquinoline quinone (PQQ). The 33 residue peptide did not function as an antagonist, but as a weak agonist. High concentrations of PQQ itself inhibited glucose-dependent insulin release while low concentrations did not. PQQ had no effect on the actions of IL-1 beta. Three isosteric and isomeric analogues of PQQ were also investigated. One of the PQQ isomers had an inhibitory effect on insulin secretion at low concentrations where PQQ had no effect. These results reflect the sensitivity of islets to oxidative stress.  相似文献   

8.
9.
Treatment of streptozotocin (ST), tumor necrosis factor-alpha (TNF-alpha), and interleukin-1beta (IL-1beta) resulted in destroying insulin-secreting beta-cells of pancreatic islets and impairment of islet glucose oxidation and glucose-induced insulin secretion. IL-1beta and TNF-alpha inhibited insulin release and glucose utilization and oxidation. It was shown that the inhibitory effects of ST, IL-1beta, and TNF-alpha were due to impaired glucokinase activity. Glucokinase activity was severely impaired by ST, IL-1beta, and TNF-alpha treatments, as confirmed by assaying enzymes and nucleotides associated with glycolysis and glucose oxidation. On the other hand, nitric oxide was a factor of the deleterious effects of IL-1beta, TNF-alpha, and ST on pancreatic islets. Incubation of mouse pancreatic islets with ST at various concentrations of impairing insulin secretion resulted in generation of nitrite, stimulation of islet guanylyl cyclase and accumulation of cGMP, and inhibition of pancreatic islet mitochondrial aconitase activity to degree similar to those raised by IL-1beta and TNF-alpha. When the effects of IL-1beta and TNF-alpha on the gene expression of pancreatic GLUT2 and glucokinase were examined, the level of GLUT2 and glucokinase mRNA in pancreatic islets was significantly decreased. This suggested that IL-1beta and TNF-alpha downregulate gene expression of GLUT2 and glucokinase in pancreatic beta-cells.  相似文献   

10.
Immunoglobulin (Ig) fractions from the plasma of a group of newly diagnosed insulin-dependent diabetes mellitus (type 1) patients and set of control subjects were assessed for their effects on isolated mouse islet function. It was found that Igs from type 1 patients caused a significant inhibitory effect on insulin secretion when incubated with mouse islets as compared with controls (25.6 +/- 2.9 pg islet-1 h-1 vs 44.7 +/- 7.7 pg islet-1 h-1, P < 0.05). The plasma samples from which the Igs were obtained were then tested for the presence of antibodies to the mouse islet cell surface (ICSA). Four of the nine patients were positive for ICSA, and plasma samples from eight control subjects were all negative. ICSA-positive samples appeared to have the greatest inhibitory effect on insulin secretion when compared with their respective controls (53.3 +/- 7.0 pg insulin islet -1 min-1 vs 30.9 +/- 3.7 pg insulin islet -1 min-1, (P < 0.05). In contrast, it was also found that ICSA-positive Ig fractions had no significant effect on glucose oxidation when co-incubated with mouse islets as compared with the controls (11.3 +/- 2.3 pmol islet-1 h-1 vs 11.2 +/- 2.9 pmol islet-1 h-1). These studies suggest that Igs from newly diagnosed type 1 patients containing ICSA may impair insulin secretion from isolated mouse islets by mechanisms which do not involve the inhibition of B-cell glucose metabolism.  相似文献   

11.
We have examined in rats the effects of Org 9935 (4,5-dihydro-6-(5,6-dimethoxy-benzo[b]-thien-2-yl)-methyl-1-(2H)-p yridazinone), a selective inhibitor of type 3 phosphodiesterase (phosphodiesterase 3) and Org 30029 (N-hydroxy-5,6-dimethoxy-benzo[b]-thiophene-2-carboximidamide HCl), an inhibitor of phosphodiesterase 3/4 on rat plasma insulin and glucose concentrations in pentobarbitone-anaesthetised rats and on insulin secretion by rat isolated islets. We have also compared their effects on islet phosphodiesterase activity. Org 9935 (0.1 and 1.0 mg kg(-1) i.v. 15 min previously) dose dependently elevated fasting and post-glucose (0.25 g kg(-1) i.v.) plasma insulin concentrations. Org 30029 in a dose of 10 mg kg(-1), but not 1 mg kg(-1), also increased plasma insulin concentrations. Neither drug modified either fasting or post-glucose plasma glucose concentrations. Each drug augmented glucose-induced insulin release by rat isolated islets in a static incubation system, with approximate EC50 values of 1.5 microM for Org 9935 and 20 microM for Org 30029. Phosphodiesterase activity, in both supernatant and pellet fractions of islet homogenates, was inhibited concentration dependently by each drug. Although the shape of the concentration-inhibition curve for Org 30029 precluded estimation of an IC50 value, this drug was clearly much less potent than Org 9935 (IC50 about 50 nM) in inhibiting islet phosphodiesterase activity. We conclude that the increase in plasma insulin produced by each drug is a consequence of augmented insulin secretion, probably secondary to inhibition of phosphodiesterase 3 in the islet beta cell, with a resultant elevation in cAMP. The failure of the drugs to modify plasma glucose may be due to concomitant inhibition of cAMP phosphodiesterase in liver and adipose tissue.  相似文献   

12.
Prostaglandin E2 levels in isolated rat islets were increased from 64 +/- 11 pg/30 islets when incubated in medium containing 2 mM glucose to 115 +/- 9 pg/30 islets in medium containing 20 mM glucose. In contrast, glyceraldehyde (10 mM) reduced prostaglandin E2 levels to 29 +/- 6 pg/30 islets. Inhibition of glucose metabolism by mannoheptulose (10 mM) abolished the stimulatory effect of glucose on prostaglandin E2 levels and inhibited glucose-induced insulin release. The cyclooxygenase inhibitor, flurbiprofen (20 microM), did not affect insulin release caused by glucose or glyceraldehyde. In the presence of 1 mg/ml bovine serum albumin, insulin secretion induced by 20 mM glucose (6.9 +/- 1.1% of islet insulin content) was reduced by the lipoxygenase inhibitor BW755 C (20 microM) to 3.1 +/- 0.6%, and by the phospholipase A2 inhibitor, p-bromophenacyl bromide (10 microM), to 2.1 +/- 0.8%. In the absence of bovine serum albumin the inhibitory action of BW755 C and p-bromophenacyl bromide on glucose-induced insulin release was significantly more pronounced. These drugs whether in the presence or absence of bovine serum albumin, did not affect glyceraldehyde-stimulated insulin secretion. Glyceraldehyde (10 mM), potentiated glucose-induced insulin release in the presence of 2-8 mM glucose, but not for 10-20 mM glucose. Although the phospholipase A2 activator, melittin, initiated insulin release in the presence of 2 mM glucose and enhanced 10 mM glyceraldehyde-stimulated insulin secretion it had no effect on 20 mM glucose-induced insulin release. These two stimulatory effects of melittin on insulin release were totally abolished by p-bromophenacyl bromide.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
The aim of this work was to simultaneously study the secretion of islet amyloid polypeptide (IAPP) and insulin from isolated rat pancreatic islets in vitro. For examination of stimulated beta-cells, nutrient secretagogues (16.7 mM glucose, 10 mM leucine + 2 mM glutamine), phosphodiesterase inhibition (5 mM theophylline), a sulphonylurea (0.5 microgram/ml glipizide), a non-nutrient amino acid (10 mM arginine), cholinergic stimulation (0.1 mM carbamylcholine) and insulinotropic peptides (0.1 microM vasoactive intestinal polypeptide and 0.1 microM glucagon), were used. For beta-cell suppression glucose phosphorylation inhibition (10 mM mannoheptulose), depletion of extracellular calcium, activation of the ATP-regulated K(+)-channel (0.5 mM diazoxide), adrenoreceptor stimulation (3 microM adrenaline), paracrine modulation (0.1 microM somatostatin), short-term treatment with a selective beta-cytotoxin (1.1 and 2.2 mM streptozotocin) and long-term treatment with a cytokine (25 U/ml interleukin-1 beta), were studied. The compounds with known effects on insulin secretion exerted their expected actions and this was paralleled by similar relative changes, with a possible exception for glucagon, in the IAPP secretion. The ratio of IAPP/insulin released did not change significantly under any of the tested experimental conditions, except for a slight increase following carbamylcholine stimulation. On a molar basis approx. 1% of IAPP was released when compared with insulin. These results are consistent with the hypothesis that the regulation of IAPP secretion from beta-cells of isolated rat pancreatic islets is essentially regulated by the same mechanisms as insulin secretion.  相似文献   

14.
Leptin receptors are expressed in pancreatic beta-cells. However, leptin's role in islet hormone secretion is essentially unknown. In the present study, we aimed to elucidate leptin's effect on isolated pancreatic NMRI mouse islets by examining islet amyloid polypeptide (IAPP) and insulin secretion in acute experiments and after 48-hr exposure to leptin (1-100 nM). It was also examined whether a putative effect of leptin was affected by the glucose concentration. Islets were cultured in medium RPMI 1640 + 10% fetal calf serum, and the effects of leptin on islet cell replication, glucose metabolism, and hormone content were subsequently examined. Glucose-stimulated IAPP secretion was reduced both acutely and after 48-hr exposure to leptin, whereas only minor effects were found on insulin release, i.e. an inhibition in islets cultured with 1 nM leptin. An acute inhibitory effect by 10 nM leptin was observed on the ratio of IAPP/insulin release at 5.6-11.1 mM glucose, but this was overcome by 16.7 mM glucose. The islet glucose oxidation rate was enhanced by 1 nM leptin, but decreased at higher concentrations of leptin in acute experiments. In contrast, glucose metabolism was not affected in long-term experiments. Moreover, leptin did not influence islet (pro)insulin synthesis or the cell replication rate after culture. In conclusion, we show that islet IAPP release seems to be more sensitive to leptin than is insulin release. The effect of leptin on islet hormone secretion is dependent on the glucose concentration. The regulation of hormone secretion seems to be dissociated from glucose metabolism, an effect previously described in islets after exposure to certain cytokines. Our data necessarily suggest that a previously proposed negative feedback loop between leptin and insulin can be counteracted by IAPP.  相似文献   

15.
The fact that insulin-producing islet beta-cells are susceptible to the cytotoxic effects of inflammatory cytokines represents a potential hinderance to the use of such cells for transplantation therapy of insulin-dependent diabetes mellitus (IDDM). In the current study, we show that IL-1beta induces destruction of INS-1 insulinoma cells, while having no effect on a second insulinoma cell line RIN1046-38 and its engineered derivatives, and that this difference is correlated with a higher level of expression of manganese superoxide dismutase (MnSOD) in the latter cells. Stable overexpression of MnSOD in INS-1 cells provides complete protection against IL-1beta-mediated cytotoxicity, and also results in markedly reduced killing when such cells are exposed to conditioned media from activated human or rat PBMC. Further, overexpression of MnSOD in either RIN- or INS-1-derived lines results in a sharp reduction in IL-1beta-induced nitric oxide (NO) production, a finding that correlates with reduced levels of the inducible form of nitric oxide synthase (iNOS). Treatment of INS-1 cells with L-NMMA, an inhibitor of iNOS, provides the same degree of protection against IL-1beta or supernatants from LPS-activated rat PBMC as MnSOD overexpression, supporting the idea that MnSOD protects INS-1 cells by interfering with the normal IL-1beta-mediated increase in iNOS. Because NO and its derivatives have been implicated as critical mediators of beta-cell destruction in IDDM, we conclude that well regulated insulinoma cell lines engineered for MnSOD overexpression may be an attractive alternative to isolated islets as vehicles for insulin replacement in autoimmune diabetes.  相似文献   

16.
The objective of this study was to analyze allogeneic lymphocyte proliferative responses to cultured human pancreatic islets after gene transfer of viral interleukin (IL)-10 to the islets using replication-defective adenoviral vector. Human islets, either whole or dispersed into single cells, were cocultured with adenovector containing an expression cassette encoding the viral IL-10 gene under control of an SV40 promoter, this sequence replacing viral E1A and part of E1B early viral protein sequences. Subsequent production of recombinant protein by islets was determined by ELISA, and was found dependent on the multiplicity of infection (or ratio of vector to target cells). Protein was secreted by transfected islets at high levels 3-7 days after gene transfer. At high multiplicity of infection (100:1), islet viability was normal, but insulin secretion in response to glucose stimulation was blunted by 50%. Low-level recombinant viral IL-10 secretion by the islets was associated with increased allogeneic lymphocyte proliferation in mixed islet lymphocyte reactions. At protein levels in islet supernatant above 5 ng/ml, lymphocyte proliferation was significantly reduced. This pattern of viral IL-10 effect on lymphocyte proliferation correlated well with mixed lymphocyte reaction assays using purified protein. We conclude that transferred cytokine sequences are secreted by transfected islets as a function of the initial vector inoculum. The functional effect of the secreted cytokine viral IL-10 on allogeneic lymphocyte proliferation is dose dependent. Low-level recombinant protein secretion tended to augment lymphocyte proliferation, whereas high-level secretion significantly down-regulates this response.  相似文献   

17.
18.
1. We examined various type-selective phosphodiesterase (PDE) inhibitors on glucose-induced insulin secretion from rat isolated islets, on islet PDE activity and on islet cyclic AMP accumulation in order to assess the relationship between type-selective PDE inhibition and modification of insulin release. 2. The non-selective PDE inhibitor, 3-isobutyl-1-methylxanthine (IBMX, 10(-5)-10(-3) M), as well as the type III selective PDE inhibitors SK&F 94836 (10(-5)-10(-3) M), Org 9935 (10(-7)-10(-4) M), SK&F 94120 (10(-5)-10(-4) M) and ICI 118233 (10(-6)-10(-4) M) each caused concentration-dependent augmentation (up to 40% increase) of insulin release in the presence of a stimulatory glucose concentration (10 mM), but not in the presence of 3 mM glucose. 3. Neither the type IV PDE inhibitor rolipram (10(-4) M) nor the type I and type V PDE inhibitor, zaprinast (10(-4)-10(-3) M) modified glucose-induced insulin release when incubated with islets, although a higher concentration of rolipram (10(-3) M) inhibited secretion by 55%. However, when islets were preincubated with these drugs followed by incubation in their continued presence, zaprinast (10(-6)-10(-4) M) produced a concentration-dependent inhibition (up to 45% at 10(-4) M). Under these conditions, rolipram inhibited insulin secretion at a lower concentration (10(-4) M) than when simply incubated with islets. 4. A combination of SK&F 94836 (10(-5) M) and forskolin (5 x 10(-8) M) significantly augmented glucose-induced insulin secretion (30% increase), although neither drug alone, in these concentrations, produced any significant effect. 5. Islet cyclic AMP levels, which were not modified by forskolin (10-6 M), SK&F 94836 (10-4 M) or Org 9935 (10-5 M) were significantly elevated (approximately 3.7 fold increase) by forskolin inc ombination with either SK&F 94836 or Org 9935.6 Homogenates of rat islets showed a low Km (1.7 microM) and high Km (13 microM) cyclic AMP PDE in the supernatant fractions (from 48,000 g centrifugation), whereas the particulate fraction showed only a low Km (1.4 microM) cyclic AMP PDE activity.7. The PDE activity of both supernatant and pellet fractions were consistently inhibited by SK&F94836 or Org 9935, the concentrations required to reduce particulate PDE activity by 50% being 5.5 and 0.05 microM respectively.8 Rolipram (10-5 10-4 M) did not consistently inhibit PDE activity in homogenates of rat islets and zaprinast (10-4 M) consistently inhibited activity by 30% in the supernatant fraction, but not consistently in the pellet.9 These data are consistent with the presence of a type III PDE in rat islets of Langerhans.  相似文献   

19.
Glucose is the primary stimulus for insulin secretion by pancreatic beta-cells, and it triggers membrane depolarization and influx of extracellular Ca2+. Cholinergic agonists amplify insulin release by several pathways, including activation of phospholipase C, which hydrolyzes membrane polyphosphoinositides. A novel phospholipid, phosphatidylinositol 3,4,5- trisphosphate [PtdIns(3,4,5)P3], a product of phosphatidylinositol 3-kinase (PI 3-kinase), has recently been found in various cell types. We demonstrate by immunoblotting that PI 3-kinase is present in both cytosolic and membrane fractions of insulin-secreting beta-TC3 cells and in rat islets. The catalytic activity of PI 3-kinase in immunoprecipitates of islets and beta-TC3 cells was measured by the production of radioactive phosphatidylinositol 3-monophosphate from phosphatidylinositol (PtdIns) in the presence of [gamma-32P]ATP. Wortmannin, a fungal metabolite, dose dependently inhibited PI 3-kinase activity of both islets and beta-TC3 cells, with an IC50 of 1 nmol/l and a maximally effective concentration of 100 nmol/l, when it was added directly to the kinase assay. However, if intact islets were incubated with wortmannin and PI 3-kinase subsequently was determined in islet immunoprecipitates, approximately 50% inhibition of PI 3-kinase activity (but no inhibition of glucose- and carbachol-stimulated insulin secretion) from intact islets was obtained at wortmannin concentrations of 100 nmol/l. Wortmannin, at higher concentrations (1 and 10 micromol/l), inhibited glucose- and carbachol-induced insulin secretion of Intact rat islets by 58 and 92%, respectively. Wortmannin had no effect on the basal insulin release from rat islets. A similar dose curve of inhibition of glucose- and carbachol-induced insulin secretion by wortmannin was obtained when beta-TC3 cells were used. Cellular metabolism was, not changed by any wortmannin concentrations tested (0.01-10 micromol/l). Both basal cytosolic [Ca2+]i and carbamyl choline-induced increases of [Ca2]i were unaffected by wortmannin in the presence of 2.5 mmol/l Ca2+, while Ca2+ mobilization from intracellular stores was partially decreased by wortmannin. Together, these data suggest that wortmannin at concentrations that inhibit PI 3-kinase does not affect insulin secretion. PI 3-kinase is unlikely to have a major role in insulin secretion induced by glucose and carbachol.  相似文献   

20.
We studied the synergistic effect of glucose and prolactin (PRL) on insulin secretion and GLUT2 expression in cultured neonatal rat islets. After 7 days in culture, basal insulin secretion (2.8 mM glucose) was similar in control and PRL-treated islets (1.84 +/- 0.06% and 2.08 +/- 0.07% of the islet insulin content, respectively). At 5.6 and 22 mM glucose, insulin secretion was significantly higher in PRL-treated than in control islets, achieving 1.38 +/- 0.15% and 3.09 +/- 0.21% of the islet insulin content in control and 2.43 +/- 0.16% and 4.31 +/- 0.24% of the islet insulin content in PRL-treated islets, respectively. The expression of the glucose transporter GLUT2 in B-cell membranes was dose-dependently increased by exposure of the islet to increasing glucose concentrations. This effect was potentiated in islets cultured for 7 days in the presence of 2 micrograms/ml PRL. At 5.6 and 10 mM glucose, the increase in GLUT2 expression in PRL-treated islets was 75% and 150% higher than that registered in the respective control. The data presented here indicate that insulin secretion, induced by different concentrations of glucose, correlates well with the expression of the B-cell-specific glucose transporter GLUT2 in pancreatic islets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号