首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper proposes a new technique for measuring in-service optical fibers, that uses an optical time domain reflectometer (OTDR). The feature of the proposed technique is that the OTDR light is in the same wavelength band as the video signal, which is distributed by using the subcarrier multiplexing (SCM) technique. In a 40-channel SCM system operating at a signal wavelength of 1.558 /spl mu/m, we show that the required video quality can be maintained, by using the proposed OTDR operating in the 1.55 /spl mu/m band, even though the measured fiber is in service and the OTDR light enters an optical receiver. Moreover, we clarify the conditions for undertaking measurements, without the need for optical filters designed to prevent OTDR light from degrading the SCM signal quality.  相似文献   

2.
We have proposed and experimentally demonstrated a novel optical source configuration that uses a self-seeded reflective semiconductor optical amplifier (RSOA) as an optical network unit (ONU) in a wavelength division multiplexed/subcarrier multiplexing (SCM)-passive optical network (PON). A fiber Bragg grating (FBG) was used to obtain a single longitudinal mode of the RSOA. The proposed ONU configuration is simple, cost-effective, and effective regardless of wavelength allocation. Additionally, it would be robust for optical beat interference (OBI) noise. As the ONU is composed only of an RSOA and FBG, the self-seeded RSOA, due to the strong self-injection caused by the reflection of the FBG, has a broad optical spectrum. A self-homodyne apparatus method was performed in order to demonstrate the robustness of the self-seeded RSOA in OBI. To confirm the validity of the proposed scheme, a 16-quadrature amplitude modulation transmission experiment was performed in a 10-, 20-km optical access link with an SCM frequency of 1 GHz. An error vector magnitude of less than 4% for 2 Msps was successfully obtained through the transmission experiment.  相似文献   

3.
This paper proposes a new modulation format for optical time domain reflectometry (OTDR) to eliminate optical surge and improve OTDR performance in optical amplifier submarine transmission systems. The modulation format, FSK-ASK, uses a short high-power probe pulse and a long dummy pulse. Thanks to the slow gain dynamics of erbium-doped fiber amplifiers, both pulses experience an identical gain, equal to the loss of a span, so that the probe pulse maintains its high power and does not develop into an optical surge. Fault location experiments verify a theoretical prediction that FSK-ASK improves the signal-to-noise ratio (SNR) of OTDR by an amount as large as the power ratio of the probe to dummy signal. They also confirm the elimination of the optical surge caused by conventional OTDR using a solitary probe pulse. An FSK-ASK OTDR is applied in a commercial submarine amplifier transmission system which has a total transmission length of 890 km and a repeater spacing of 90 km. These field trial results show that subtle fiber anomalies can be located, with a spatial resolution of 1 km, along the entire length of the amplifier transmission system from a terminal end  相似文献   

4.
This paper investigates the impact of backreflection lights on upstream transmission in wavelength division multiplexing (WDM) single-fiber loopback access networks, where a WDM light source is located at the central office (CO) and each optical network unit (ONU) includes an optical modulator with optical amplifiers. This study considers backreflection lights from two sources, the continuous wave (CW) light at the CO (Reflection-I) and the modulated signal at the ONU (Reflection-II). It is confirmed, for the first time, that the impact of Reflection-II increases strongly with ONU gain. To estimate the impact of these backreflection lights, a simple intensity noise estimation scheme is presented. This scheme clarifies that the acceptable transmission line losses is 10 dB for 1.25 Gb/s under the optical return loss (ORL) of -32 dB.  相似文献   

5.
RFoG技术在HFC网络双向改造中存在明显的优势,越来越多的运营商采用RFoG组网方案,但是RFoG的射频光网络单元由于光突发模式采用电平控制ONU的开通与关断,造成实现困难。为此,给出了一种基于同步传输的射频光网络单元设计方法,将回传信号数字化,采用和CMTS相同的时分复用技术(TDMA)来控制ONU反向光发射的"突发",从而达到在任一给定的时点只允许一个ONU与CMTS头端保持通信,以弥补其不足。  相似文献   

6.
A novel architecture for the colorless optical network unit (ONU) is proposed and experimentally demonstrated with direct-detection optical orthogonal frequency division multiplexing (DDO-OFDM). In this architecture, polarization-division multiplexing is used to reduce the cost at ONU. In optical line terminal (OLT), quadrature amplitude modulation (QAM) intensity-modulated OFDM signal with x-polarization at 10 Gbit/s is transmitted as downstream. At each ONU, the optical OFDM signal is demodulated with direct detection, and y-polarization signal is modulated for upstream on-off keying (OOK) data at 5 Gbit/s. Simulation results show that the power penalty is negligible for both optical OFDM downstream and the on-off keying upstream signals after over 50 km single-mode fiber (SMF) transmission.  相似文献   

7.
波分复用无源光网络(WDM-PON)是一种容量大、易升级、网络安全性高的光接入网技术。利用正交频分复用(OFDM)调制技术在传输速率、距离和色散容限方面的优势,提出一种基于偏振复用的WDM-OFDM-PON,同时在光网络单元(ONU)中实现了无光源的无色设计。仿真实验表明该系统可以在50km单模光纤上利用每一波长实现下行10Gb/s、上行5Gb/s的双向传输。  相似文献   

8.
FM-FDM (frequency division multiplexing) optical transmission equipment has been developed for 34-channel MUSE HDTV (high-definition television) signals to realize optical CATV (cable television) systems. The equipment uses an LD (laser diode) with a 1.3 μm wavelength, a single-mode optical fiber, and an avalanche photodiode (APD). A good picture is received after a 42 km transmission. A part of the multiplexed signals is distorted near or below the threshold of an LD. When the number of transmission channels is small and the total optical modulation depth is large, this nonlinearity governs the power ratio of an FM signal to one distortion component-the DU ratio. However, when the number of transmission channels is large, the DU ratio is determined by the effective optical modulation depth rather than the total optical modulation depth. Furthermore, the method of system design is clarified for an optical trunk line CATV system. If no restriction on the transmission bandwidth of optical devices exists, approximately 30 km transmission of 100-channel MUSE HDTV signals is available with a received CN ratio of 17.5 dB  相似文献   

9.
In subcarrier multiplexing (SCM) optical video distribution systems, the nonlinear signal distortion generated by the combined action of laser chirp and fiber dispersion limits the transmission distance. This paper for the first time shows that low-chirp MQW (multiquantum well)-EA (electroabsorption) external modulators are applicable to AM-SCM transmission systems. The feedforward linearization technique is used to compensate the signal distortion due to the nonlinearity in the modulator's L-V (light power versus voltage) characteristic. The effectiveness of this type of modulator for suppressing dispersion-induced distortion is clarified experimentally. A feedforward linearized transmitter with composite second order (CSO) intermodulation distortion <-62 dBc, composite triple beat (CTB) intermodulation distortion <-59 dBc and a carrier-to-noise ratio (CNR) >50.5 dB is successfully constructed. It is shown that the transmitter can achieve a CSO <-59 dBc, a CTB <-57 dBc and a CNR >49.5 dB for a 32 channel AM signal and 10 km transmission. Furthermore, estimations of the signal distortion cancellation and the noise characteristic achieved with feedforward circuit modeling are shown. The results obtained here emphasize that MQW-EA external modulators are applicable to AM-SCM transmission systems  相似文献   

10.
We report an in-depth investigation of the inter-modulation crosstalk in subcarrier multiplexing (SCM) systems with optical demultiplexing (ODeMux). Both theoretical derivations and numerical simulations show that the crosstalk in ODeMux systems mainly comes from the nonlinear mixing of the baseband and subcarrier modulations inside the signal channels. Several key parameters are then studied to estimate their effects on the magnitude of the crosstalk. As a result, performance optimization strategies are proposed for ODeMux SCM systems. In order to further enhance the transmission performance of ODeMux SCM systems, we discuss two techniques to suppress the inter-modulation crosstalk and analyze their effectiveness with numerical simulations.  相似文献   

11.
The transmission performance of carrier-suppressed, single-sideband (SSB), optical orthogonal frequency division multiplexing (OOFDM) signals is investigated numerically in intensity-modulation and direct-detection (IMDD) single-mode fiber (SMF) systems using directly modulated DFB lasers (DMLs), with special attention being given to the impact of DMLs on the system performance. The dependence of the optimum carrier suppression ratio is identified on DML operating condition and optical input power. It is shown that, for DML-based optical amplification-free metropolitan systems, 30 Gb/s over 80-km SMF transmission is achievable, which doubles the performance obtained by using double-sideband (DSB) OOFDM signals without carrier suppression, and that 10 Gb/s over 1200-km SMF transmission is also feasible for DML-based long-haul systems consisting of optical amplifiers. The results indicate that the SSB technique with an optimum carrier suppression ratio reduces considerably the DML-induced nonlinear effect, and leads to decreased susceptibility of the aforementioned transmission performance to variations in DML operating condition and optical input power.   相似文献   

12.
In this paper, we describe a novel technique based on the flipped-exponential (FE) Nyquist pulse method for reducing peak-to-average power ratio (PAPR) in an optical direct-detection orthogonal frequen...  相似文献   

13.
Signal multiplexing techniques for coherent optical transmission are compared, and appropriate application for a coherent subcarrier multiplexing (SCM) system is discussed. Optical frequency modulation (FM) using direct modulation of a distributed-feedback laser diode (DFB-LD) and a heterodyne detection is shown to be feasible. A transmission system using a local laser in the transmitter is unaffected by polarization and is cost effective. Phase noise can be suppressed by a phase-noise-canceling circuit (PNC) in a heterodyne receiver. This circuit can also effectively compensate for the frequency of instability of light sources. A theoretical simulation of a coherent SCM system showed that 100 channels of 30-MHz FM signal or 15 channels of 155-Mb/s signal can be distributed to 10000 subscribers using single-stage or double-stage optical amplifiers  相似文献   

14.
We propose and demonstrate an efficient power‐saving optical network unit (ONU) based on upstream traffic monitoring for 10‐Gb/s wavelength division multiplexed passive optical networks (WDM‐PONs). The power‐saving mode controller uses a μ‐processor and traffic monitoring modules followed by the proposed power‐saving processes to operate the sleep mode ONU. The power consumption of the ONU is effectively reduced from 19.3 W to 6.4 W when no traffic from the users is detected. In addition, we design a power‐saving mechanism based on a cyclic sleep mode operation to allow a connectivity check between the optical line terminal and ONU. Our calculation results show that the WDM‐PON ONU reduces the power consumption by around 60% using the proposed mechanism.  相似文献   

15.
We demonstrate a method for differential-group-delay (DGD) and polarization-mode-dispersion (PMD) monitoring using the degree-of-polarization (DOP) in subcarrier-multiplexed (SCM) systems. Traditional SCM signal show very little DOP sensitivity to DGD/PMD due to the low modulation depth used for generating SCM signals. We use a narrow-band optical filter to equalize the power of the carrier and one of the sidebands by offsetting the filter from the carrier, enabling PMD and DGD monitoring and more than tripling the DOP sensitivity to DGD/PMD. Our technique is simple, uses only a single optical filter, and can be applied to both single- and double-sideband (SSB and DSB) SCM signals as well as single and multisubcarrier systems. Additionally, we show that our monitoring technique is robust to the chromatic dispersion-induced radio-frequency (RF) power fading effect seen in DSB SCM signals. Using this technique to enhance the DOP sensitivity to DGD/PMD and generate a feedback signal to a PMD compensator (PMDC), we obtain an 11-dB improvement in the 5% RF power tail.  相似文献   

16.
为了降低电力通信系统中白噪声和随机多径噪声,提出了2种基于线性调频-光时域反射仪(LFM-0TDR)技术的监测方案,即单频LFM-0TDR方案和频分复用LFM-0TDR(FDM-LFM-0TDR)方案.该监测方案采用LFM光脉冲信号作为探测信号,利用分数阶傅里叶变换将后向散射回来的探测信号变换到分数阶傅里叶域进行信号处...  相似文献   

17.
A combination of optical frequency division multiplexing (FDM) and phase-shift-keying (PSK) homodyne detection can increase transmission capacity. However, phase sensitive transmission systems, especially repeatered ones, suffer from data-dependent optical amplitude fluctuation that is converted to phase fluctuation by fiber nonlinearity. The authors discuss how this data-dependent amplitude fluctuation affects the error rate performance of optical FDM PSK homodyne detection systems. If only the optical amplitude fluctuation induced by phase modulators is taken into account, the allowable power fluctuation to keep the power penalty at 0.5 dB at a bit error rate (BER) of 10-10 is below 0.17 mW for BPSK homodyne detection and 0.09 mW for QPSK homodyne detection. However, if only the amplitude fluctuation induced by the fiber chromatic dispersion is taken into account, the allowable number of repeaters to keep a 0.5-dB power penalty due to XPM at a BER of 10-10 is 1 for BPSK homodyne detection and below 5 for QPSK homodyne detection  相似文献   

18.
陈晓文 《激光技术》2014,38(1):124-127
为了减小时分复用无源光网络(TDM-PON)上行信号光波长的飘移,基于TDM-PON上行信号光功率均衡器架构,采用单模激光注入锁定光网络单元(ONU)法布里-珀罗(F-P)激光器(LD)方法,研究了F-P LD输出光波长的锁模特性,包括锁模的范围、驱动电流对锁模特性的影响、锁模前后温度变化引起F-P LD光波长变化情况等。结果表明,当驱动电流为9mA时,F-P LD可被锁模的波长范围为0.38nm,大于ONU上行光波长因环境温度变化5℃而产生的波长位移量0.25nm,F-P LD被锁模可使ONU上行信号的光波长相同且稳定,降低光功率均衡后的噪声。  相似文献   

19.
Subcarrier multiplexing (SCM) transmission has been widely used for analog video transmission in CATV systems. As digital video technology rapidly advances, there is a strong need to transmit digital video over the same SCM system. Since digital video such as HDTV requires a much larger bandwidth, multilevel signaling becomes an important approach. As the number of levels increases, however, the noise margin decreases and the system is more subject to adjacent channel interference (ACI). In this paper, we analyze the spectrum efficiency and power penalty of multilevel SCM transmission. We found that using pulse shaping can make multilevel signaling attractive. Depending on the ACI that can be tolerated, results show that multilevel amplitude-shift keying (ASK) of 5-7 b/symbol can give the optimum spectrum efficiency using the raised-cosine pulse. The price paid is a slight power penalty of 0.4 dB to reduce intersymbol interference (ISI) to zero  相似文献   

20.
Fault location in optical amplifier transmission systems is described. Optical time-domain reflectometry (OTDR) cannot be used for an optical transmission line containing traditional Er-doped fiber amplifiers (EDFAs) because they contain optical isolators. The authors propose an OTDR scheme that uses new EDFAs containing optical circulators and return transmission lines. The new EDFAs support both OTDR and digital signal transmission. A 280.9 km transmission line containing three of the proposed EDFAs was constructed and tested. Experimental results demonstrated the feasibility of OTDR fault location and 1.8-Gb/s digital signal transmission.<>  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号