首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Modulated (frequency-domain) infrared photothermal radiometry (PTR) is used as a dynamic quantitative dental inspection tool complementary to modulated luminescence (LM) to quantify sound enamel or dentin. A dynamic high-spatial-resolution experimental imaging setup, which can provide simultaneous measurements of laser-induced modulated PTR and LM signals from defects in teeth, has been developed. Following optical absorption of laser photons, the experimental setup can monitor simultaneously and independently the nonradiative (optical-to-thermal) energy conversion by infrared PTR and the radiative deexcitation by LM emission. The relaxation lifetimes (tau1, tau2) and optical absorption, scattering, and spectrally averaged infrared emission coefficients (mu(alpha), mu(s), mu(IR)) of enamel are then determined with realistic three-dimensional LM and photothermal models for turbid media followed by multiparameter fits to the data. A quantitative band of values for healthy enamel with respect to these parameters can be generated so as to provide an explicit criterion for the assessment of healthy enamel and, in a future extension, to facilitate the diagnosis of the onset of demineralization in carious enamel.  相似文献   

2.
A frequency-domain photon migration (FDPM) technique is developed for quantitative measurement of the absorption and reduced scattering coefficients of highly turbid samples in a small-volume (0.45-ml) reflective cuvette. We present both an analytical model for the FDPM cuvette and its experimental verification, using calibrated phantoms and suspensions of living cells. FDPM model fits to experimental data demonstrate that the reduced scattering (mu(s)?) and absorption (mu(a)) coefficients can be derived with accuracies of 5-10% and 10-15%, respectively. Changing the cuvette wall reflectivity alters the frequency-dependent behavior of photon density waves (PDWs). For highly reflective wall boundaries (R(eff) >/= 90-95%), PDW confinement leads to substantial enhancement in both amplitude and phase compared with identical samples in infinite media. Results from experiments on microsphere suspensions are compared with predictions from Mie theory to assess the potential of this method to interpret scattering properties in terms of scatterer size and density. Optical property measurements of biological cell suspensions are reported, and the possibility of optically monitoring cell physiology in a carefully controlled environment is demonstrated.  相似文献   

3.
We report on the application of pulsed photothermal radiometry (PPTR) to determine the depth of in-vitro and in-vivo subsurface chromophores in biological materials. Measurements provided by PPTR in combination with a nonnegative constrained conjugate-gradient algorithm are used to determine the initial temperature distribution in a biological material immediately following pulsed laser irradiation. Within the experimental error, chromophore depths (50-450 μm) in 55 in-vitro collagen phantoms determined by PPTR and optical low-coherence reflectometry are equivalent. The depths of port-wine-stain blood vessels determined by PPTR correlate very well with their locations found by computer-assisted microscopic observation of histologic sections. The mean blood-vessel depth deduced from PPTR and histologic observation is statistically indistinguishable (p > 0.94).  相似文献   

4.
Light propagation in two-layered turbid media having an infinitely thick second layer is investigated in the steady-state, frequency, and time domains. A solution of the diffusion approximation to the transport equation is derived by employing the extrapolated boundary condition. We compare the reflectance calculated from this solution with that computed with Monte Carlo simulations and show good agreement. To investigate if it is possible to determine the optical coefficients of the two layers and the thickness of the first layer, the solution of the diffusion equation is fitted to reflectance data obtained from both the diffusion equation and the Monte Carlo simulations. Although it is found that it is, in principle, possible to derive the optical coefficients of the two layers and the thickness of the first layer, we concentrate on the determination of the optical coefficients, knowing the thickness of the first layer. In the frequency domain, for example, it is shown that it is sufficient to make relative measurements of the phase and the steady-state reflectance at three distances from the illumination point to obtain useful estimates of the optical coefficients. Measurements of the absolute steady-state spatially resolved reflectance performed on two-layered solid phantoms confirm the theoretical results.  相似文献   

5.
A technique for measuring broadband near-infrared absorption spectra of turbid media that uses a combination of frequency-domain (FD) and steady-state (SS) reflectance methods is presented. Most of the wavelength coverage is provided by a white-light SS measurement, whereas the FD data are acquired at a few selected wavelengths. Coefficients of absorption (mu(a)) and reduced scattering (mu(s)') derived from the FD data are used to calibrate the intensity of the SS measurements and to estimate mu(s)' at all wavelengths in the spectral window of interest. After these steps are performed, one can determine mu(a) by comparing the SS reflectance values with the predictions of diffusion theory, wavelength by wavelength. Absorption spectra of a turbid phantom and of human breast tissue in vivo, derived with the combined SSFD technique, agree well with expected reference values. All measurements can be performed at a single source-detector separation distance, reducing the variations in sampling volume that exist in multidistance methods. The technique uses relatively inexpensive light sources and detectors and is easily implemented on an existing multiwavelength FD system.  相似文献   

6.
The general two-layer inverse problem in biomedical photon migration is to estimate the absorption and scattering coefficients of each layer as well as the top-layer thickness. We attempted to solve this problem, using experimental and simulated spatially resolved frequency-domain (FD) reflectance for optical properties typical of skin overlying muscle or skin overlying fat in the near infrared. Two forward models of light propagation were used: a two-layer diffusion solution [Appl. Opt. 37, 779 (1998)] and a hybrid Monte Carlo (MC) diffusion model [Appl. Opt. 37, 7401 (1998)]. MC-simulated FD reflectance data were fitted as relative measurements to the hybrid and the pure diffusion models. It was found that the hybrid model could determine all the optical properties of the two-layer media studied to ~5%. Also, the same accuracy could be achieved by means of fitting MC-simulated cw reflectance data as absolute measurements, but fitting them as relative ones is an ill-posed problem. In contrast, two-layer diffusion could not retrieve the top-layer optical properties as accurately for FD data and was ill-posed for both relative and absolute cw data. The hybrid and the pure diffusion models were also fitted to experimental FD reflectance measurements from two-layer tissue-simulating phantoms representative of skin-on-fat and skin-on-muscle baseline optical properties. Both the hybrid and the diffusion models could determine the optical properties of the lower layer. The hybrid model demonstrated its potential to retrieve quantitatively the transport scattering coefficient of skin (the upper layer), which was not possible with the pure diffusion model. Systematic discrepancies between model and experiment may compromise the accuracy of the deduced top-layer optical properties. Identifying and eliminating such discrepancies is critical to practical application of the method.  相似文献   

7.
Li H  Wang LV 《Applied optics》2002,41(22):4739-4742
Based on measurement of the intensity autocorrelation function, a new method to determine the modulation depth of scattered laser light modulated by an ultrasonic wave in turbid media was applied to ultrasound-modulated optical tomography. Good signal-to-noise ratios and high sensitivities were demonstrated. Images of double optically absorbing objects buried in a highly optically scattering gel sample were obtained. The contrast was more than 10%, and the spatial resolution was approximately 2 mm.  相似文献   

8.
Polarization-sensitive optical coherence tomography provides high-resolution cross-sectional characterization of birefringence in turbid media. Weakly birefringent biological tissues such as the retinal nerve fiber layer (RNFL) require advanced speckle noise reduction for high-sensitivity measurement of form birefringence. We present a novel method for high-sensitivity birefringence quantification by using enhanced polarization-sensitive optical coherence tomography (EPS-OCT) and introduce the polarimetric signal-to-noise ratio, a mathematical tool for analyzing speckle noise in polarimetry. Multiple incident polarization states and non-linear fitting of normalized Stokes vectors allow determination of retardation with +/-1 degrees uncertainty with invariance to unknown unitary polarization transformations. Results from a weakly birefringent turbid film and in vivo primate RNFL are presented. In addition, we discuss the potential of EPS-OCT for noninvasive quantification of intracellular filamentous nanostructures, such as neurotubules in the RNFL that are lost during the progression of glaucoma.  相似文献   

9.
Frequency-domain photon migration (FDPM) is a widely used technique for measuring the optical properties (i.e., absorption, micro(a), and reduced scattering, micro(s)', coefficients) of turbid samples. Typically, FDPM data analysis is performed with models based on a photon diffusion equation; however, analytical solutions are difficult to obtain for many realistic geometries. Here, we describe the use of models based instead on representative samples and multivariate calibration (chemometrics). FDPM data at seven wavelengths (ranging from 674 to 956 nm) and multiple modulation frequencies (ranging from 50 to 600 MHz) were gathered from turbid samples containing mixtures of three absorbing dyes. Values for micro(a) and micro(s)' were extracted from the FDPM data in different ways, first with the diffusion theory and then with the chemometric technique of partial least squares. Dye concentrations were determined from the FDPM data by three methods, first by least-squares fits to the diffusion results and then by two chemometric approaches. The accuracy of the chemometric predictions was comparable or superior for all three dyes. Our results indicate that chemometrics can recover optical properties and dye concentrations from the frequency-dependent behavior of photon density waves, without the need for diffusion-based models. Future applications to more complicated geometries, lower-scattering samples, and simpler FDPM instrumentation are discussed.  相似文献   

10.
An experimental study of the detectability of an object embedded in optically tissue-equivalent media by frequency-domain image reconstruction is presented. The experiments were performed in an 86-mm-diameter cylindrical phantom containing an optically homogeneous cylindrical target whose absorption and scattering properties presented a 2:1 contrast with the background medium. The parameter space explored during experimentation involved object size (15-, 8-, and 4-mm targets) and location (centered, 20-mm off-centered, and 35-mm off-centered) variations. Image reconstruction was achieved with a previously reported regularized least-squares approach that incorporates finite-element solutions of the diffusion equation and Newton's method solutions of the nonlinear minimization problem. Also included during image formation were image enhancement schemes-(1) total variation minimization, (2) dual meshing, and (3) spatial low-pass filtering-which have recently been added. Quantitative measures of image quality including the size, location, and shape of the heterogeneity along with errors in its recovered optical property values are used to quantify the image reconstructions. The results show that a near 22:1 ratio of tissue thickness relative to detectable object size has been achieved with this approach in the laboratory conditions and parameter space that have been investigated.  相似文献   

11.
Chin LC  Whelan WM  Vitkin IA 《Applied optics》2006,45(9):2101-2114
Motivated by a recent report by Dickey et al. [Phys. Med. Biol. 46, 2359 (2001)], who demonstrated optical property retrieval by using relative radiance measurements at a single position, we investigate the uniqueness of relative radiance measurements for quantifying the optical properties of turbid media by studying the solutions of the diffusion and P3 approximations of the Boltzmann transfer equation for a point source. Using the P3 approximation, we investigate the potential of radiance measurements for optical property recovery by examining the optical property response surface for point radiance information. We further derive first-order similarity relations for relative point radiance measurements and use these expressions to examine analytically the effects of noise on optical property retrieval over a wide range of optical properties typical of biological tissue. Finally, optimal experimental configurations are studied and explicit conditions for uniqueness derived that suggest potential strategies for improving optical property recovery. It is expected that point radiance measurements will prove valuable for both on-line treatment planning of minimally invasive laser therapies and optical characterization of tissues.  相似文献   

12.
Iftimia N  Jiang H 《Applied optics》2000,39(28):5256-5261
We present a detailed experimental study concerning quantitative optical property reconstruction of heterogeneous turbid media by use of absolute dc data only. We performed experiments by using tissuelike phantoms in both single-target and multitarget configurations in which variations in target size and optical contrast with the background were explored. Our results show that both scattering and absorption images can be reconstructed quantitatively by use of dc data only, whereas it was impossible to obtain such quantitative information in previously reported studies. We believe that this improvement is primarily a result of the realization of a novel data preprocessing/optimization scheme for accurately determining several critical parameters needed for reconstruction. The use of this data preprocessing/optimization scheme also eliminates the calibration reference measurement previously required for reconstruction. Experimental confirmation of this scheme is given in detail.  相似文献   

13.
We compare two methods for the optical characterization of turbid media. The estimates of the absorption and reduced scattering coefficients (mu(a) and mu(')(s)) by a spatially resolved method and a time-resolved method are performed on tissue-like phantoms. Aqueous suspension of microspheres and Intralipid are used as scattering media with the addition of ink as an absorber. mu(')(s) is first measured on weakly absorbing media. The robustness of these measurements is then tested with respect to a variation of mu(a). The spatially resolved method gave more accurate estimates for mu(')(s) whereas the time-resolved method gave better results for mu(a) estimates.  相似文献   

14.
15.
Amelink A  Sterenborg HJ 《Applied optics》2004,43(15):3048-3054
We report on the development of an optical-fiber-based diagnostic tool with which to determine the local optical properties of a turbid medium. By using a single fiber in contact with the medium to deliver and detect white light, we have optimized the probability of detection of photons scattered from small depths. The contribution of scattered light from greater depths to the signal is measured and subtracted with an additional fiber, i.e., a collection fiber, to yield a differential backscatter signal. Phantoms demonstrate that, when photons have large mean free paths compared with the fiber diameter, single scattering dominates the differential backscatter signal. When photons have small mean free paths compared with the fiber diameter, the apparent path length of the photons that contribute to the differential backscatter signal becomes approximately equal to 4/5 of the fiber diameter. This effect is nearly independent of the optical properties of the sample under investigation.  相似文献   

16.
Optical Doppler tomography is demonstrated to be a simple, accurate, and noncontact method for measuring the fluid velocity of laminar flow in small-diameter (~0.5-mm) ducts. Studies are described that utilize circular (square) plastic (glass) ducts infused with a moving suspension of polymer microspheres in air and buried in an optically turbid medium. The measurement of Doppler-shifted frequencies of backscattered light from moving microspheres is used to construct a high-resolution spatial profile of fluid-flow velocity in the ducts.  相似文献   

17.
The thermal diffusivity of various types of aluminum has been measured, using a completely noncontact experimental configuration based on infrared photothermal radiometry. Photothermal response transients, conventional frequency scans, and pulse duration- or repetition rate-scanned rate windows have been investigated. It has been shown that the conventional frequency scan is not suitable for measurements of aluminum with a short thermal transport time such as foils, due to an extremely degraded signal-to-noise ratio (SNR). Also, it has been found that the conventional frequency scan method is less sensitive to the actual value of thermal diffusivity than the rate-window scan. The rate-window method, furthermore, gives superior SNR especially for thin metals and yields excellent agreement between the theory and the data. An advantage of the pulse duration-scanned rate window mode is that it does not require knowledge of the instrumental transfer function as an input. The transient response gives the worst SNR but is best for the physical interpretation of the photothermal signals. In addition, it has been shown that the infrared photothermal radiometric transmission mode is less sensitive to surface roughness than the reflection mode and, therefore, is preferable for thermal diffusivity measurements of aluminum and of good thermal conductors, in general.  相似文献   

18.
We introduce a novel method for determining analyte concentration as a function of depth in a highly scattering media by use of a dual-wavelength optical coherence tomography system. We account for the effect of scattering on the measured attenuation by using a second wavelength that is not absorbed by the sample. We assess the applicability of this technique by measuring the concentration of water in an Intralipid phantom, using a probe wavelength of 1.53 mum and a reference wavelength of 1.31 mum. The results of our study show a strong correlation between the measured absorption and the water content of the sample. The accuracy of the technique, however, was limited by the dominance of scattering over absorption in the turbid media. Thus, although the effects of scattering were minimized, significant errors remained in the calculated absorption values. More-accurate results could be obtained with the use of more powerful superluminescent diodes and a choice of wavelengths at which absorption effects are more significant relative to scattering.  相似文献   

19.
Li B  Blaschke H  Ristau D 《Applied optics》2006,45(23):5827-5831
To the best of our knowledge, a combined sensitive technique employing both laser calorimetry and a surface thermal lens scheme for measuring absorption values of optical coatings is presented for the first time. Laser calorimetric and pulsed surface thermal lens signals are simultaneously obtained with a highly reflecting UV coating sample irradiated at 193 nm. The advantages and potential applications of the combined technique and the experimental factors limiting the measurement sensitivity are discussed.  相似文献   

20.
Fiber-optic probes are widely used in optical spectroscopy of biological tissues and other turbid media. Only limited information exists, however, on the ways in which the illumination-collection geometry and the overall probe design influence the interrogation of media. We have investigated both experimentally and computationally the effect of probe-to-target distance (PTD) on the diffuse reflectance collected from an isotropically (Lambertian) scattering target and an agar-based tissue phantom. Studies were conducted with three probes characterized by either common (single-fiber) or separate (two bifurcated multifiber probes) illumination and collection channels. This study demonstrates that PTD, probe design, and tissue scattering anisotropy influence the extent of the transport of light into the medium, the light-collection efficiency, and the sampling volume of collected light. The findings can be applied toward optimization of fiber-optic probe designs for quantitative optical spectroscopy of turbid media including biological tissues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号