首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 75 毫秒
1.
动态太阳池的yong分析   总被引:1,自引:0,他引:1  
郑宏飞  蒙沛南 《新能源》2000,22(3):1-4,15
对动态盐梯度太阳池的热性能进行了yong分析,对太阳池的yong系数、yong效率及其对外供热时整个系统的yong效率进行了理论探讨,并根据热效率与yong效率之间的制约关系探讨了太阳池的最佳运行温度。  相似文献   

2.
太阳池的研究与应用   总被引:2,自引:0,他引:2  
自从1902年Kalecsinsky首次发现了天然太阳池现象以后,经过长期的研究和发展,太阳池技术已被广泛应用于发电、取暖、海水淡化.矿物加工等领域,太阳池成为近期内进行大规模太阳能热利用的最有前景的低温热源装置。主要综述了太阳池的集热原理及建造方法、太阳池中热量的贮存及提取方式、太阳池的应用以及研究动向等,并指出目前我国太阳池技术还处于实验研究的阶段,而我国具有丰富的太阳能和盐资源,大力开发太阳池技术将为发展地方经济起到重要的作用。  相似文献   

3.
对双热源太阳池热泵技术的应用进行了模拟研究.运用有限差分的方法,太阳池模拟结果表明,所储存的能量相对比较稳定,可为变负荷载荷供热;太阳池热泵技术的应用模拟结果表明,太阳池作为地位热源时,热泵制热的性能系数在4.08~4.87.若冬季太阳池作为低位热源的提热量为20 W/m2,完全能够满足冬季供暖时的温度要求.研究结果为实际利用提供了计算方法和重要依据.  相似文献   

4.
5.
陈非力  王承交 《新能源》1994,16(5):27-30
作者运用地磁场理论,提出了建立磁性材料太阳池的设想,并就其可行性进行了探讨。  相似文献   

6.
7.
8.
《新能源》2000,22(8):47-48
印度古吉拉特邦普杰一家牛奶场的太阳池,设计容量达到每天能提供热水8万升,到目前为止已提供热水2000万升以上. 这是一座盐梯度太阳池,使用的太阳能集热器价格便宜,兼有储热功能,适合印度国情.  相似文献   

9.
张利娟  廖张洁 《太阳能》2010,(5):36-37,53
提出有机太阳池的概念,对一个小型太阳池温度随时间的变化作了相关研究,证明小型有机太阳池具有一定的集热、储热能力,并对有机覆层的选择作了简单的探讨。  相似文献   

10.
11.
地源热泵空调系统可行性分析及设计软件开发   总被引:3,自引:0,他引:3  
介绍自主开发的地源热泵空调系统可行性分析设计软件的理论基础、主要功能和操作过程,并应用实例验证软件的准确性和实用性。该软件的开发以实际可行性分析过程为参考,采用实际常用的分析模板,可以方便快捷地计算出结果,有效地提高了设计者的工作效率。  相似文献   

12.
针对由天气变化导致太阳能利用不稳定和寒冷地区热泵性能低的问题,文章介绍了一种基于相变储能的太阳能空气源热泵系统,该系统能够根据气象情况灵活切换4种供暖模式,大大减少了系统耗电量。文章通过独特设计的储能冷凝器,不仅可以调节太阳能空气源热泵系统能量分配,改善太阳能空气源热泵系统制热量和建筑热负荷之间不平衡的供需关系、提高太阳能利用率,还可以提高空气源热泵低温性能,快速恢复供暖,从而实现提高太阳能空气源热泵系统整体性能的目的。文章以石家庄农村某户为研究对象进行研究,研究结果表明,太阳能空气源热泵系统供暖效果较好,太阳能空气源热泵系统COP最大值为5.19,节能环保效益十分明显。  相似文献   

13.
In this communication, a mathematical model has been developed to predict the performance of a shallow solar pond water heater with a heat exchanger. Explicit heat balance equations are written for the plate temperature and water tank temperature, as well as for the heat extracting fluid temperature, by properly taking into account the absorption of solar radiation in the body of pond water. It is seen that efficiencies may be achieved as high as 60% at water flow rates of 0.1 – 0.2 kg/s m2. Thereafter, the efficiency becomes almost constant at higher flow rates.  相似文献   

14.
陈俭  苏顺玉  佘明威 《节能》2010,29(3):14-15
在传统太阳能热泵基础上,提出中间安装有制冷剂蒸发管的太阳能为辅助热源的空气源热泵,能够解决夏季制冷、冬季采暖和全年热水供应问题,同时在寒冷高湿地区也可以除霜。节能经济性可观。  相似文献   

15.
For grain in-store drying, a solar assisted drying process has been developed, which consists of a set including a solar-assisted heat pump, a ventilation system, a grain stirrer, etc. In this way, low power consumption, short cycle time and water content uniformity can be achieved in comparison with the conventional method. A solar-assisted heat pump drying system has been designed and manufactured for a practical granary, and the energy consumption performance of the unit is analyzed. The analysis result shows that the solar fraction of the unit is higher than 20%, the coefficient of performance about system (COPS) is 5.19, and the specific moisture extraction rate (SMER) can reach 3.05 kg/kWh.  相似文献   

16.
In this communication, an inexpensive underground shallow solar pond (SSP) water heater has been suggested, and its performance has also been studied in detail. An explicit analytical expression for temperature has been obtained. The effect of various parameters, viz duration of covering the system by insulation, duration of flow rate, flow rate, insulation thickness, water mass, etc. have also been discussed. Numerical calculations have been made for a typical cold day.  相似文献   

17.
An experimental solar assisted heat pump space heating system with a daily energy storage tank is designed and constructed, and its thermal performance is investigated. The heating system basically consists of flat plate solar collectors, a heat pump, a cylindrical storage tank, measuring units, and a heating room located in Gaziantep, Turkey (37.1°N). All measurements are automatically collected as a function of time by means of a measurement chain feeding to a data logger in combination with a PC. Hourly and daily variations of solar radiation, collector performance, coefficient of performance of the heat pump (COPHP), and that of the overall system (COPS) are calculated to evaluate the system performance. The effects of climatic conditions and certain operating parameters on the system performance parameters are investigated. COPHP is about 2.5 for a lower storage temperature at the end of a cloudy day and it is about 3.5 for a higher storage temperature at the end of a sunny day, and it fluctuates between these values in other times. Also, COPS turns out to be about 15–20% lower than COPHP. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

18.
太阳能辅助地源热泵联合供暖(制冷)运行模式分析   总被引:1,自引:0,他引:1  
太阳能和地源热泵联合供暖系统以其良好的节能和环保特性,近年来得到国内外众多学者和研究机构的广泛关注。总结了国内外地源热泵和太阳能集热器联合供暖(制冷)技术的发展现状和最新研究动态,介绍了太阳能辅助地源热泵联合供暖(制冷)的技术和特点,指出太阳能辅助地源热泵供暖(制冷)技术具有较好的发展前景。  相似文献   

19.
In this study, the energetic and exergetic efficiencies of a salt gradient cylindrical solar pond (SGCSP) that integrated and nonintegrated evacuated tube solar collectors (ETSCs) are investigated to improve daily heat preservation performance of the heat storage zone (HSZ). The integrated system is consisted of an SGCSP and four ETSCs. The SGCSP has a surface area of 2 m2, a depth of 1.65 m, salty water layers at different densities, and HSZ in which the cylindrical serpentine type heat exchanger (CSHE) is located. Thus, the daily effects of the heat storage performance of both the ETSCs and the SGCSP in the winter season was determined experimentally. The analysis of the data regarding the efficiencies of the system is investigated separately by means of experimental studies where the SGCSP is integrated and nonintegrated with the ETSCs. The number of ETSCs integrated with SGCSP is increased to 1, 2, 3, and 4, respectively, and each of the five different experimental systems is performed separately. The temperature distributions of the integrated system are measured by a data acquisition system on 11 different points per hour. The efficiencies are calculated using the data obtained from these studies. Consequently, the energetic and exergetic efficiencies of the SGCSP are obtained without collectors as 10.4% and 4.3% and with one collector as 12.83% and 6.15%, with two collectors 14.88% and 8.25%, with three collectors 16% and 9.35%, and finally with four collectors 16.94% and 10.3%, respectively. Furthermore, the theoretical efficiencies are found to be consistent with the experimental results obtained by increasing the collector numbers.  相似文献   

20.
Thermal performance parameters for a solar-assisted heat pump (SAHP) drying system with underground thermal energy storage (TES) tank and heat recovery unit (HRU) are investigated in this study. The SAHP drying system is made up of a drying unit, a heat pump, flat plate solar collectors, an underground TES tank, and HRU. An analytical model is developed to obtain the performance parameters of the drying system by using the solution of heat transfer problem around the TES tank and energy expressions for other components of the drying system. These parameters are coefficient of performances for the heat pump (COP) and system (COPs), specific moisture evaporation rate (SMER), temperature of water in the TES tank, and energy fractions for energy charging and extraction from the system. A MATLAB program has been prepared using the expressions for the drying system. The obtained results for COP, COPs, and SMER are 5.55, 5.28, and 9.25, respectively, by using wheat mass flow rate of 100 kg h−1, Carnot efficiency of 40%, collector area of 100 m2, and TES tank volume of 300 m3 when the system attains periodic operation duration in fifth year onwards for 10 years of operation. Annual energy saving is 21.4% in comparison with the same system without using HRU for the same input data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号