首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this research, nanosized Ag reinforcement particles were incorporated by mechanical means into a promising lead-free solder, Sn-0.7Cu, in an effort to improve the comprehensive property of the Sn-0.7Cu solder. Wettability, mechanical performance, and creep-rupture life tests were conducted to study the difference between Sn-0.7Cu solder and its composite solder with different Ag reinforcement volume fractions. Experimental results indicated that the composite solders and their joints showed better wettability and mechanical properties, as well as longer creep-rupture lives, than Sn-0.7Cu solder. The composite solder with 1vol.%Ag reinforcement addition exhibited the best comprehensive property as compared to the composite solders with other reinforcement volume fractions. Systematic creep-rupture life tests were conducted on the 1vol.%Ag-reinforced Sn-0.7Cu-based composite solder joints. Significant enhancement of the creep-rupture lives were found in the composite solder joints under different stress and temperature combinations as compared to the Sn-0.7Cu solder joint. Ductile rupture surfaces were exhibited in most of the broken solder joints.  相似文献   

2.
Composite solders offer improved properties compared to non-composite solders. Ni reinforced composite solder was prepared by mechanically dispersing 15 vol.% of Ni particles into eutectic Sn-3.5Ag solder paste. The average size of the Ni particle reinforcements was approximately 5 microns. The morphology, size and distribution of the reinforcing phase were characterized metallographically. Solid-state isothermal aging study was performed on small realistic size solder joints to study the formation and growth of the intermetallic (IM) layers at Ni reinforcement/solder and Cu substrate/solder interfaces. Effects of reflow on microstructure and solderability, were studied using Cu substrates. Regarding solderability, the wetting angle of multiple reflowed Ni reinforced composite solder was compared to the solder matrix alloy, eutectic Sn-3.5Ag. General findings of this study revealed that Ni particle reinforced composite solder has comparable wetting characteristics to eutectic Sn-3.5Ag solder. Significant IM layers growth was observed in the Ni composite solder joint under isothermal aging at 150 C. Microstructural evolution was insignificant when aging temperature was lower than 100 C. Multiple reflow did not significantly change the microstructure in Ni composite solder joint.  相似文献   

3.
In the present work the creep properties of Sn37Pb- and Sn0.7Cu-based composite solders reinforced with metallic nano- and microsized Cu and Ag particles have been studied. First, a series of volume percentages of reinforcements were selected to optimize the content of reinforcing particles. Then, the composite solder with optimum volume fraction of reinforcement particles, corresponding to the maximum creep rupture lifetime, was selected to investigate the effect of applied stress and temperature on the creep rupture lifetime of the composite solder joints. In the creep rupture lifetime test, small single-lap tensile-shear joints were adopted. The results indicate that composite solders reinforced with microsized particles exhibit better creep strengthening than composite solders reinforced with nanosized particles, although the mechanical tensile shear strength of composite solder joints reinforced with nanosized particles may be higher than those reinforced with microsized particles. Moreover, the creep strengthening action of the reinforcement particles is more obvious under conditions of lower applied stress or lower test temperature. Strengthening by metallic Cu or Ag reinforcement particles decreases with increasing temperature or applied stress. The Sn0.7Cu-based composite solder reinforced with microsized Ag particles is a low-cost lead-free solder that is easy to process and may have good market potential.  相似文献   

4.
In the present work, the creep strain of solder joints is measured using a stepped load creep test on a single specimen. Based on the creep strain tests, the constitutive modeling on the steady-state creep rate is determined for the Cu particle-reinforced Sn37Pb-based composite solder joint and the Sn37Pb solder joint, respectively. It is indicated that the activation energy of the Cu particle-reinforced Sn37Pb-based composite solder joint is higher than that of Sn37Pb solder joint. In addition, the stress exponent of the Cu particle-reinforced Sn37Pb-based composite solder joint is higher than that of the Sn37Pb solder joint. It is expected that the creep resistance of the Cu particle-reinforced Sn37Pb-based composite solder joint is superior to that of the Sn37Pb solder. Finally, the creep deformation mechanisms of the solder joint are discussed.  相似文献   

5.
Sn—Ag—Cu无铅焊料性能研究   总被引:2,自引:0,他引:2  
环保和微电子器件高度集成化的发展驱动了高性能无铅焊料的研究和开发,Sn—Ag-Cu系无铅焊料由于具有良好的焊接性能和使用性能,已逐渐成为一种通用电子无铅焊料。文章通过实验的方法,研究了8种不同配比的Sn—Ag—Cu焊料中银、铜含量对合金性能(包括熔点、润湿性和剪切强度)的影响,并对焊料的显微组织进行对比与分析,得出低银焊料的可靠性比高银焊料好,同时Sn-2.9Ag—1.2Cu的合金具有较低的熔点且铺展性好,为确定综合性能最佳的该系焊料合金提供了依据。  相似文献   

6.
The creep deformation behavior of eutectic Sn-3.5Ag based Ni particle rein forced composite solder joints was investigated. The Ni particle reinforced composite solder was prepared by mechanically dispersing 15 vol.% of Ni particles into eutectic Sn-3.5Ag solder paste. Static-loading creep tests were carried out on solder joint specimens at 25 C, 65 C, and 105 C, representing homologous temperatures ranging from 0.6 to 0.78. A novel-design, miniature creep-testing frame was utilized in this study. Various creep parameters such as the global and localized creep strain, steady-state creep rate, onset of tertiary creep and the activation energy for creep were quantified by mapping the distorted laser ablation pattern imprinted on the solder joint prior to testing. The Ni-reinforced composite solder joint showed improved creep resistance compared to the results previously reported for eutectic Sn-3.5Ag solder, Sn-4.0Ag-0.5Cu solder alloys, and for eutectic Sn-3.5Ag solder reinforced with Cu or Ag particle reinforcements. The activation energy for creep was ∼0.52 eV for Sn-3.5Ag and Sn-4Ag-0.5Cu solder alloys. The activation energies ranged from 0.55–0.64 eV for Cu, Ag, and Ni reinforced composite solder joints, respectively. Most often, creep fracture occurred closer to one side of the solder joint within the solder matrix.  相似文献   

7.
Study on Cu particles-enhanced SnPb composite solder   总被引:4,自引:0,他引:4  
The Sn-Pb solder is widely used in the electronics industry. With the development of surface mount technology and miniaturization of elements, mechanical properties of the solder are critical. Creep resistance and size stability of soldered joints are important for optical electronics. In the present work, Cu particles with a size of about 8 μm were added to the eutectic 63Sn-37Pb solder to improve the creep property of the soldering alloy. The contents of the Cu particles are 5 vol.% and 10 vol.% separately. The solder matrix is 63Sn37Pb particles with a normal size of 43 μm. The composite solder pastes are manufactured from a mixture of these particles with no-clean flux. Under reflow soldering, the metal particles were uniformly dispersed in the Sn-Pb alloy, and very thin intermetallic compounds were formed between the particles and matrix. To simulate practical soldering of printed circuit boards, a specially designed mini specimen with lap joint is used for the creep-rupture test. For the condition of ambient temperature, the creep-rupture lifetime of the soldered joint can be increased by one order quantitatively using the composite solder compared to the 63Sn37Pb eutectic solder. Other mechanical properties are measured also. In addition, the wetting property of the enhanced solder is good through the wettability test.  相似文献   

8.
Solder joints used in electronic applications undergo reflow operations. Such operations can affect the solderability, interface intermetallic layer formation and the resultant solder joint microstructure. These in turn can affect the overall mechanical behavior of such joints. In this study the effects of reflow on solderability and mechanical properties were studied. Nanoindentation testing (NIT) was used to obtain mechanical properties from the non-reflow (as-melted) and multiple reflowed solder materials. These studies were carried out with eutectic Sn-3.5Ag solders, with or without mechanically added Cu or Ag reinforcements, using Cu substrates. Microstructural analysis was carried out on solder joints made with the same solders using copper substrate.  相似文献   

9.
Substitution of lead-free solders in electronic assemblies requires changes in the conventional Sn:Pb finishes on substrates and component leads to prevent contamination of the candidate lead-free solder. Options for solderability preservative coatings on the printed wiring board include organic (azole or rosin/resin based) films and tin-based plated metallic coatings. This paper compares the solderability performance and corrosion protection effectiveness of electroless tin coatings vs organic azole films after exposure to a series of humidity and thermal cycling conditions. The solderability of immersion tin is directly related to the tin oxide growth on the surface and is not affected by the formation of SnCu intermetallic phases as long as the intermetallic phase is underneath a protective Sn layer. Thin azole films decompose upon heating in the presence of oxygen and lead to solderability degradation. Evaluations of lead-free solder pastes for surface mount assembly applications indicate that immersion tin significantly improves the spreading of Sn:Ag and Sn:Bi alloys as compared to azole surface finishes.  相似文献   

10.
The materials used in the present research are pure Sn metal and Sn-0.5% Cu, Sn-3.5%Ag, Sn-0.3%Sb, and Sn-3.5%Ag-0.5%Cu alloys. Effects of Cu, Ag and Sb on the creep-rupture strength of lead-free solder alloys have been investigated. Creep tests are performed at the stress and temperature range of 3 to 12 MPa and 378 to 403 K, respectively. A 3.5% addition of Ag had the largest contribution to the creep-rupture strength of Sn metal among the single addition of 0.5%Cu, 3.5%Ag, and 0.3%Sb. The combined addition of 3.5%Ag and 0.5%Cu makes the largest creep-rupture strength. The effects of these elements on the microstructure of the lead-free alloys are also investigated with optical microscope (OM) and transmission electron microscope (TEM) observations.  相似文献   

11.
Board-level drop testing is an effective method to characterize the solder joint reliability performance of miniature handheld products. In this study, drop test of printed circuit boards (PCBs) with a four-screw support condition was conducted for a 15 mm times 15 mm fine-pitch ball grid array (FBGA) package assembly with solder ball compositions of 36Pb-62Sn-2Ag and Sn-4Ag-0.5Cu on printed circuit board (PCB) surface finishes of organic solderability preservative, electroless nickel immersion gold, and immersion tin. Finite element modeling of the FBGA assembly was performed to study the stress-strain behavior of the solder joints during drop test. The drop test results revealed a strong influence of different intermetallic compound formation on soldered assemblies drop durability. The lead-based solder supersedes the lead-free composition regardless of the types of surface finish. Joints on organic solderability preservative were found to be strongest for each solder type. Other factors affecting drop reliability such as component location on the board and thermal cycling aging effects are reported. Finite element modeling results showed that a solder joint is more prone to failure on the PCB side, and the predicted solder joint stresses are location dependent. Predicted failure sites based on simulation results are consistent with experimental observations.  相似文献   

12.
印制电路板铜面保护层对无铅焊点结构影响   总被引:2,自引:1,他引:1  
采用扫描电镜与能谱测试,研究了两种不同印刷电路板铜面保护层,即有机保护层(Organic Solderability Preservatives,OSP)与浸银层(Immersion Ag,I—Ag),对无铅焊点结构的影响。结果显示,采用有机保护层的焊接界面金属间化合物层厚度明显超过了浸银层;在两种不同保护层中的焊点中,均出现薄片状或树枝状Ag3Sn金属间化合物,但在浸银层焊点中,薄片状Ag3sn主要在焊接界面层处非均匀形核长大,而有机保护层焊点中,薄片状Ag3Sn较少出现,代之以树枝状Ag3Sn近似均匀地分布在焊点中。断口分析显示,采用有机保护层的焊点中出现了较多的气孔,而且气孔主要出现在靠近铜面焊点中,这明显降低了焊点的强度。  相似文献   

13.
In this study, addition of Ag micro-particles with a content in the range between 0 and 4 wt.% to a Sn–Zn eutectic solder, were examined in order to understand the effect of Ag additions on the microstructural and mechanical properties as well as the thermal behavior of the composite solder formed. The shear strengths and the interfacial reactions of Sn–Zn micro-composite eutectic solders with Au/Ni/Cu ball grid array (BGA) pad metallizations were systematically investigated. Three distinct intermetallic compound (IMC) layers were formed at the solder interface of the Au/electrolytic Ni/Cu bond pads with the Sn–Zn composite alloys. The more Ag particles that were added to the Sn–Zn solder, the more Ag–Zn compound formed to thicken the uppermost IMC layer. The dissolved Ag–Zn IMCs formed in the bulk solder redeposited over the initially formed interfacial Au–Zn IMC layer, which prevented the whole IMC layer lifting-off from the pad surface. Cross-sectional studies of the interfaces were also conducted to correlate with the fracture surfaces.  相似文献   

14.
Nanosized Cu6Sn5 dispersoids were incorporated into Sn and Ag powders and milled together to form Sn-3Ag-0.5Cu composite solders by a mechanical alloying process. The aim of this study was to investigate the interfacial reaction between SnAgCu composite solder and electroless Ni-P/Cu UBM after heating for 15 min. at 240°C. The growth of the IMCs formed at the composite solder/EN interface was retarded as compared to the commercial Sn3Ag0.5Cu solder joints. With the aid of the elemental distribution by x-ray color mapping in electron probe microanalysis (EPMA), it was revealed that the SnAgCu composite solder exhibited a refined structure. It is proposed that the Cu6Sn5 additives were pinned on the grain boundary of Sn after heat treatment, which thus retarded the movement of Cu toward the solder/EN interface to form interfacial compounds. In addition, wetting is an essential prerequisite for soldering to ensure good bonding between solder and substrate. It was demonstrated that the contact angles of composite solder paste was <25°, and good wettability was thus assured.  相似文献   

15.
Power diodes in an alternator convert alternating current, generated by the spinning magnetic field, to direct current to be used by the battery and all the automotive electrical/electronic components. The diodes are press-fit into aluminum heatsinks to quickly and efficiently dissipate the heat from the silicon dies in the diode body. The diodes are soldered to a rectifier circuit board through the diode leads by a wave soldering process using a Pb-free, eutectic Sn-3.5Ag solder. A set of positive diodes reside on a different substrate than the set of negative diodes, resulting in differences in the lengths of the diode leads. The distance from the diode body to the solder joint on the leads of the positive diodes is 7 mm less than those of the negative diodes. Solderability, cross-section micrographs, and thermal-cycling fatigue reliability studies were compared between the positive and negative diodes and between diode designs from different suppliers. Wetting balance testing showed significant differences in solderability between positive and negative diodes and between the two different diode designs. Combining the diode body and lead together had a more drastic effect on the solderability than the lead alone. It was discovered that, although the nature of the diode design is to dissipate the heat away from the diode quickly and efficiently, there is a large temperature gradient along the lead immediately above the solder bath which can be as much as 100°C just 2 mm from the bath. This large temperature gradient caused some leads to be too “cold” to form good solder fillets. The solder fillets obtained in the laboratory wetting tests matched those observed in the actual alternators. The inadequate solder fillets resulted in a 250% difference in the thermal cycling fatigue reliability between the two diode designs.  相似文献   

16.
The worldwide transition to lead-free electronics has increased the usage of several lead-free pad finishes for electronic assembly manufacturers, including immersion silver, immersion tin, electroless nickel-immersion gold, and organic solderability preservatives. This study assesses and compares immersion silver as a circuit board finish in terms of its ease of use, wettability, solderability, shelf life, appearance, solder joint strength, intermetallic and void formation, reliability, and costs.  相似文献   

17.
Sn-9Zn solder joints containing Ag nano particles were prepared by mechanically mixing Ag nano particles (0.3, 0.5 and 1 wt%) with Sn-9Zn solder paste. In the monolithic Sn-Zn solder joints, scallop-shaped AuZn3 intermetallic compound layers were found at their interfaces. However, after the addition of Ag nano particles, an additional uniform AgZn3 intermetallic compound layer well adhered to the top surface of the AuZn3 intermetallic compound layer was found. In addition, in the solder ball region, fine spherical-shaped AgZn3 intermetallic compound particles were observed as well as Zn-rich and β-Sn phases. With the addition of Ag nano particles, the shear strengths consistently increased with an increase in the Ag nano particle content due to the uniform distribution of fine AgZn3 intermetallic compound particles. The shear strength of monolithic Sn-Zn and 1 wt% Ag nano particle content Sn-Zn solder joints after one reflow cycle were about 42.1 MPa and 48.9 MPa, respectively, while their shear strengths after eight reflow cycles were about 39.0 MPa and 48.4 MPa, respectively. The AgZn3 IMCs were found to be uniformly distributed in the β-Sn phase for Ag particle doped Sn-9Zn composite solder joints, which result in an increase in the tensile strength, due to a second phase dispersion strengthening mechanism. The fracture surface of monolithic Sn-Zn solder exhibited a brittle fracture mode with a smooth surface while Sn-Zn solder joints containing Ag nano particles showed a typical ductile failure with very rough dimpled surfaces.  相似文献   

18.
In this study, an addition of Ag micro-particles (8-10 μm) with a content in the range between 0 and 1.5 wt.% to Sn-9Zn eutectic solder, were examined in order to understand the effect of Ag additions as the particulate reinforcement on the microstructural and mechanical properties as well as the thermal behavior of the newly developed composite solders. Here, an approach to prepare a micro-composite solder alloy by mixing Ag micro-particles with a molten Sn-Zn solder alloy was developed. The composite solder was prepared by mechanically mixing Ag micro-particles into the Sn-9Zn alloy melt to ensure a homogeneous distribution of the reinforcing particles. The distribution of the Ag micro-particles in the matrix was found to be fairly uniform. The Ag particles reacted with the Zn and formed ε-AgZn3 intermetallic compounds (IMC) in the β-Sn matrix. It was found that the more Ag particles added to the Sn-9Zn solder, the more Ag-Zn compound formed. In the Sn-9Zn/XAg composite solder, the microstructure was composed of AgZn3 IMC and α-Zn phase in the β-Sn matrix. Interestingly, as the Ag particles in the composite solder increased, the α-Zn phase was found to be depleted from the matrix. The average tensile strength of the composite solders increased with the Ag micro-particles content up to a certain limit. Beyond this limit, the addition of Ag particles actually decreased the strength.  相似文献   

19.
通过对Sn0.3Ag0.7Cu/Cu和Sn3.0Ag0.5Cu/Cu焊点进行剪切测试结果表明:两种钎料焊点的剪切强度与加载速率有着明显的相关性,即焊点的剪切强度都随着加载速率的增加而增加。当加载速率为0.01 mm/s时,断裂模式为韧脆混合断裂,随着加载速率的增加,两种钎料焊点断口的韧窝数量不断增加,呈现韧性断裂特征,断口以韧窝为主。另外在相同加载速率下,Sn3.0Ag0.5Cu/Cu焊点断口的韧窝数量和分布情况都优于Sn0.3Ag0.7Cu/Cu焊点,即其韧性断裂的趋势更加明显,剪切强度更大。  相似文献   

20.
The effect of microstructure on the creep properties and the failure mechanism of SnAgCu solder joints was studied. Single overlap shear specimens made of FR-4 printed circuit boards (PCBs) with organic solderability preservative (OSP), NiAu, and immersion Sn surface finish were reflow-soldered with hypoeutectic, eutectic, and hypereutectic SnAgCu solder paste. Creep tests of the solder joints were performed at 85°C and 105°C under constant load. The effect of microstructure on the creep behavior of the joints was studied by examining the fracture surfaces and cross-sectional samples of the tested joints. Results show that the intermetallic compound at the interface between the PCB and solder affects the fracture behavior of SnAgCu solder joints, thus creating a significant difference in the creep properties of solder joints on different surface finishes. Composition of SnAgCu solder was also found to affect the creep properties of the joints.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号