首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
PURPOSE: Expressions of certain macromolecules are altered by experimental retinal detachment in the cat. Related alterations in micromolecular signatures of neurons, Müller cells, and the retinal pigment epithelium (RPE) were investigated. METHODS: High-performance immunochemical mapping, image registration, and quantitative pattern recognition were combined to analyze the amino acid contents of virtually all retinal cell types after 3 to 84 days of detachment. RESULTS: Retinal micromolecular signatures showed a spectrum of alterations. The glutamate contents of Müller cells increased and remained elevated for weeks after detachment. Multispectral signatures of Müller cells showed massive metabolic instability in early detachment stages that ultimately resolved as a homogeneous profile significantly depleted in glutamine. Retinal pigment epithelial cell signals also changed dramatically, displaying an initial glutamate spike and then a prolonged decline, even as taurine levels followed an opposite pattern of initial loss and slow restoration. Neurotransmitter signatures of surviving neurons showed extensive precursor-level variation, and, in one case, GABAergic horizontal cells displayed anomalous sprouting. CONCLUSIONS: Dramatic changes in Müller cell amino acid signatures triggered by retinal detachment are partially consistent with losses in glutamine synthetase activity. Taurine signal variations suggest that orthotopic RPE cells attempt to regulate abnormal taurine concentrations in the enlarged subretinal space. Surviving neurons possess characteristic neurotransmitter signals, but their metabolite regulation seems abnormal. On balance, microchemical and structural anomalies develop in the detached cat retina that represent serious barriers to recovery of normal visual function.  相似文献   

2.
BACKGROUND: Although the choroidal neovascularization (CNV) is a common pathologic feature of a number of different eye diseases, its pathological mechanisms have not been fully elucidated. We investigated the expression of vascular endothelial growth factor (VEGF) in CNV using an experimental primate model. METHOD: CNV was induced by intense laser photocoagulation in four monkey eyes. Single eyes were enucleated at 1, 3, 7 or 14 days after photocoagulation and examined immunohistochemically for VEGF, macrophage antigen, von Willebrand factor and glial fibrillary acidic protein (GFAP). Expression of VEGF mRNA was examined by in situ hybridization. RESULTS: One day after photocoagulation, the normal structure of the outer portion of the retina and the inner portion of the choroid was destroyed. Three days after photocoagulation, choroidal vascular endothelial cells migrated into the subretinal space through the defect in Bruch's membrane. Increased expression of VEGF was detected in the accumulating macrophages, migrating retinal pigment epithelial (RPE) cells and Müller cells. Maximal expression of VEGF was observed between 3 and 7 days after wounding, and many newly formed vessels extended into the subretinal space 7-14 days after photocoagulation. CONCLUSION: VEGF derived from RPE cells, macrophages and Müller cells may play a role in the formation of CNV.  相似文献   

3.
Cellular retinaldehyde-binding protein (CRALBP) is abundant in the retinal pigment epithelium (RPE) and Müller cells of the retina where it is thought to function in retinoid metabolism and visual pigment regeneration. The protein carries 11-cis-retinal and/or 11-cis-retinol as endogenous ligands in the RPE and retina and mutations in human CRALBP that destroy retinoid binding functionality have been linked to autosomal recessive retinitis pigmentosa. CRALBP is also present in brain without endogenous retinoids, suggesting other ligands and physiological roles exist for the protein. Human recombinant cellular retinaldehyde-binding protein (rCRALBP) has been over expressed as non-fusion and fusion proteins in Escherichia coli from pET3a and pET19b vectors, respectively. The recombinant proteins typically constitute 15-20% of the soluble bacterial lysate protein and after purification, yield about 3-8 mg per liter of bacterial culture. Liquid chromatography electrospray mass spectrometry, amino acid analysis, and Edman degradation were used to demonstrate that rCRALBP exhibits the correct primary structure and mass. Circular dichroism, retinoid HPLC, UV-visible absorption spectroscopy, and solution state 19F-NMR were used to characterize the secondary structure and retinoid binding properties of rCRALBP. Human rCRALBP appears virtually identical to bovine retinal CRALBP in terms of secondary structure, thermal stability, and stereoselective retinoid-binding properties. Ligand-dependent conformational changes appear to influence a newly detected difference in the bathochromic shift exhibited by bovine and human CRALBP when complexed with 9-cis-retinal. These recombinant preparations provide valid models for human CRALBP structure-function studies.  相似文献   

4.
The mature vertebrate retina contains seven major cell types that develop from an apparently homogenous population of precursor cells. Clonal analyses have suggested that environmental influences play a major role in specifying retinal cell identity. Fibroblast growth factor-2 is present in the developing retina and regulates the survival, proliferation and differentiation of developing retinal cells in culture. Here we have tested whether fibroblast growth factor receptor signaling biases retinal cell fate decisions in vivo. Fibroblast growth factor receptors were inhibited in retinal precursors in Xenopus embryos by expressing a dominant negative form of the receptor, XFD. Dorsal animal blastomeres that give rise to the retina were injected with cDNA expression constructs for XFD and a control non-functional mutant receptor, D48, and the cell fates of transgene-expressing cells in the mature retina determined. Fibroblast growth factor receptor blockade results in almost a 50% loss of photoreceptors and amacrine cells, and a concurrent 3.5-fold increase in Müller glia, suggesting a shift towards a Müller cell fate in the absence of a fibroblast growth factor receptor signal. Inhibition of non-fibroblast-growth-factor-mediated receptor signaling with a third mutant receptor, HAVO, alters cell fate in an opposite manner. These results suggest that it is the balance of fibroblast growth factor and non-fibroblast growth factor ligand signals that influences retinal cell genesis.  相似文献   

5.
RPE65 is a potential retinoid-processing protein expressed in the retinal pigment epithelium. Mutations in the RPE65 gene have been shown to cause certain inherited retinal dystrophies. Previous studies have shown that salamander cone photoreceptor cells have a unique retinoid processing mechanism which is distinct from that of rods. To determine whether RPE65 is expressed in photoreceptors, the RPE65 cDNA was cloned from a salamander retinal cDNA library. The deduced protein consists of 533 amino acids and is 85% identical to human and bovine RPE65. The RPE65 mRNA was detected in all of the single cone cells isolated from the salamander retina, as well as in the retinal pigment epithelium by RT-PCR, but not in the isolated rods. The RT-PCR products have been confirmed to be RPE65 by DNA sequencing. The results indicate that this potential retinoid processing protein is expressed in the cone photoreceptor cells but not in rods. Therefore, this protein may contribute to the unique retinoid processing capabilities in salamander cones.  相似文献   

6.
Cellular retinaldehyde-binding protein (CRALBP) is abundant in the retinal pigment epithelium and Müller glial cells of the retina, where it forms complexes with endogenous 11-cis-retinoids. We examined the distribution of CRALBP in extraretinal tissues using polyclonal antibodies (pAb) and monoclonal antibodies (mAb). A protein was detected by immunoblot analysis in extracts of bovine and rat brain and optic nerve but not in several other tissues. This protein had electrophoretic, chromatographic, and retinoid-binding properties identical to those of CRALBP from bovine retina. Comparison of the masses of tryptic peptides and of partial amino acid sequences derived from brain and retinal CRALBP indicated that the two proteins are probably identical. Immunoperoxidase cytochemistry and double labeling immunofluorescence revealed CRALBP(+) cells in brain that resembled oligondendrocytes and not astrocytes, microglial cells, or pinealocytes. In 11-day-old rat brain, approximately 11% of the CRALBP(+) cells were labeled with the Rip antibody, a marker for oligodendroglia. In developing rat optic nerve, the temporal appearance of CRALBP(+) cells corresponded to that of oligodendrocytes and not that of astrocytes. In adult rat and mouse optic nerves, the CRALBP(+) somata showed the same distribution as oligodendrocytes. No endogenous retinoids were associated with CRALBP isolated from dark-dissected adult bovine brain. The results suggest that CRALBP has functions in addition to retinoid metabolism and visual pigment regeneration.  相似文献   

7.
PURPOSE: To establish a nomogram of amino acid signatures in normal neurons, glia, and retinal pigment epithelium (RPE) of the cat retina, guided by the premise that micromolecular signatures reflect cellular identity and metabolic integrity. The long-range objective was to provide techniques to detect subtle aberrations in cellular metabolism engendered by model interventions such as focal retinal detachment. METHODS: High-performance immunochemical mapping, image registration, and quantitative pattern recognition were combined to analyze the amino acid contents of virtually all cell types in serial 200-nm sections of normal cat retina. RESULTS: The cellular cohorts of the cat retina formed 14 separable biochemical theme classes. The photoreceptor --> bipolar cell --> ganglion cell pathway was composed of six classes, each possessing a characteristic glutamate signature. Amacrine cells could be grouped into two glycine- and three gamma-aminobutyric acid (GABA)-dominated populations. Horizontal cells possessed a distinctive GABA-rich signature completely separate from that of amacrine cells. A stable taurine-glutamine signature defined Müller cells, and a broad-spectrum aspartate-glutamate-taurine-glutamine signature was present in the normal RPE. CONCLUSIONS: In this study, basic micromolecular signatures were established for cat retina, and multiple metabolic subtypes were identified for each neurochemical class. It was shown that virtually all neuronal space can be accounted for by cells bearing characteristic glutamate, GABA, or glycine signatures. The resultant signature matrix constitutes a nomogram for assessing cellular responses to experimental challenges in disease models.  相似文献   

8.
Sensitivities of ocular tissues to acute pressure-induced ischemia   总被引:1,自引:0,他引:1  
Intraocular pressure was artificially elevated for eight hours in eight owl monkeys. The first permanent effect (produced at a perfusion pressure of plus 15 mm Hg) was partial necrosis of iris stroma and ciliary processes, associated with microscopic lesions in the photoreceptors and retina pigment epithelium around the disc and in the retinal periphery. At a slightly higher pressure, visual nerve fibers in the retina and optic nerve and their ganglion cells were affected. Simultaneously, the outer retinal layers showed damage to the pigment epithelium, photoreceptors, and other nuclear layers. At even higher pressures, nearly all the other intraocular tissues were affected except for Müller cells, astroglia in the optic nerve head, epithelium of the pars plana, and the pigment cells of the choroid. The possibility is raised of a nonischemic pressure-induced mechanism for destruction of disc astrocytes in human chronic glaucoma.  相似文献   

9.
Gap junctional communication between glial cells is thought to play a role in K+ spatial buffering, in the propagation of inter-astrocytic Ca2+ waves, and in glial-neuronal signaling. In the present study, we characterize dye coupling between astrocytes, and between astrocytes and Müller cells, in the isolated rat retina. Whole-cell patch recordings were obtained from retinal astrocytes and Müller cells and the cells filled with Lucifer Yellow and neurobiotin. Spread of Lucifer Yellow to two to ten neighboring astrocytes occurred in 90% of the astrocyte recordings. After fixation and incubation of the retina with fluorescent conjugated streptavidin, neurobiotin was seen to label clusters of 13-88 astrocytes, as well as > 100 Müller cells. In contrast, when Müller cells were filled with Lucifer Yellow and neurobiotin, both tracers were confined solely to the recorded Müller cell. The uncoupling agents octanol, halothane, and doxyl-stearic acid were tested for their ability to uncouple retinal glia in situ. All three agents eliminated the visible spread of Lucifer Yellow from the injected astrocyte and the spread of neurobiotin into Müller cells. However, only doxyl-stearic acid combined with octanol eliminated the spread of neurobiotin between astrocytes. These results demonstrate that astrocytes in the rat retina are coupled to each other and to Müller cells. The astrocyte-to-Müller cell coupling is asymmetric, allowing transfer of the tracer in the forward direction only. In addition, astrocyte-to-Müller cell coupling is more sensitive to the uncoupling agents tested than is astrocyte-to-astrocyte coupling.  相似文献   

10.
Diffuse lamellar keratitis. A new syndrome in lamellar refractive surgery   总被引:1,自引:0,他引:1  
PURPOSE: Alpha2-adrenergic agonists have specific and selective effects on the retina to induce expression of basic fibroblast growth factor and to protect photoreceptors. This work explores the signaling pathway that mediates these effects. METHODS: Alpha2-adrenergic agonists xylazine and clonidine were administered systemically to male adult Sprague-Dawley rats. The activation state of extracellular signal-regulated kinases (ERKs) in the retina was assessed by immunoblot analysis, using antibodies that specifically recognize the dually phosphorylated forms of p44/p42 ERKs. Localization of phosphorylated ERKs was determined by immunocytochemistry. RESULTS: Intramuscular injection of 6 mg/kg xylazine induced an increase in ERK phosphorylation in the retina within 30 minutes that lasted 3 hours. Xylazine induced ERK phosphorylation at 1 mg/kg and reached a maximum at 10 mg/kg. Injection of clonidine also induced ERK phosphorylation in the retina. Yohimbine, a specific alpha2-adrenergic antagonist, completely prevented the induction of ERK phosphorylation. Immunocytochemical studies showed that the increase in ERK phosphorylation occurred mainly in Müller cells. In the brain, xylazine injection resulted in a decrease in ERK phosphorylation. CONCLUSIONS: Our results indicate that systemically administered alpha2-adrenergic agonists selectively activate ERKs in retinal Müller cells. The induced activation of ERKs in Müller cells is probably one of the early events that result in photoreceptor protection. These results also indicate that Müller cells are unique in response to alpha2-adrenergic agonists and imply a role for Müller cells in alpha2-adrenergic agonist-induced photoreceptor protection.  相似文献   

11.
BACKGROUND: The sequential retinal changes in Syrian golden hamsters induced by N-methyl-N-nitrosourea (MNU) have not been studied. METHODS: Female hamsters received a single intraperitoneal injection of 90 mg/kg MNU at 50 days of age, and the retina was examined light and electron microscopically, immunohistochemically and by the TdT-mediated dUTP-digoxigenin nick end labeling (TUNEL) method until 20 weeks after the treatment. RESULTS: The retinal changes were as follows: (1) Photoreceptor apoptosis occurred 1 day after the treatment and resulted in photoreceptor loss at day 7. During the degeneration, Müller cell proliferation was conspicuous at day 5. (2) After the photoreceptor cell loss, migration of the pigment epithelial cells in all layers of the retina which were in contact with blood vessels occurred. Due to the Müller cell proliferation, gliosis was prominent at the later stage. CONCLUSIONS: The MNU injection caused photoreceptor apoptosis followed by pigment epithelial cell migration around the blood vessels, accompanied by gliosis. The primary event and the course of this disease closely resemble those of retinitis pigmentosa in humans.  相似文献   

12.
During vertebrate neural retina development, the relationship between mitotic activity in progenitor cells and the acquisition of a mature cell phenotype remains an area of controversy. The Müller glial cell has long been recognized as one of the last cell types of the retina to mature, which occurs under the influence of cell-cell interactions. In this report we examine the acquisition of the Müller cell phenotype in relation to mitotic activity. Using immunohistochemical markers, we demonstrate that a gene product characteristic of mature Müller cells, the 2M6 antigen, is expressed in mitotically active cells, even after all the major retina architectural features have been laid down. Furthermore, we show that retroviral infection, a process that requires mitotically active cells, preferentially targets Müller cell progenitors when late embryonic retina is infected in vitro. The two lines of evidence are consistent with a model for Müller cell differentiation that includes a mitotically active progenitor that has already begun to express specific differentiation gene products.  相似文献   

13.
Fixed retinae of chick embryos and chicks of the first week after hatching were fractured and examined with the scanning electron microscope. The matrix cells of the retina proliferate up to the beginning of the second week. The migrating cells are oriented in cell cords. This columnar organizaion prevails up to the development of the plexiform layers formed as a consequence of the outgrowth of the dendritic and axonal cell processes. Special attention was paid to the differentiation of the ganglion, bipolar and receptor cells, and the radial fibers (Müller cells). Two main morphological patterns are significant for the organization of the retina during neurogenesis: a)the cell to cell contacts of migrating cells and b)the spatial arrangement of Müller cells which could provide guidelines for migration of neuronal elements.  相似文献   

14.
Photoreceptors need the support of pigment epithelial (PE) and Müller glial cells in order to maintain visual sensitivity and neurotransmitter resynthesis. In rod outer segments (ROS), all-trans-retinal is transformed to all-trans-retinol by retinol dehydrogenase using NADPH. NADPH is restored in ROS by the pentose phosphate pathway utilizing high amounts of glucose supplied by choriocapillaries. The retinal formed is transported to PE cells where regeneration of 11-cis-retinal occurs. Müller cells take up and metabolize glucose predominantly to lactate which is massively released into the extracellular space (ES). Lactate is taken up by photoreceptors, where it is transformed to pyruvate which, in turn, enters the Krebs cycle in mitochondria of the inner segment. Stimulation of neurotransmitter release by darkness induces 130% rise in the amount of glutamate released into ES. Glutamate is transported into Müller cells where it is predominantly transformed to glutamine. Stimulation of photoreceptors induces an eightfold increase in glutamine formation. It appears, therefore, that there is a signaling function in the transfer of amino acids from Müller cells to photoreceptors. Work on the model-system of the honeybee retina demonstrated that photoreceptors release NH4+ and glutamate in a stimulus-dependent manner which, in turn, contribute to the biosynthesis of alanine in glia. Alanine released into the extracellular space is taken up and used by photoreceptors. Glial cells take glutamate by high-affinity transporters. This uptake induces a transient change in glial cell metabolism. The transformation of glutamate to glutamine is possibly also controlled by the uptake of NH4+ which directly affects cellular metabolism.  相似文献   

15.
PURPOSE: This study was conducted to detect the presence of muscarinic or nicotinic receptors in cultured retinal neurons and Müller cells. METHODS: Pure Müller cell cultures and cocultures of retinal neurons and Müller cells were used; the former, obtained from adult rabbit retinas, and the latter, retinal neurons from neonatal rats, were cocultured with Müller cells. Intracellular calcium ion concentration ([Ca2+]i) following the administration of acetylcholine, a cholinesterase inhibitor (trichlorfon), nicotine or muscarinic agonist with or without a receptor antagonist was monitored using the calcium ion indicator, fura-2. RESULTS: Acetylcholine and trichlorfon induced rapid increase in [Ca2+]i in half of either cell type. Trichlorfon induced positive response in coculture but not in the pure Müller cell cultures. This positive response was blocked only partially in the presence of atropine. Approximately 30-40% of neurons responded to nicotine at 5 microM, which was significantly blocked by alpha-bungarotoxin at 50 nM. No response to nicotine could be detected in Müller cells. Approximately 50% of neurons responded to muscarine at 50 microM, but 500 microM was required for the formation of calcium transients in 50% of Müller cells. The muscarine inducement of rapid increase in [Ca2+]i was blocked by atropine. The agonist of M1 (a muscarinic receptor subtype), McN-A-343, at 0.5 microM induced the most significant and rapid increase in [Ca2+]i both in neurons and Müller cells. McN-A-343 administration at 0.05 microM induced positive response in half the neurons, but only in approximately 10% of Müller cells. Such positive response was not observed following preincubation with the M1 antagonist, pirenzepine, at 50 microM. CONCLUSIONS: Cocultured retinal neurons enhance the release of acetylcholine following anticholinesterase administration, and approximately half the neurons were found to possess muscarinic and nicotinic receptors. However, Müller cells appeared to possess only the less sensitive muscarinic receptor. Muscarinic receptor subtypes on either type of cell contained at least M1.  相似文献   

16.
The distribution of mitochondria within retinal glial (Müller) cells and neurons was studied by electron microscopy, by confocal microscopy of a mitochondrial dye and by immunocytochemical demonstration of the mitochondrial enzyme GABA transaminase (GABA-T). We studied sections and enzymatically dissociated cells from adult vascularized (human, pig and rat) and avascular or pseudangiotic (guinea-pig and rabbit) mammalian retinae. The following main observations were made. (1) Müller cells in adult euangiotic (totally vascularized) retinae contain mitochondria throughout their length. (2) Müller cells from the periphery of avascular retinae display mitochondria only within the sclerad-most end of Müller cell processes. (3) Müller cells from the vascularized retinal rim around the optic nerve head in guinea-pigs contain mitochondria throughout their length. (4) Müller cells from the peripapillar myelinated region ('medullary rays') of the pseudangiotic rabbit retina contain mitochondria up to their soma. In living dissociated Müller cells from guinea-pig retina, there was no indication of low intracellular pH where the mitochondria were clustered. These data support the hypothesis that Müller cells display mitochondria only at locations of their cytoplasm where the local O2 pressure (pO2) exceeds a certain threshold. In contrast, retinal ganglion cells of guinea-pig and rabbit retinae display many mitochondria although the local pO2 in the inner (vitread) retinal layers has been reported to be extremely low. It is probable that the alignment of mitochondria and the expression of mitochondrial enzymes are regulated by different mechanisms in various types of retinal neurons and glial cells.  相似文献   

17.
In this study, we demonstrate that: (i) injection of an adenovirus (Ad) vector containing the brain-derived neurotrophic factor (BDNF) gene (Ad.BDNF) into the vitreous chamber of adult rats results in selective transgene expression by Müller cells; (ii) in vitro, Müller cells infected with Ad.BDNF secrete BDNF that enhances neuronal survival; (iii) in vivo, Ad-mediated expression of functional BDNF by Müller cells, temporarily extends the survival of axotomized retinal ganglion cells (RGCs); 16 days after axotomy, injured retinas treated with Ad.BDNF showed a 4.5-fold increase in surviving RGCs compared with control retinas; (iv) the transient expression of the BDNF transgene, which lasted approximately 10 days, can be prolonged with immunosuppression for at least 30 days, and such Ad-mediated BDNF remains biologically active, (v) persistent expression of BDNF by infected Müller cells does not further enhance the survival of injured RGCs, indicating that the effect of this neurotrophin on RGC survival is limited by changes induced by the lesion within 10-16 days after optic nerve transection rather than the availability of BDNF. Thus, Ad-transduced Müller cells are a novel pathway for sustained delivery of BDNF to acutely-injured RGCs. Because these cells span the entire thickness of the retina, Ad-mediated gene delivery to Müller cells may also be useful to influence photoreceptors and other retinal neurons.  相似文献   

18.
We produced the monoclonal antibody RT10F7, characterized its antigenic specificity and expression in the adult and developing retina, in cultured retinal cells and in other parts of the central nervous system. In metabolically-labelled retinal cultures RT10F7 immunoprecipitated a protein of approximately 36,000 mol. wt. In the adult, RT10F7 stained endfeet of Müller cells in the ganglion cell layer, four horizontal bands in the inner plexiform layer, and radial fibres in the outer plexiform layer which terminated at the outer limiting membrane. In the inner nuclear layer, most somata were underlined by Müller processes that wrapped around them, but some cell bodies were immunoreactive for RT10F7 in the cytoplasm. During development, postnatal day 21 was the first age at which the adult pattern of immunoreactivity was present, although a fourth band in the inner plexiform layer was less clear than for the adult. By 14 and eight days after birth, the pattern of RT10F7 immunoreactivity approximated that of the adult; however, only three bands and one band were present, respectively, in the inner plexiform layer. At earlier ages, postnatal days 4, 1 and embryonic ages 19 and 15, the monoclonal antibody stained Müller cell endfeet and radial fibres, from the inner plexiform layer through the neuroblastic layer to the outer limiting membrane. At these ages, the immunoreactivity was more prominent at the level of Müller cell endfeet. The monoclonal antibody stained glia in preparations of dissociated retinal cells maintained in culture but not astrocytes or oligodendrocytes from optic nerve cultures. In brain sections, tanycytes exhibited RT10F7 immunoreactivity. The monoclonal antibody RT10F7 recognized a specific cell type in the retina, the Müller cell. In the adult and developing retina, RT10F7 recognized an antigen that is present primarily in Müller cell processes. This feature allowed us to follow the maturation of the Müller cell and correlate it with developmental events in the retina. RT10F7 is a specific marker for Müller cells in vivo and in vitro and may be useful for studies of function of Müller cells after ablation or after injuries that are known to activate Müller cells.  相似文献   

19.
In the retina of most vertebrates there exists only one type of macroglia, the Müller cell. Müller cells express voltage-gated ion channels, neurotransmitter receptors and various uptake carrier systems. These properties enable the Müller cells to control the activity of retinal neurons by regulating the extracellular concentration of neuroactive substances such as K+, GABA and glutamate. We show here how electrophysiological recordings from enzymatically dissociated mammalian Müller cells can be used to study these mechanisms. Müller cells from various species have Na(+)-dependent GABA uptake carriers, but only cells from primates have additional GABA receptors that activate Cl- channels. Application of glutamate analogues causes enhanced membrane currents recorded from Müller cells in situ but not from isolated cells. We show that mammalian Müller cells have no ionotropic glutamate receptors but respond to increased K+ release from glutamate-stimulated retinal neurons. This response is involved in extracellular K+ clearance and is mediated by voltage-gated (inwardly rectifying) K+ channels which are abundantly expressed by healthy Müller cells. In various cases of human retinal pathology, currents through these channels are strongly reduced or even extinguished. Another type of voltage-gated ion channels, observed in Müller cells from many mammalian species, are Na+ channels. In Müller cells from diseased human retinae, voltage-dependent Na+ currents were significantly increased in comparison to cells from control donors. Thus, the expression of glial ion channels seems to be controlled by neuronal signals. This interaction may be involved in the pathogenesis of retinal gliosis which inevitably accompanies any degeneration of retinal neurons. In particular, Müller cell proliferation may be triggered by mechanisms requiring the activation of Ca(2+)-dependent K+ channels. Ca(2+)-dependent K+ currents are easily elicitable in Müller cells from degenerating retinae and can be blocked by 1 mM TEA (tetraethylammonium). In purified Müller cell cultures, the application of 1 mM TEA greatly reduces the proliferative activity of the cells. These data clearly show that Müller cells are altered in cases of neuronal degeneration and may be crucially involved in pathogenetic mechanisms of the retina.  相似文献   

20.
Glutamate is the most prominent excitatory neurotransmitter in the retina and brain. It has become clear that the physiology of many glial cells, including retinal Müller cells, is modified by a host of neurotransmitters, including glutamate. The experiments presented here demonstrate that Müller cells isolated from the tiger salamander retina have metabotropic glutamate receptors that, when activated, lead to the release of calcium ions (Ca2+) from intracellular stores. The Ca2+-sensitive fluorescent dye, Fura-2, and video imaging microscopy were used to monitor changes in cytosolic calcium ion concentration ([Ca2+]i) evoked by glutamate (30-50 microM), (1S,3R)-ACPD (50-200 microM), quisqualate (10-50 microM), and L-AP4 (5-100 microM). Bath application of each of these metabotropic receptor agonists in the absence of extracellular Ca2+ resulted in an increase in [Ca2+]i that often began in the distal end of the cell and occurred later in the endfoot. This wavelike increase in [Ca2+]i is reminiscent of the Ca2+ waves evoked in these cells by other Ca2+ releasing agents such as ryanodine and caffeine. Extracellular application ofATP also evoked increases in [Ca2+] in Müller cells. The presence on Müller cells of receptors for retinal neurotransmitters, such as glutamate and ATP, demonstrates that these glial cells can respond to changes in the retinal extracellular environment and hence neuronal activity. Since Müller cells span almost all layers of the retina, they are likely to be exposed to most retinal neurotransmitters. The Ca2+ waves evoked in Müller cells by neurotransmitters could represent a form of signaling from the outer retinal layers to the inner ones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号