首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper the notch problem of antiplane elasticity is discussed and a new boundary integral equation is formulated. In the problem, the distributed dislocation density is taken to be the unknown function. Unlike the usual choice, the resultant force function is taken as the right hand term of the integral equation; therefore, a new boundary integral equation for the notch problem of antiplane elasticity with a weaker singular kernel (logarithmic) is obtained. After introducing a particular fundamental solution of antiplane elasticity, the notch problem for the half-plane is discussed and the relevant boundary integral equation is formulated. The integral equations derived are compact in form and convenient for computation. Numerical examples demonstrated that high accuracy can be achieved by using the new boundary equation.  相似文献   

2.
In the present paper, by use of the boundary integral equation method and the techniques of Green fundamental solution and singularity analysis, the dynamic infinite plane crack problem is investigated. For the first time, the problem is reduced to solving a system of mixed-typed integral equations in Laplace transform domain. The equations consist of ordinary boundary integral equations along the outer boundary and Cauchy singular integral equations along the crack line. The equations obtained are strictly proved to be equivalent with the dual integral equations obtained by Sih in the special case of dynamic Griffith crack problem. The mixed-type integral equations can be solved by combining the numerical method of singular integral equation with the ordinary boundary element method. Further use the numerical method for Laplace transform, several typical examples are calculated and their dynamic stress intensity factors are obtained. The results show that the method proposed is successful and can be used to solve more complicated problems.  相似文献   

3.
The paper provides boundary integral equations for solving the problem of viscous scattering of a pressure wave by a rigid body. By using this mathematical tool uniqueness and existence theorems are proved. Since the boundary conditions are written in terms of velocities, vector boundary integral equations are obtained for solving the problem. The paper introduces single-layer viscous potentials and also a stress tensor. Correspondingly, a viscous double-layer potential is defined. The properties of all these potentials are investigated.By representing the scattered field as a combination of a single-layer viscous potential and a double-layer viscous potential the problem is reduced to the solution of a singular vectorial integral equation of Fredholm type of the second kind.In the case where the stress vector on the boundary is the main quantity of interest the corresponding boundary singular integral equation is proved to have a unique solution.  相似文献   

4.
The evaluation of volume integrals that arise in boundary integral formulations for non‐homogeneous problems was considered. Using the “Galerkin vector” to represent the Green's function, the volume integral was decomposed into a boundary integral, together with a volume integral wherein the source function was everywhere zero on the boundary. This new volume integral can be evaluated using a regular grid of cells covering the domain, with all cell integrals, including partial cells at the boundary, evaluated by simple linear interpolation of vertex values. For grid vertices that lie close to the boundary, the near‐singular integrals were handled by partial analytic integration. The method employed a Galerkin approximation and was presented in terms of the three‐dimensional Poisson problem. An axisymmetric formulation was also presented, and in this setting, the solution of a nonlinear problem was considered. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

5.
A boundary integral technique has been developed for the numerical simulation of the air flow for the Aaberg exhaust system. For the steady, ideal, irrotational air flow induced by a jet, the air velocity is an analytical function. The solution of the problem is formulated in the form of a boundary integral equation by seeking the solution of a mixed boundary-value problem of an analytical function based on the Riemann–Hilbert technique. The boundary integral equation is numerically solved by converting it into a system of linear algebraic equations, which are solved by the process of the Gaussian elimination. The air velocity vector at any point in the solution domain is then computed from the air velocity on the boundary of the solution domain.  相似文献   

6.
A fully implicit numerical method for linear parabolic free boundary problems with coupled and integral boundary conditions is described. The partial differential equation and the boundary conditions are time discretized with the method of lines. An auxiliary function is introduced to remove the coupled and integral boundary conditions from the resulting free boundary problem for ordinary differential equations. Once separated boundary conditions are obtained, invariant imbedding is used to solve the free boundary problem numerically. The method is illustrated by solving the heat transfer equations for the fluidized-bed coating of a thin-walled cylinder.  相似文献   

7.
A plane electro-elastostatic problem involving arbitrarily located planar stress free cracks which are electrically semi-permeable is considered. Through the use of the numerical Green's function for impermeable cracks, the problem is formulated in terms of boundary integral equations which are solved numerically by a boundary element procedure together with a predictor–corrector method. The crack tip stress and electric displacement intensity factors can be easily computed once the boundary integral equations are properly solved.  相似文献   

8.
We consider the complex variable boundary element approximation of biharmonic problem on a smooth domain with various boundary conditions. Based on the Vekua's complex integral representation of the analytic function, a new boundary integral equation is formulated. The density function appearing in the integral equation is determined directly by using the boundary element method. Some plane and plate examples are presented, and the results of the numerical solutions are accurate everywhere in the solid, including the regions near the boundary.

The approach presented is only suitable for bounded simply connected regions.  相似文献   


9.
A dual integral formulation for the interior problem of the Laplace equation with a smooth boundary is extended to the exterior problem. Two regularized versions are proposed and compared with the interior problem. It is found that an additional free term is present in the second regularized version of the exterior problem. An analytical solution for a benchmark example in ISBE is derived by two methods, conformal mapping and the Poisson integral formula using symbolic software. The potential gradient on the boundary is calculated by using the hypersingular integral equation except on the two singular points where the potential is discontinuous instead of failure in ISBE benchmarks. Based on the matrix relations between the interior and exterior problems, the BEPO2D program for the interior problem can be easily reintegrated. This benchmark example was used to check the validity of the dual integral formulation, and the numerical results match the exact solution well.  相似文献   

10.
The paper examines the problem of a penny-shaped crack which is formed by the development of a crack in both the fibre and the matrix of a composite consisting of an isolated elastic fibre located in an elastic matrix of infinite extent. The composite region is subjected to a uniform strain field in the direction of the fibre. The paper presents two integral-equation based approaches for the analysis of the problem. The first approach considers the formulation of the complete integral equations governing the associated elasticity problem for a two material region. The second approach considers the boundary integral equation formulation of the problem. Both methods entail the numerical solution of the governing integral equations. The solutions to these integral equations are used to evaluate the stress intensity factor at the boundary of the penny-shaped crack.  相似文献   

11.
A numerical method for the Dirichlet initial boundary value problem for the heat equation in the exterior and unbounded region of a smooth closed simply connected 3-dimensional domain is proposed and investigated. This method is based on a combination of a Laguerre transformation with respect to the time variable and an integral equation approach in the spatial variables. Using the Laguerre transformation in time reduces the parabolic problem to a sequence of stationary elliptic problems which are solved by a boundary layer approach giving a sequence of boundary integral equations of the first kind to solve. Under the assumption that the boundary surface of the solution domain has a one-to-one mapping onto the unit sphere, these integral equations are transformed and rewritten over this sphere. The numerical discretisation and solution are obtained by a discrete projection method involving spherical harmonic functions. Numerical results are included.  相似文献   

12.
 A boundary element methodology is developed for the static analysis of three-dimensional bodies exhibiting a linear elastic material behavior coupled with microstructural effects. These microstructural effects are taken into account with the aid of a simple strain gradient elastic theory with surface energy. A variational statement is established to determine all possible classical and non-classical (due to gradient with surface energy terms) boundary conditions of the general boundary value problem. The gradient elastic fundamental solution with surface energy is explicitly derived and used to construct the boundary integral equations of the problem with the aid of the reciprocal theorem valid for the case of gradient elasticity with surface energy. It turns out that for a well posed boundary value problem, in addition to a boundary integral representation for the displacement, a second boundary integral representation for its normal derivative is also necessary. All the kernels in the integral equations are explicitly provided. The numerical implementation and solution procedure are provided. Surface quadratic quadrilateral boundary elements are employed and the discretization is restricted only to the boundary. Advanced algorithms are presented for the accurate and efficient numerical computation of the singular integrals involved. Two numerical examples are presented to illustrate the method and demonstrate its merits. Received: 9 November 2001 / Accepted: 20 June 2002 The first and third authors gratefully acknowledge the support of the Karatheodory program for basic research offered by the University of Patras.  相似文献   

13.
Y. Z. Chen 《Acta Mechanica》2012,223(4):705-720
Based on a complex variable boundary integral equation (CVBIE) suggested previously, this paper provides a numerical solution for the elastic inclusion problem using CVBIE. A dissimilar elastic inclusion is embedded in the infinite matrix. The original problem is decomposed into two problems. One is an interior boundary value problem (BVP) for the elastic inclusion, while the other is an exterior BVP for the matrix with notch. Both problems are connected by conventional boundary integral equations (BIEs) in complex variables. After performing discretization for the coupled BIEs, the inverse matrix technique is suggested to solve the relevant algebraic equations. Based on the properties of some integral operators, three ways for the inverse matrix technique are suggested. Several numerical examples are carried out to prove the efficiency of the suggested method.  相似文献   

14.
The complex variable boundary element method, CVBEM, employs the Cauchy integral with any complex variable (e.g., complex potential, complex flux, or complex velocity) to solve boundary value problems. The CVBEM formulation is consistent with the primal and dual solutions of the boundary integral equation, as well as the analytic element method. The resulting problem is overdetermined because two boundary conditions can be specified at each node. Ordinary least squares provides a unique solution that minimizes boundary specification errors. Flownets are obtained by noting that the position of fluid–stream potential intersections can be found by exchanging potential and position in the Cauchy integral, which enhances the determination of travel times along streamlines. Three regional groundwater flow problems are used to illustrate the CVBEM approach, the original problem as defined by Tóth, plus two related problems as described by Domenico and Paliauskas, and by Nawalany.  相似文献   

15.
A solution has been found, by the method of finite integral transformations, of the heat conduction equation for a hollow cylinder, heated asymmetrically around its perimeter, under general boundary conditions. Formulas are given which reduce the problem with non-uniform boundary conditions to an equivalent problem with uniform boundary conditions.  相似文献   

16.
An efficient dual boundary element technique for the analysis of a two-dimensional finite body with multiple cracks is established. In addition to the displacement integral equation derived for the outer boundary, since the relative displacement of the crack surfaces is adopted in the formulation, only the traction integral equation is established on one of the crack surfaces. For each crack, a virtual boundary is devised and connected to one of the crack surfaces to construct a closed integral path. The rigid body translation for the domain enclosed by the closed integral path is then employed for evaluating the hypersingular integral. To solve the dual displacement/traction integral equations simultaneously, the constant and quadratic isoparametric elements are taken to discretize the closed integral paths/crack surfaces and the outer boundary, respectively. The present method has distinct computational advantages in solving a fracture problem which has arbitrary numbers, distributions, orientations and shapes of cracks by a few boundary elements. Several examples are analysed and the computed results are in excellent agreement with other analytical or numerical solutions.  相似文献   

17.
The boundary element-linear complementarity method for solving the Laplacian Signorini problem is presented in this paper. Both Green's formula and the fundamental solution of the Laplace equation have been used to solve the boundary integral equation. By imposing the Signorini constraints of the potential and its normal derivative on the boundary, the discrete integral equation can be written into a standard linear complementarity problem (LCP). In the LCP, the unique variable to be affected by the Signorini boundary constraints is the boundary potential variable. A projected successive over-relaxation (PSOR) iterative method is employed to solve the LCP, and some numerical results are presented to illustrate the efficiency of this method.  相似文献   

18.
Homogeneous heat conduction can be easily solved by means of the boundary element method. However, domain integrals are generally necessary to solve the heat conduction problem in the functionally gradient materials. This paper shows that the two-dimensional heat conduction problem in the functionally gradient materials can be solved approximately without a domain integral by the triple-reciprocity boundary element method. In this method, the distribution of domain effects is interpolated by integral equations. A new computer program is developed and applied to several problems.  相似文献   

19.
The problem of torsion of composite shafts consisting of a cylindrical matrix surrounding a finite number of inclusions is solved by using the complex variable boundary element method. The method consists in reducing the problem to the solution of a singular integral equation in terms of an analytic function of a complex variable using the Cauchy integral. The resulting integral equation is then solved numerically by discretizing the boundaries into segments called complex boundary elements and replacing the analytic function on the boundaries by interpolating function. Numerical examples are given for a square shaft with a circular inclusion, and for an elliptic shaft with two elliptic inclusions. © 1997 by John Wiley & Sons, Ltd.  相似文献   

20.
The evaluation of volume integrals that arise in conjunction with a hypersingular boundary integral formulation is considered. In a recent work for the standard (singular) boundary integral equation, the volume term was decomposed into an easily computed boundary integral, plus a remainder volume integral with a modified source function. The key feature of this modified function is that it is everywhere zero on the boundary. In this work it is shown that the same basic approach is successful for the hypersingular equation, despite the stronger singularity in the domain integral. Specifically, the volume term can be directly evaluated without a body-fitted volume mesh, by means of a regular grid of cells that cover the domain. Cells that intersect the boundary are treated by continuously extending the integrand to be zero outside the domain. The method and error results for test problems are presented in terms of the three-dimensional Poisson problem, but the techniques are expected to be generally applicable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号