首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 130 毫秒
1.
Object Clinical diffusion imaging is based on two assumptions of limited validity: that the radial projections of the diffusion propagator are Gaussian, and that a single directional diffusivity maximum exists in each voxel. The former can be removed using the biexponential and diffusional kurtosis models, the latter using generalised diffusion-tensor imaging. This study provides normative data for these three models. Materials and methods Eighteen healthy subjects were imaged. Maps of the biexponential parameters D fast, D slow and f slow, of D and K from the diffusional kurtosis model, and of diffusivity D′ were obtained. Maps of generalised anisotropy (GA) and scaled entropy(SE) were also generated, for second and fourth rank tensors. Normative values were obtained for 26 regions. Results In grey versus white matter, D slow and D′ were higher and D fast, f slow and K were lower. With respect to maps of D′, anatomical contrast was stronger in maps of D slow and K. Elevating tensor rank increased SE, generally more significantly than GA, in: anterior limb of internal capsule, corpus callosum, deep frontal and subcortical white matter, along superior longitudinal fasciculus and cingulum. Conclusion The values reported herein can be used for reference in future studies and in clinical settings.  相似文献   

2.
Textured SrBi2Nb2O9 ceramics were obtained by quenching the melts of SrBi2B2O7-Nb2O5 in equimolar ratio. The as-quenched samples were crystalline comprising 40% c-oriented grains. The influence of the post heat-treatment temperature on the orientation factor (f) and microstructure was studied using x-ray powder diffraction (XRD) and Scanning electron microscopy (SEM). The orientation factor was found to increase with increasing post heat-treatment temperature and reached a maximum value of 65% for the samples heated at 700°C for 10 h. Relative density and the grain-size of the partially grain oriented ceramics were found to increase with an increase in the heat-treatment temperature. The effect of texturing yielded anisotropy in the dielectric and pyroelectric properties. The dielectric constant ( er ( ^) = 114 ) \left( {\varepsilon_r^{\prime } \left( \bot \right) = 114} \right) and the pyroelectric coefficient (p(┴) = −0.07 nC cm−2 °C−1) along the direction perpendicular to the melt pressing axis were superior to that of the direction parallel ((er ( ||) = 93 \varepsilon_r^{\prime } \left( \parallel \right) = 93 ) (p(||) = −0.02 nC cm−2 °C−1)) (c-axis of the grain) to the pressing axis at room temperature.  相似文献   

3.
A study has been carried out to correlate the effect of sintering temperature on the microstructural, electrical and reliability aspects of Ni0.75Mn(2.25−xy)Cr x Fe y O4 (x = 0 to 0.3 and y = 0 to 0.3) negative temperature coefficient thermistor compositions prepared by solid-state route. The calcined and sintered compositions were characterized by X-ray diffraction and Scanning Electron Microscopy. The existence of cubic spinel single-phase region was determined by sintering Ni0.75Mn(2.25−xy)Cr x Fe y O4 samples in air at temperatures 1150 to 1250 °C. X-ray diffraction patterns of samples sintered above 1200 °C shows additional Bragg reflections of a rock salt structured NiO phase besides normal cubic spinel. A maximum B-value of 4044 K was obtained for Ni0.75Mn1.95Cr0.25Fe0.05O4 composition at a sintering temperature 1250 °C/3 h. The reliability of the thermistor compositions were evaluated by performing accelerated ageing based on thermal cycling test. We found that chromium enhances the reliability of Ni0.75Mn(2.25−xy)Cr x Fe y O4 (x = 0 to 0.3 and y = 0 to 0.3) based NTC thermistor compositions. A maximum reliability of +0.25% resistance drift was observed at sintering temperature 1200 °C for 0.25 mol% chromium content. Excellent reliability of Ni0.75Mn(2.25−xy)Cr x Fe y O4 NTC thermistor compositions makes it ideal candidates for high-performance thermal sensor applications.  相似文献   

4.

Object  

Proton resonance frequency shift (PRFS)-based MR thermometry (MRT) is hampered by heat-induced susceptibility changes when applied in tissues containing fat, e.g., the human breast. In order to assess the impact of fat susceptibility changes on PRFS-based MRT during thermal therapy in the human breast, reliable knowledge of the temperature dependence of the magnetic volume susceptibility of fat, dχfat/dT, is a prerequisite. In this work we have measured dχfat/dT of human breast fat tissue, using a double-reference method to ensure invariance to temperature-induced changes in the proton electron screening constant.  相似文献   

5.
The sintering behavior, structures and microwave dielectric properties in a rutile solid solution system—(AxNb2x)Ti1–3xO2 (A=Cu, Ni)—were investigated and the samples were prepared by conventional solid state reaction method. Single phase of tetragonal rutile structure has been obtained through the entire range of compositions (0.02 ≤ x ≤ 0.20). The sintering temperature was lowered to 900°C by (Cu x /3Nb2x/3)4+ substituting for Ti4+ in the solid solution. Comparing with that of rutile TiO2 (465 ppm/°C), the temperature coefficient of resonant frequency (TCF) of the rutile solid solution is much lower (about 250 ppm/°C), and the dielectric constant and the quality factor (Qf value) of the solid solution are about 70~80 and 7,000G Hz. The substitution of (Cu x /3Nb2x/3)4+or (Ni x /3Nb2x/3)4+ for Ti4+ in the solid solution improved the microwave dielectric properties of the rutile TiO2 ceramics.  相似文献   

6.
Magnetic-field-assisted electrophoretic deposition method has been employed for synthesizing a(b)-axis-oriented Bi5FeTi3O15 ceramics, and the effects of grain orientation and microstructure on the polarization and piezoelectric properties have been investigated. Grain-oriented Bi5FeTi3O15 ceramics with a high relative sintered density of 98% is shown to exhibit enhanced polarization and piezoelectric properties with a remanent polarization (P r) of 19 μC/cm2 and a piezoelectric strain constant (d 33) of 23 pm/V, which are much superior to those of randomly-oriented ceramics (P r of 7 μC/cm2 and d 33 of 5 pm/V).  相似文献   

7.
Electrical properties and sintering behaviors of (1 − x)Pb(Zr0.5Ti0.5)O3-xPb(Cu0.33Nb0.67)O3 ((1 − x)PZT-xPCN, 0.04 ≤ x ≤ 0.32) ceramics were investigated as a function of PCN content and sintering temperature. For the specimens sintered at 1050C for 2 h, a single phase of perovskite structure was obtained up to x = 0.16, and the pyrochlore phase, Pb2Nb2O7 was detected for further substitution. The dielectric constant (ε r), electromechanical coupling factor (Kp) and the piezoelectric coefficient (d 33) increased up to x = 0.08 and then decreased. These results were due to the coexistence of tetragonal and rhombohedral phases in the composition of x = 0.08. With an increasing of PCN content, Curie temperature (Tc) decreased and the dielectric loss (tanδ) increased. Typically, εr of 1636, Kp of 64% and d33 of 473pC/N were obtained for the 0.92PZT-0.08PCN ceramics sintered at 950C for 2 h.  相似文献   

8.

Purpose  

The aim of this work was to investigate fast T 1-mapping for the characterization of deep vein thrombosis (DVT).  相似文献   

9.
Perovskite-types 0.05Pb(Mn1/3Sb2/3)O2-0.95Pb- (Zr0.5Ti0.5)O3 (PMS-PZT) was synthesized by conventional bulk ceramic processing technique. ZnO as a dopant up to 0.5 mol% was incorporated into the PMS-PZT system, and the effects on piezoelectric properties were investigated. Pyrochlore phase was not detected to form during the synthesis of the PMS-PZT system with 0–0.5 mol% ZnO addition. The highest density of 7.92 g/cm3 was obtained when sintered at 1200C for 2 h. Piezoelectric properties as a function of ZnO content were evaluated using a gain phase analyzer. Piezoelectric charge constant (d 31) and piezoelectric voltage output coefficient (g 31) increased up to −130 pC/N and −24.9 × 103Vm/N, respectively, with increasing ZnO content. Mechanical quality factor (Q m) was shown to reduce considerably with increasing ZnO content. When 0.3 mol% of ZnO was added into the system, electromechanical coupling factor (k p) and relative dielectric constant (ε33 T o) reached to the maximum of 56% and 1727, respectively.  相似文献   

10.
Structural evolution and microwave dielectric properties of (1 − x)BaZn1/3Nb2/3O3 + xBaMg1/2W1/2O3 (0 ≤ x ≤ 1) system have been investigated in this work. All samples exhibit single perovskite phase except for the samples with x = 0 and x ≥ 0.8 in which barium niobate and BaWO4 second phase existed, respectively. 1:1 cations ordering existed in the samples with x ≥ 0.1, and the ordering degree increases with the increase of x. Liquid phase sintering was observed in the sample with x ≥ 0.8. Dielectric constant decreases almost linearly from 40.8 to 17.4 with increasing x. Q × f value monotonically increases from 26,162 GHz to 64,705 GHz with increasing x. The τf value changes from +30 ppm/°C to −27.8ppm/°C. Near zero τf value of −1.4 ppm/°C could be obtained at x = 0.4 composition.  相似文献   

11.
Perovskite-type 0.05 Pb(Mn1/3Sb2/3)O3-0.95 Pb(Zr0.5Ti0.5)O3 (PMS-PZT) was synthesized by conventional bulk ceramic processing technique. ZnO as a dopant up to 0.5 mol% was incorporated into the PMS-PZT system, and the effects on piezoelectric properties were investigated. Pyrochlore phase was not detected to form during the synthesis of the PMS-PZT system with 0∼0.5 mol% ZnO addition. The highest density of 7.92 g/cm3 was obtained when sintered at 1200°C for 2 hrs. Piezoelectric properties as a function of ZnO content were evaluated using a gain phase analyzer. Piezoelectric charge constant (d31) and piezoelectric voltage output coefficient (g31) increased up to −130 pC/N and −24.9 × 103Vm/N, respectively, with increasing ZnO content. Mechanical quality factor (Q m) was shown to reduce considerably with increasing ZnO content. When 0.3 mol% of ZnO was added into the system, electromechanical coupling factor (k p) and relative dielectric constant () reached to the maximum of 56% and 1,727, respectively.  相似文献   

12.
PLZT-P(VDF/TFE) 0–3 composites with nanosized lead lanthanum zirconate titanate (Pb0.92La0.08)(Zr0.65Ti0.35)O3 (PLZT 8/65/35) ceramic powders of volume fraction Φ up to 0.2 were fabricated using PLZT powders imbedded in a copolymer P(VDF/TFE)(0.98/0.02) matrix. The PLZT nanopowders were prepared by the sol-gel technique. The PLZT-P(VDF/TFE) composite samples were prepared from ceramic and polymer powders by the hot-pressing method. Dielectric response was studied in the frequency range from 100 Hz to 1 MHz and at temperatures from 100 to 450 K. The pyroelectric properties were studied by dynamic method with modulation frequency from 1 to 100 Hz. The dielectric response of the ceramics-polymer composite was found to be a combination of the responses of the pure polymer and the ceramics: (1) the addition of the PLZT ceramics increases the value of the dielectric permittivity ɛ′, (2) the composite shows the maximum of the permittivity coming from the PLZT ceramics, (3) the temperature dependences of the dielectric loss tgδ are characterized by the maximum attributed to the α-relaxation (glass transition) in the pure polymer. The pyroelectric coefficient of the composite increases from ∼20 μC/m2K in pure P(VDF/TFE) to ∼140 μC/m2K in the composites of Φ = 0.15.  相似文献   

13.
Barium bismuth niobate, Ba(1-x)Bi(2+2x/3)Nb2O9 (BBN with x = 0.0, 0.1, 0.2, 0.3, 0.4) ceramic powders in the nanometer range were prepared by chemical precursor decomposition method (CPD). The single phase layered perovskite was prepared throughout the composition range studied. No intermediate phase was found during heat treatment at and above 600°C. The crystallite size and the particle size, obtained from XRD and TEM respectively, were in the range of 15–30 nm. The addition of Bi2O3 substantially improved the sinterability associated with high density (96%) which was otherwise difficult in the case of pure BaBi2Nb2O9 (BBN x = 0.0). The sintering was done at 900°C for 4 h. The relative permittivity of BBN ceramics at both room temperature and in the vicinity of the temperature of maximum permittivity (Tm) has increased significantly with increase in bismuth content and loss is also decreased to a certain level of bismuth doping. Tm increased with increase in Bi2O3. The diffuseness (γ) in the phase transition was found to increase from 1.54 to 1.98 with the increase in Ba2+ substitution level from x = 0.0 to x = 0.3.  相似文献   

14.
Synthesis and sintering properties of the (La0.8Ca0.2−x Sr x )CrO3 samples doped by two alkaline earth metals in comparison to the doped only by one alkaline earth metal were evaluated by phase analysis, sintering properties, thermal expansion behaviors, and electrical conductivity. The sintered (La0.8Ca0.2−x Sr x )CrO3 (x = 0, 0.05, and 0.1) and (La0.8Ca0.2−x Sr x )CrO3 (x = 0.2) were found to have orthorhombic and rhombohedral symmetries, respectively. Relative density of the (La0.8Sr0.2)CrO3 sample sintered at 1500C for 5 h was lower than that of the (La0.8Ca0.2−x Sr x )CrO3 (x = 0, 0.05, and 0.1) sample. TECs of the (La0.8Ca0.2−x Sr x )CrO3 (x = 0, 0.05, 0.1, and 0.2) in air were 11 × 10−6/C, 11.2 × 10−6/C, 11.2 × 10−6/C, and 11.3 × 10−6/C, respectively. The electric conductivity of the (La0.8Ca0.2−x Sr x )CrO3 sample was determined.  相似文献   

15.
The phase formation behavior and room temperature dielectric properties of bulk perovskite solid solution composition (Ba0.5Sr0.5)(Ti1 − x Zr x )O3 have been investigated. The samples with different Zr-content were prepared through solid state reaction. The XRD investigation showed that Zr+4 is systematically dissolved in Ba0.5Sr0.5TiO3 lattice up to about 60 atm.% substitution, having cubic Pm3m structure. Eighty atom percent Zr substituted composition showed to contain a cubic phase similar to that of x = 0.6 composition and a tetragonal (I4/mcm) phase. That is the solid solution breaks around at 80 atm.% Zr substitutions. Ba0.5Sr0.5ZrO3 was having orthorhombic Imma structure. Decrease in grain sizes were observed with increase in Zr content. The permittivity of the ceramics decreased with the increase in Zr substitution. The frequency dependency of dielectric loss in the frequency range 10 Hz to 10 MHz, were improved with Zr substitution in the ceramics. The room temperature ac and dc conductivity also decreased significantly with the increase in Zr-content.  相似文献   

16.
The electrical conductivity of BaPr1−x GdxO3−δ has been characterized by means of the four-point van der Pauw technique at 200–1100 °C as a function of pO2 and pH2O. The contributions from ionic charge carriers were investigated by the EMF of concentration cells and the H+/D+ isotope effect on the total conductivity. BaPr1−x Gd x O3−δ is predominately a p-type electronic conductor under oxidizing conditions, while ionic conduction is barely measurable. Gd(III) substituted for Pr(IV) is charge compensated mainly by electron holes, with protons and oxygen vacancies contributing significantly but as minority defects only at low temperatures (wet conditions) and at high temperatures, respectively. The conductivity behaviour has been modelled under these assumptions to extract thermodynamic parameters for the defect reactions at play. The practical use of this material is limited by its poor chemical stability.  相似文献   

17.
The pyroelectric properties and temperature stability of Pb(Mg1/3Nb2/3)O3xPbTiO3(PMN–xPT) single crystals (0.13 ≤ × ≤ 0.40) were investigated. The best choice for pyroelectric performance is [111]-oriented PMN–0.26PT single crystal whose figures of merit for voltage responsivity and detectivity are 0.11 m2/C and 15 × 10−5 Pa−1/2, respectively. However, the [001]-oriented PMN–0.37PT single crystal has much better temperature stability, whose temperature coefficient of pyroelectric property is 0.5%/K in the range of 20 °C to 55 °C, and Curie temperature is high: 175 °C. We also found that PMN–xPT possessed low thermal diffusivity D ~ 4.4 × 10−7 m2/s, low volume specific heat C v ~ 2.5 × 106 J/m3 K and tunable permittivity ε ~ (300–7000). The pyroelectric performances of PMN–xPT single crystals are superior to those of conventional pyroelectric materials and promising for IR device applications.  相似文献   

18.
The magnetic properties of nano-crystallite cobalt lanthanum ferrite (CoLaxFe2-x O4) with varied quantities of lanthanum (x = 0, 0.1, 0.15, 0.2, 0.25, 0.3) prepared by co-precipitation method have been studied by vibrating sample magnetometer (VSM) and LCR meter. X-ray diffraction (XRD) and transmission electron microscopy (TEM) confirmed the size, structure, and morphology of the ferrite samples. The average crystallite size varied from 17.83 nm to 49.99 nm. All the samples, although, in nano range, show significant hysteresis. The saturation magnetization (Ms) values decreased from 60.57 emu/g to 30.15 emu/g. The remanence (MR) fell from 10.85 emu/g to 6.39 emu/g. Doping with lanthanum La3+ ions modulates significantly the magnetic properties of cobalt spinel ferrites without sacrificing the ferromagnetic character.  相似文献   

19.
The electronic conductivity of sintered BSCF ceramics (Ba0.5Sr0.5Co x Fe1−x O3−δ, 0 x 1) was measured as a function of temperature up to 1273 K in air. The conductivity of BSC is thermally activated over 298–1273 K with an activation energy of 0.21 eV. The conductivity of BSF and BSCF (0.2 x 0.8) is thermally activated below ∼673 K with activation energies of 0.21 eV–0.40 eV. Above 673 K, the formation of oxygen vacancies results in a decrease in p-type carrier concentration and a decrease in electronic conductivity. Ba0.5Sr0.5Co0.8Fe0.2O3−δ (BSCF5582) was also measured under 10−5 atm ≤ pO2 ≤ 1 atm. Below ∼673 K, the electronic conductivity of BSCF 5582 shows no dependence on pO2. Above 673 K, the conductivity of BSCF5582 increases with increasing pO2 for pO2 ≥ 0.01 (p-type conduction) and decreases slightly with increasing pO2 for pO2 0.01 atm. The activation energy for conduction above ∼673 K and at pO2 ≥ 0.1 is ∼0.07 eV. Above ∼823K and at pO2 ≥ 0.01 atm, the activation energy for conduction is ∼0.2 eV.  相似文献   

20.
Single crystals of Bi and Cu-doped Ca3Co2O6were synthesized in a molten K2CO3flux. Using an obtained single crystal of (Ca0.985(5)Bi0.015(5))3(Co0.990(3)Cu0.010(3))2O6elongated to the c-axis direction of the crystal structure, the electric resistivity (ρ) and Seebeck coefficient (S) were measured from room temperature to over 1000 K in air. The single crystal showed p-type semiconducting behavior with ρ values of 1.8 Ω cm at 303 K and 0.017 Ω cm at 1000 K. The S values were +254 μ VK− 1 at 325 K, +360 μ VK− 1 at 420 K, and +214 μ VK− 1 at 1000 K. The power factor (S 2 ρ − 1) increased with an increase of temperature and attained 2.70 × 10− 4 Wm− 1K− 2 at 1000 K.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号