首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In order to improve the hot corrosion resistance of yttria-stabilized zirconia (YSZ), an Al2O3 overlay has been deposited on the surface of YSZ by electron-beam physical vapor deposition. Hot corrosion tests have been performed on the YSZ coatings with and without an Al2O3 overlay in the molten salt mixture (Na2SO4+0–15 wt% V2O5) at 950°C. The presence of V2O5 in the molten salt exacerbates degradation of both the monolithic YSZ coating and the composite YSZ/Al2O3 system. The formation of a low-melting Na2O–V2O5–Al2O3 liquid phase is responsible for degradation of the Al2O3 overlay. The Al2O3 overlay acts as a barrier against the infiltration of the molten salt into the YSZ coating during exposure to the molten salt mixture with <5 wt% vanadate.  相似文献   

2.
The XRD patterns at ambient temperature and at 1500°C showed that the spinel in the Al2O3–MgO castables fired at 1500°C for 3 h has the higher peak intensity, compared to those in Al2O3–spinel castables; the interplanar distance in the set (311) is 2.43 Å for the spinel in Al2O3–MgO castables as well as the spinels in Al2O3–spinel castables using spinels containing 73, 90, and 94 wt% Al2O3, respectively. The corresponding alumina contents of the spinels in these castables were estimated to be around 75 wt%. The smaller grain size of the spinel in Al2O3–MgO castables compared to that in Al2O3–spinel castables is evidenced by the recrystallization of the in situ spinel only occurring in Al2O3–MgO castables as revealed by the XRD patterns at ambient temperature and at 1500°C. The larger amount and smaller grain size of the in situ spinel in the matrix mostly account for the better slag resistance of Al2O3–MgO castables, compared to Al2O3–spinel castables.  相似文献   

3.
ZrO2–Al2O3 nanocrystalline powders have been synthesized by oxidizing ternary Zr2Al3C4 powders. The simultaneous oxidation of Al and Zr in Zr2Al3C4 results in homogeneous mixture of ZrO2 and Al2O3 at nanoscale. Bulk nano- and submicro-composites were prepared by hot-pressing as-oxidized powders at 1100°–1500°C. The composition and microstructure evolution during sintering was investigated by XRD, Raman spectroscopy, SEM, and TEM. The crystallite size of ZrO2 in the composites increased from 7.5 nm for as-oxidized powders to about 0.5 μm at 1500°C, while the tetragonal polymorph gradually converted to monolithic one with increasing crystallite size. The Al2O3 in the composites transformed from an amorphous phase in as oxidized powders to θ phase at 1100°C and α phase at higher temperatures. The hardness of the composite increased from 2.0 GPa at 1100°C to 13.5 GPa at 1400°C due to the increase of density.  相似文献   

4.
Fabrication of mullite (3Al2O3·2SiO2) coatings by chemical vapor deposition (CVD) using AlCl3–SiCl4–H2–CO2 gas mixtures was studied. The resultant CVD mullite coating microstructures were sensitive to gas-phase composition and deposition temperature. Chemical thermodynamic calculations performed on the AlCl3–SiCl4–H2–CO2 system were used to predict an equilibrium CVD phase diagram. Results from the thermodynamic analysis, process optimization, and effects of various process parameters on coating morphology are discussed. Dense, adherent crystalline CVD mullite coatings ∼2 μm thick were successfully grown on Si3N4 substrates at 1000°C and 10.7 kPa total pressure. The resultant coatings were 001 textured and contained well-faceted grains ∼0.3–0.5 μm in size.  相似文献   

5.
The wettability of binary and ternary glasses belonging to SiO2–Al2O3–ZrO2 diagram has been studied using the sessile drop technique at 1750° and 1800°C. The ternary SiO2–Al2O3–ZrO2 (90–5–5 wt%) glass has proved to be well appropriated as a molybdenum oxidation barrier coating. The addition of 5 wt% of MoO2 slightly improves its wettablity at higher temperatures without affecting its oxidation barrier properties. The Mo comes into the glass network as a mixture of Mo5+, Mo4+, and Mo6+. After oxidation at 1000°C in oxygen atmosphere, the molybdenum remains in the glass network as Mo6+.  相似文献   

6.
The thermal expansion of Al2O3–MgO castables containing 5.5 wt% MgO and 1.36 wt% CaO and Al2O3–spinel castables containing 20 wt% spinel having 95 wt% Al2O3 and 1.7 wt% CaO was measured in the temperature range of 800–1650°C by dilatometry. A sharp increase in expansion from around 1425° to 1525°C, followed by a sharp decrease with further increasing temperature, is characteristic of Al2O3–MgO castables. The sharp increase in expansion is believed to be caused by the bond linkage between the CA6 and spinel grains in the bonding matrix, while the sharp decrease is apparently related to liquid-phase sintering. The sharp increase and decrease in expansion were not observed in Al2O3–spinel castables because of the much lower MgO (around 1 wt% MgO) and impurity contents. The magnitude of thermal expansion of calcium aluminate bonded castables containing self-forming or preforming spinels or both is dictated by the MgO content of the castables.  相似文献   

7.
This paper reports ionic conductivity of yttria-stabilized zirconia (YSZ)–Al2O3 composite membranes. The tape cast specimens were subjected to binder burnout (500°C) and sintering (1550°C) processes to obtain 200–300 μm thick membranes. The ionic conductivity and microstructure of the membranes were characterized and are discussed in this paper. The ionic conductivity of the composite specimens was enhanced and was correlated with the number of charge carrier and their mobility. The solubility of Al2O3 in YSZ was minimal and nanosize Al2O3 of the batch sintered into microsize and existed as a distinct phase. The scanning electron microscopy micrographs revealed that YSZ and Al2O3 grains were strained.  相似文献   

8.
This study was aimed at developing a novel spraying process using a radio-frequency (rf) plasma. Experiments of Al2O3 and ZrO2–8 wt% Y2O3 spraying showed that the initial powder size was the most important parameter for depositing dense coatings. The optimum powder sizes of Al2O3 and ZrO2–8 wt% Y2O3 were considered to be around 100 and 80 μm, respectively. The use of such large-size powders compared with those used by conventional dc plasma spraying made it possible to deposit adherent ceramics coatings of 150 to 300 μm on as-rolled SS304 substrates. It was also shown that low particle velocity of about 10 m/s, which is peculiar to rf plasma spraying, was sufficient for particle deformation, though it imposed a severe limitation on the substrate position. These experimental results have proved that rf plasma spraying is an effective process and must be a strong candidate to open new fields of spraying applications.  相似文献   

9.
Zirconia doped with 3.2–4.2 mol% (6–8 wt%) yttria (3–4YSZ) is currently the material of choice for thermal barrier coating topcoats. The present study examines the ZrO2-Y2O3-Ta2O5/Nb2O5 systems for potential alternative chemistries that would overcome the limitations of the 3–4YSZ. A rationale for choosing specific compositions based on the effect of defect chemistry on the thermal conductivity and phase stability in zirconia-based systems is presented. The results show that it is possible to produce stable (for up to 200 h at 1000°–1500°C), single (tetragonal) or dual (tetragonal + cubic) phase chemistries that have thermal conductivity that is as low (1.8–2.8W/m K) as the 3–4YSZ, a wide range of elastic moduli (150–232 GPa), and a similar mean coefficient of thermal expansion at 1000°C. The chemistries can be plasma sprayed without change in composition or deleterious effects to phase stability. Preliminary burner rig testing results on one of the compositions are also presented.  相似文献   

10.
The sintering behavior and electrical conductivity of high-purity 8-mol% Y2O3-stabilized ZrO2 (8YSZ) with Al2O3 additions were investigated. The addition of 1 wt% AI2O3 to 8YSZ provided dense, sintered samples with 9.1% relative density at 1400°C without a holding time. Addition of 1 wt% SiO2 enhanced the sinterability of 8YSZ. Na2O addition of 0.1 wt% remarkably lowered it. Electrical conductivity at 1000°C in air increased slightly with increased Ai2O3 content up to 1 wt% and then monotonously decreased. 8YSZ with 1 wt% AI2O3 showed the maximum conductivity of 0.16 S/cm at 1000°C.  相似文献   

11.
High reflectance thermal barrier coatings consisting of 7% Yittria-Stabilized Zirconia (7YSZ) and Al2O3 were deposited by co-evaporation using electron beam physical vapor deposition (EB-PVD). Multilayer 7YSZ and Al2O3 coatings with fixed layer spacing showed a 73% infrared reflectance maxima at 1.85 μm wavelength. The variable 7YSZ and Al2O3 multilayer coatings showed an increase in reflection spectrum from 1 to 2.75 μm. Preliminary results suggest that coating reflectance can be tailored to achieve increased reflectance over a desired wavelength range by controlling the thickness of the individual layers. In addition, microstructural enhancements were also used to produce low thermal conductive and high hemispherical reflective thermal barrier coatings (TBCs) in which the coating flux was periodically interrupted creating modulated strain fields within the TBC. TBC showed no macrostructural differences in the grain size or faceted surface morphology at low magnification as compared with standard TBC. The residual stress state was determined to be compressive in all of the TBC samples, and was found to decrease with increasing number of modulations. The average thermal conductivity was shown to decrease approximately 30% from 1.8 to 1.2 W/m-K for the 20-layer monolithic TBC after 2 h of testing at 1316°C. Monolithic modulated TBC also resulted in a 28% increase in the hemispherical reflectance, and increased with increasing total number of modulations.  相似文献   

12.
Interpenetrating phase composite (IPC) coatings consisting of continuously connected Al2O3 and epoxy phases were fabricated. The ceramic phase was prepared by depositing an aqueous dispersion of Al2O3 (0.3 μm) containing orthophosphoric acid, H3PO4, (1–9.6 wt%, solid basis) and heating to create phosphate bonds between particles. The resulting ceramic coating was porous, which allowed the infiltration and curing of a second-phase epoxy resin. The effect of dispersion composition and thermal processing conditions on the phosphate bonding and ceramic microstructure was investigated. Reaction between Al2O3 and H3PO4 generated an aluminum phosphate layer on particle surfaces and between particles; this bonding phase was initially amorphous, but partially crystallized upon heating to 500°C. Flexural modulus measurements verified the formation of bonds between particles. The coating porosity (and hence epoxy content in the final IPC coating) decreased from ∼50% to 30% with increased H3PO4 loading. The addition of aluminum chloride, AlCl3, enhanced bonding at low temperatures but did not change the porosity. Diffuse reflectance FTIR showed that a combination of UV and thermal curing steps was necessary for complete curing of the infiltrated epoxy phase. Al2O3/epoxy IPC coatings prepared by this method can range in thickness from 1 to 100 μm and have potential applications in wear resistance.  相似文献   

13.
Amorphous Al2O3–ZrO2 composite powders with 5–30 mol% ZrO2 have been prepared by adding aqueous ammonia to the mixed solution of aqueous aluminum sulfate and zirconium alkoxide containing 2-propanol. Simultaneous crystallization of γ-Al2O3 and t -ZrO2 occurs at 870°–980°C. The γ-Al2O3 transforms to α-Al2O3 at 1160°–1220°C. Hot isostatic pressing has been performed for 1 h at 1400°C under 196 MPa using α-Al2O3– t -ZrO2 composite powders. Dense ZrO2-toughened Al2O3 (ZTA) ceramics with homogeneous-dispersed ZrO2 particles show excellent mechanical properties. The toughening mechanism is discussed. The microstructures and t / m ratios of ZTA are examined, with emphasis on the relation between strength and fracture toughness.  相似文献   

14.
Qualitative residual stresses in current environmental barrier coatings (EBCs) were inferred from the curvature of EBC-coated SiC wafers, and the effects of EBC stresses on the durability of EBC-coated SiC were evaluated. The magnitude of substrate curvature correlated fairly well with the EBC–SiC coefficient of thermal expansion (CTE) mismatch, EBC modulus, and thermally induced physical changes in EBC. BSAS (1− x BaO· x SrO·Al2O3·2SiO2, 0≤ x ≤1) components in the current EBCs, i.e., Si/mullite or mullite+BSAS/BSAS or yttria-stabilized zirconia (YSZ: ZrO2–8 wt% Y2O3), were the most beneficial for reducing the EBC stress in as-sprayed as well as in post-exposure EBCs. The reduced stress was attributed to the low modulus of BSAS. The addition of a YSZ top coat significantly increased the substrate curvature because of its high CTE and sintering in thermal exposures. There were clear correlations between the wafer curvature and the EBC durability. The Si/mullite+20 wt% BSAS/BSAS EBC maintained excellent adherence, protecting the SiC substrate from oxidation, while the Si/mullite+20 wt% BSAS/YSZ EBC suffered delamination, leading to severe oxidation of the SiC substrate, after a 100 h −1300°C exposure in a high-pressure burner rig.  相似文献   

15.
Flexural creep studies were conducted in a commercially available alumina matrix composite reinforced with SiC particulates (SiCp) and aluminum metal at temperatures from 1200° to 1300°C under selected stress levels in air. The alumina composite (5 to 10 μm alumina grain size) containing 48 vol% SiC particulates and 13 vol% aluminum alloy was fabricated via a directed metal oxidation process (DIMOX(tm))† and had an external 15 μm oxide coating. Creep results indicated that the DIMOX Al2O3–SiCp composite exhibited creep rates that were comparable to alumina composites reinforced with 10 vol% (8 (μm grain size) and 50 vol% (1.5 μm grain size) SiC whiskers under the employed test conditions. The DIMOX Al2O3–SiCp composite exhibited a stress exponent of 2 at 1200°C and a higher exponent value (2.6) at ≥ 1260°C, which is associated with the enhanced creep cavitation. The creep mechanism in the DIMOX alumina composite was attributed to grain boundary sliding accommodated by diffusional processes. Creep damage observed in the DIMOX Al2O3-SiCp composite resulted from the cavitation at alumina two-grain facets and multiple-grain junctions where aluminum alloy was present.  相似文献   

16.
With the addition of 1 wt% of MgO–Al2O3–SiO2 glass as a sintering aid, 3Y-TZP/12Ce-TZP ceramics (composed from a mixture of 3Y-TZP and 12Ce-TZP powder) have been fabricated via liquid-phase sintering at 1250°–1400°C. In the sintered bodies, the grain growth of Y-TZP is almost unaffected, whereas that of Ce-TZP is inhibited. MgO·Al2O3 spinel and an amorphous phase that contains Al2O3 and SiO2 (from the sintering aid) fully fill the grain junctions. The bending strength of 3Y-TZP/12Ce-TZP, when sintered at 1250°–1300°C, is ∼800–900 MPa, which is greater than that of 3Y-TZP ceramics without Ce-TZP particles. Ce-TZP grains and MgO·Al2O3 spinel in 3Y-TZP/12Ce-TZP ceramics may impede crack growth, and the bending strength is enhanced.  相似文献   

17.
The microstructures of ZrO2–20 wt% Y2O3 thermal barrier coatings formed by electron beam-physical vapor deposition on a Nibase superalloy have been studied by transmission electron microscopy. The coating systems consist of several layers, including a superalloy substrate, a bond coat, an Al2O3 scale, and the PVD coating. The overall ceramic thermal barrier coatings were characterized, with special emphasis being given to the α-Al2O3 scale which forms between the bond coat and the ZrO2Y2O3 coating. The oxide scale exhibited various morphologies in different coating systems; the majority of the porosity formed in this region for all coatings.  相似文献   

18.
Silicon carbide (SiC) porous substrates, containing alumina (Al2O3) dopant levels of 3, 5, and 8 wt%, are prepared by slip casting and sintering in the temperature range of 1450°–1800°C. The linear shrinkage, bulk density, and pore size of the sintered substrate increase as the sintering temperature and the amount of dopant increase. A large amount of β-phase SiC is transformed to α-phase SiC if the dopant concentration is 5 or 8 wt%. The flexural strength of the substrate doped with 8 wt% Al2O3 is higher than that of the substrate doped with 3 wt% Al2O3; however, the Weibull modulus of the former is lower. SiC composite membranes of improved selectivity and strength are fabricated by coating the porous substrate with layers of lower Al2O3 contents at lower sintering temperatures.  相似文献   

19.
The phase diagram of the Al2O3–ZrO2–Sm2O3 system was constructed in the temperature range 1250°–2800°C. The phase transformations in the system are completed in eutectic reactions. No ternary compounds or regions of appreciable solid solution were found in the components or binaries in this ternary system. Two new ternary and one new binary eutectics were found. The minimum melting temperature is 1680°C and it corresponds to the ternary eutectic Al2O3+F-ZrO2+SmAlO3. The solidus surface projection, the schematic of the alloy crystallization path, and the vertical sections present the complete phase diagram of the Al2O3–ZrO2–Sm2O3 system.  相似文献   

20.
Deformation due to two different surface-machining conditions—grinding (126 μm diamond) and polishing (3 μm diamond)—in an uniaxial hot-pressed Al2O3–30%-SiC-whisker composite has been investigated. A Warren–Averbach analysis of grazing incidence X-ray diffractometry data shows that the deformation is localized to the very top surface zone. The cell size and the root mean square of the strain show a gradient in the deformed layer. Transmission electron microscopy studies, in cross-sectional view, also show a near-surface deformation zone containing dislocations, twins, and cracks. This is seen for both machining procedures, but the depth of the zone and the degree of deformation, in terms of dislocation density and number of cracks, is much higher in the roughly ground specimen than in the polished one. For comparison, a monolithic Al2O3 sample also has been studied after grinding. The deformation zone is very similar to the Al2O3–SiC sample with the same grinding condition, but cracks and dislocations are present at a slightly larger depth. The deformation depth for the polished Al2O3–SiC sample is ∼50 nm. In the ground Al2O3–SiC sample, the deformation depth is 1–1.5 μm and corresponds to the grain size. The deformation zone in the ground monolithic Al2O3 sample is 1.5–2 μm deep. The observed grain-boundary cracks are almost parallel to the surface and may originate from nonaccommodated plastic flow between grains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号