首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Semantics of Schedules for the Fuzzy Job-Shop Problem   总被引:2,自引:0,他引:2  
In the sequel, we consider the fuzzy job-shop problem, which is a variation of the job-shop problem where duration of tasks may be uncertain and where due-date constraints are allowed to be flexible. Uncertain durations are modeled using triangular fuzzy numbers, and due-date constraints are fuzzy sets with decreasing membership functions expressing a flexible threshold ldquoless than.rdquo Also, the objective function is built using fuzzy decision-making theory. We propose the use of a genetic algorithm (GA) to find solutions to this problem. Our aim is to provide a semantics for this type of problems and use this semantics in a methodology to analyze, evaluate, and, therefore, compare solutions. Finally, we present the results obtained using the GA and evaluate them using the proposed methodology.  相似文献   

2.
In this paper we tackle a variant of the job shop scheduling problem with uncertain task durations modelled as fuzzy numbers. Our goal is to simultaneously minimise the schedule's fuzzy makespan and maximise its robustness. To this end, we consider two measures of solution robustness: a predictive one, prior to the schedule execution, and an empirical one, measured at execution. To optimise both the expected makespan and the predictive robustness of the fuzzy schedule we propose a multiobjective evolutionary algorithm combined with a novel dominance-based tabu search method. The resulting hybrid algorithm is then evaluated on existing benchmark instances, showing its good behaviour and the synergy between its components. The experimental results also serve to analyse the goodness of the predictive robustness measure, in terms of its correlation with simulations of the empirical measure.  相似文献   

3.
Nowadays, executers are struggling to improve the economic and scheduling situation of projects. Construction scheduling techniques often produce schedules that cause undesirable resource fluctuations that are inefficient and costly to implement on site. The objective of the resource‐leveling problem is to reduce resource fluctuation related costs (hiring and firing costs) without violating the project deadline. In this article, minimizing the discounted costs of resource fluctuations and minimizing the project makespan are considered in a multiobjective model. The problem is formulated as an integer nonlinear programming model, and since the optimization problem is NP‐hard, we propose multiobjective evolutionary algorithms, namely nondominated sorting genetic algorithm‐II (NSGA‐II), strength Pareto evolutionary algorithm‐II (SPEA‐II), and multiobjective particle swarm optimization (MOPSO) to solve our suggested model. To evaluate the performance of the algorithms, experimental performance analysis on various instances is presented. Furthermore, in order to study the performance of these algorithms, three criteria are proposed and compared with each other to demonstrate the strengths of each applied algorithm. To validate the results obtained for the suggested model, we compared the results of the first objective function with a well‐tuned genetic algorithm and differential algorithm, and we also compared the makespan results with one of the popular algorithms for the resource constraints project scheduling problem. Finally, we can observe that the NSGA‐II algorithm presents better solutions than the other two algorithms on average.  相似文献   

4.
In this paper, we present improved genetic algorithm for solving the fuzzy multiobjective solid transportation problem in which the coefficients of objective function are represented as fuzzy numbers. The ranking fuzzy numbers with integral value are used in the evaluation and selection. The proposed algorithm is incorporated with problem-specific knowledge and conductive to find out the set of nondominated points in the criteria space based on decision maker degree of optimism.  相似文献   

5.
In this paper, a method for solving fuzzy multiobjective optimization of space truss with a genetic algorithm is proposed. This method enables a flexible method for optimal system design by applying fuzzy objectives and fuzzy constraints. The displacement, tensile stress, fuzzy sets, membership functions and minimum size constraints are considered in formulation of the design problem. An algorithm was developed by using MATLAB programming. The algorithm is illustrated on 56-bar space truss system design problem and the results are discussed.  相似文献   

6.
Multiobjective evolutionary algorithms for electric power dispatch problem   总被引:6,自引:0,他引:6  
The potential and effectiveness of the newly developed Pareto-based multiobjective evolutionary algorithms (MOEA) for solving a real-world power system multiobjective nonlinear optimization problem are comprehensively discussed and evaluated in this paper. Specifically, nondominated sorting genetic algorithm, niched Pareto genetic algorithm, and strength Pareto evolutionary algorithm (SPEA) have been developed and successfully applied to an environmental/economic electric power dispatch problem. A new procedure for quality measure is proposed in this paper in order to evaluate different techniques. A feasibility check procedure has been developed and superimposed on MOEA to restrict the search to the feasible region of the problem space. A hierarchical clustering algorithm is also imposed to provide the power system operator with a representative and manageable Pareto-optimal set. Moreover, an approach based on fuzzy set theory is developed to extract one of the Pareto-optimal solutions as the best compromise one. These multiobjective evolutionary algorithms have been individually examined and applied to the standard IEEE 30-bus six-generator test system. Several optimization runs have been carried out on different cases of problem complexity. The results of MOEA have been compared to those reported in the literature. The results confirm the potential and effectiveness of MOEA compared to the traditional multiobjective optimization techniques. In addition, the results demonstrate the superiority of the SPEA as a promising multiobjective evolutionary algorithm to solve different power system multiobjective optimization problems.  相似文献   

7.
Multi-criteria human resource allocation involves deciding how to divide human resource of limited availability among multiple demands in a way that optimizes current objectives. In this paper, we focus on multi-criteria human resource allocation for solving multistage combinatorial optimization problem. Hence we tackle this problem via a multistage decision-making model. A multistage decision-making model is similar to a complex problem solving, in which a suitable sequence of decisions is to be found. The task can be interpreted as a series of interactions between a decision maker and an outside world, at each stage of which some decisions are available and their immediate effect can be easily computed. Eventually, goals would be reached due to the found of optimized variables. In order to obtain a set of Pareto solutions efficiently, we propose a multiobjective hybrid genetic algorithm (mohGA) approach based on the multistage decision-making model for solving combinatorial optimization problems. According to the proposed method, we apply the mohGA to seek feasible solutions for all stages. The effectiveness of the proposed algorithm was validated by its application to an illustrative example dealing with multiobjective resource allocation problem.  相似文献   

8.
Solution procedure consisting of fuzzy goal programming and stochastic simulation-based genetic algorithm is presented, in this article, to solve multiobjective chance constrained programming problems with continuous random variables in the objective functions and in chance constraints. The fuzzy goal programming formulation of the problem is developed first using the stochastic simulation-based genetic algorithm. Without deriving the deterministic equivalent, chance constraints are used within the genetic process and their feasibilities are checked by the stochastic simulation technique. The problem is then reduced to an ordinary chance constrained programming problem. Again using the stochastic simulation-based genetic algorithm, the highest membership value of each of the membership goal is achieved and thereby the most satisfactory solution is obtained. The proposed procedure is illustrated by a numerical example.  相似文献   

9.
Procurement planning with discrete time varying demand is an important problem in Enterprise Resource Planning (ERP).It can be described using the non-analytic mathematical programming model proposed in this paper.To solve the model we propose to use a fuzzy decision embedded genetic algorithm.The algorithm adopts an order strategy selection to simplify the original real optimization problem into binary ones.Then,a fuzzy decision quantification method is used to quantify experience from planning experts.Thus,decision rules can easily be embedded in the computation of genetic operations.This approach is applied to purchase planning problem in a practical machine tool works,where satisfactory results have been achieved.  相似文献   

10.
Recently, evolutionary multiobjective optimization (EMO) algorithms have been utilized for the design of accurate and interpretable fuzzy rule-based systems. This research area is often referred to as multiobjective genetic fuzzy systems (MoGFS), where EMO algorithms are used to search for non-dominated fuzzy rule-based systems with respect to their accuracy and interpretability. In this paper, we examine the ability of EMO algorithms to efficiently search for Pareto optimal or near Pareto optimal fuzzy rule-based systems for classification problems. We use NSGA-II (elitist non-dominated sorting genetic algorithm), its variants, and MOEA/D (multiobjective evolutionary algorithm based on decomposition) in our multiobjective fuzzy genetics-based machine learning (MoFGBML) algorithm. Classification performance of obtained fuzzy rule-based systems by each EMO algorithm is evaluated for training data and test data under various settings of the available computation load and the granularity of fuzzy partitions. Experimental results in this paper suggest that reported classification performance of MoGFS in the literature can be further improved using more computation load, more efficient EMO algorithms, and/or more antecedent fuzzy sets from finer fuzzy partitions.  相似文献   

11.
Multiobjective optimization of trusses using genetic algorithms   总被引:8,自引:0,他引:8  
In this paper we propose the use of the genetic algorithm (GA) as a tool to solve multiobjective optimization problems in structures. Using the concept of min–max optimum, a new GA-based multiobjective optimization technique is proposed and two truss design problems are solved using it. The results produced by this new approach are compared to those produced by other mathematical programming techniques and GA-based approaches, proving that this technique generates better trade-offs and that the genetic algorithm can be used as a reliable numerical optimization tool.  相似文献   

12.
This paper presents a procedure for solving a multiobjective chance-constrained programming problem. Random variables appearing on both sides of the chance constraint are considered as discrete random variables with a known probability distribution. The literature does not contain any deterministic equivalent for solving this type of problem. Therefore, classical multiobjective programming techniques are not directly applicable. In this paper, we use a stochastic simulation technique to handle randomness in chance constraints. A fuzzy goal programming formulation is developed by using a stochastic simulation-based genetic algorithm. The most satisfactory solution is obtained from the highest membership value of each of the membership goals. Two numerical examples demonstrate the feasibility of the proposed approach.  相似文献   

13.
This paper deals with a multiobjective parallel machines scheduling problem. It consists in scheduling n independent jobs on m identical parallel machines. The job data such as processing times, release dates, due dates and sequence dependent setup times are considered. The goal is to optimize two different objectives: the makespan and the total tardiness. A mixed integer linear program is proposed to model the studied problem. As this problem is NP-hard in the strong sense, a metaheuristic method which is the second version of the non dominated sorting genetic algorithm (NSGA-II) is proposed to solve this problem. Since the parameters setting of a genetic algorithm is difficult, a fuzzy logic controller coupled with the NSGA-II (FLC-NSGA-II) is therefore proposed. The role of the fuzzy logic is to better set the crossover and the mutation probabilities in order to update the search ability. After that, an exact method based on the two phase method is also developed. We have used four measuring criteria to compare these methods. The experimental results show the advantages and the efficiency of FLC-NSGA-II.  相似文献   

14.
This paper presents a Fuzzy Simulated Evolution algorithm for VLSI standard cell placement with the objective of minimizing power, delay and area. For this hard multiobjective combinatorial optimization problem, no known exact and efficient algorithms exist that guarantee finding a solution of specific or desirable quality. Approximation iterative heuristics such as Simulated Evolution are best suited to perform an intelligent search of the solution space. Due to the imprecise nature of design information at the placement stage the various objectives and constraints are expressed in the fuzzy domain. The search is made to evolve toward a vector of fuzzy goals. Variants of the algorithm which include adaptive bias and biasless simulated evolution are proposed and experimental results are presented. Comparison with genetic algorithm is discussed.  相似文献   

15.
In this paper, we deal with a production/distribution problem to determine an efficient integration of production, distribution and inventory system so that products are produced and distributed at the right quantities, to the right customers, and at the right time, in order to minimize system wide costs while satisfying all demand required. This problem can be viewed as an optimization model that integrates facility location decisions, distribution costs, and inventory management for multi-products and multi-time periods. To solve the problem, we propose a new technique called spanning tree-based genetic algorithm (hst-GA). In order to improve its efficiency, the proposed method is hybridized with the fuzzy logic controller (FLC) concept for auto-tuning the GA parameters. The proposed method is compared with traditional spanning tree-based genetic algorithm approach. This comparison shows that the proposed method gives better results.  相似文献   

16.
This paper considers a multiobjective linear programming problem involving fuzzy random variable coefficients. A new fuzzy random programming model is proposed by extending the ideas of level set-based optimality and a stochastic programming model. The original problem involving fuzzy random variables is transformed into a deterministic equivalent problem through the proposed model. An interactive algorithm is provided to obtain a satisficing solution for a decision maker from among a set of newly defined Pareto optimal solutions. It is shown that an optimal solution of the problem to be solved iteratively in the interactive algorithm is analytically obtained by a combination of the bisection method and the simplex method.  相似文献   

17.
18.
The conventional unconstrained binary quadratic programming (UBQP) problem is known to be a unified modeling and solution framework for many combinatorial optimization problems. This paper extends the single-objective UBQP to the multiobjective case (mUBQP) where multiple objectives are to be optimized simultaneously. We propose a hybrid metaheuristic which combines an elitist evolutionary multiobjective optimization algorithm and a state-of-the-art single-objective tabu search procedure by using an achievement scalarizing function. Finally, we define a formal model to generate mUBQP instances and validate the performance of the proposed approach in obtaining competitive results on large-size mUBQP instances with two and three objectives.  相似文献   

19.
基于精英选择和个体迁移的多目标遗传算法   总被引:6,自引:0,他引:6  
提出基于遗传算法求解多目标优化问题的方法,将多目标问题分解成多个单目标优化问题,用遗传算法分别在每个单目标种群中并行搜索.在进化过程中的每一代,采用精英选择和个体迁移策略加快多个目标的并行搜索,提出了控制Pareto最优解数量并保持个体多样性的有限精度法,同时还提出了多目标遗传算法的终止条件.数值实验说明所提出的算法能较快地找到一组分布广泛且均匀的Pareto最优解.  相似文献   

20.
This paper addresses the multiobjective, multiproducts and multiperiod closed-loop supply chain network design with uncertain parameters, whose aim is to incorporate the financial flow as the cash flow and debts' constraints and labor employment under fuzzy uncertainty. The objectives of the proposed mathematical model are to maximize the increase in cash flow, maximize the total created jobs in the supply chain, and maximize the reliability of consumed raw materials. To encounter the fuzzy uncertainty in this model, a possibilistic programming approach is used. To solve large-sized problems, the multiobjective simulated annealing algorithm, multiobjective gray wolf optimization, and multiobjective invasive weed optimization are proposed and developed. The numerical results demonstrate that these algorithms solve the problems within about 1% of the required solving time for the augmented ε-constraint and have similar performance and even better in some cases. The multiobjective simulated annealing algorithm with a weak performance takes less time than the other two algorithms. The multiobjective gray wolf optimization and multiobjective invasive weed optimization algorithms are superior based on the multiobjective performance indices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号