首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
用倍增技术在带有Wormhole路由技术的n×n二维网孔机器上提出了时间复杂度为O(log2n)的连通分量和传递闭包并行算法,并在此基础上提出了一个时间复杂度为O(log3n)的最小生成树并行算法.这些都改进了Store-and-Forward路由技术下的时间复杂度下界O(n).同其他运行在非总线连接分布式存储并行计算机上的算法相比,此连通分量和传递闭包算法的时间复杂度是最优的.  相似文献   

2.
模糊聚类计算的最佳算法   总被引:14,自引:0,他引:14  
马军  邵陆 《软件学报》2001,12(4):578-581
给出模糊关系传递闭包在对应模糊图上的几何意义,并提出一个基于图连通分支计算的模糊聚类最佳算法.对任给的n个样本,新算法最坏情况下的时间复杂性函数T(n)满足O(n)≤T(n)≤O(n2).与经典的基于模糊传递闭包计算的模糊聚类算法的O(n3logn)计算时间相比,新算法至少降低了O(n相似文献   

3.
确定任意多边形凸凹顶点的算法   总被引:21,自引:0,他引:21  
周培德 《软件学报》1995,6(5):276-279
本文提出一种确定任意多边形凸凹顶点的算法.该算法的时间复杂性为O(n2logn)次乘法和O(n2)次比较.  相似文献   

4.
管丽 《软件学报》1996,7(Z1):249-253
本文在一个EREW PRAM(exclusive read exclusive write paralled random accessmachine)上提出一个并行快速排序算法,这个算法用k个处理器可将n个项目在平均O((n/k+logn)logn)时间内排序.所以平均来说算法的时间和处理器数量的乘积对任何kn/lognO(nlogn).  相似文献   

5.
本文讨论了动态矩形交查询算法.文中介绍了两个半动态矩形查询的新算法,它们分别基于一维数据结构和二维数据结构.一维查询算法的查询时间复杂度是O(logMk′),更新时间复杂度是O(logMlogn),空间复杂度是OnlogM/).二维查询算法的查询时间复杂度是O(log2Mk),更新时间复杂度是O(log2Mlogn),空间复杂度是Onlog2M).本文分别实现了这两个算法,通过对它们的性能进行比较,发现一维查询算法是一种高效、实用的算法.  相似文献   

6.
RNA二级结构预测中动态规划的优化和有效并行   总被引:6,自引:0,他引:6  
谭光明  冯圣中  孙凝晖 《软件学报》2006,17(7):1501-1509
基于最小自由能模型的方法是计算生物学中RNA二级结构预测的主要方法,而计算最小自由能的动态规划算法需要O(n4)的时间,其中n是RNA序列的长度.目前有两种降低时间复杂度的策略:限制二级结构中内部环的大小不超过k,得到O(n2×k2)算法;Lyngso方法根据环的能量规则,不限制环的大小,在O(n3)的时间内获得近似最优解.通过使用额外的O(n)的空间,计算内部环中的冗余计算大为减少,从而在同样不限制环大小的情况下,在O(n3)的时间内能够获得最优解.然而,优化后的算法仍然非常耗时,通过有效的负载平衡方法,在机群系统上实现并行程序.实验结果表明,并行程序获得了很好的加速比.  相似文献   

7.
背包问题的最优并行算法   总被引:10,自引:2,他引:10  
利用分治策略,提出一种基于SIMD共享存储计算机模型的并行背包问题求解算法.算法允许使用O(2n/4)1-ε个并行处理机单元,0≤ε≤1,O(2n/2)个存储单元,在O(2n/4(2n/4)ε)时间内求解n维背包问题,算法的成本为O(2n/2).将提出的算法与已有文献结论进行对比表明,该算法改进了已有文献的相应结果,是求解背包问题的成本最优并行算法.同时还指出了相关文献主要结论的错误.  相似文献   

8.
在EREW PRAM(exclusive-read and exclusive-write parallel random access machine)并行计算模型上,对范围很广的一类无向图的边极大匹配问题,给出时间复杂性为O(logn),使用O((n+m)/logn)处理器的最佳、高速并行算法.  相似文献   

9.
一种高效频繁子图挖掘算法   总被引:11,自引:1,他引:11  
李先通  李建中  高宏 《软件学报》2007,18(10):2469-2480
由于在频繁项集和频繁序列上取得的成功,数据挖掘技术正在着手解决结构化模式挖掘问题--频繁子图挖掘.诸如化学、生物学、计算机网络和WWW等应用技术都需要挖掘此类模式.提出了一种频繁子图挖掘的新算法.该算法通过对频繁子树的扩展,避免了图挖掘过程中高代价的计算过程.目前最好的频繁子图挖掘算法的时间复杂性是O(n3·2n),其中,n是图集中的频繁边数.提出算法的时间复杂性是O〔2n·n2.5/logn〕,性能提高了O(√n·logn)倍.实验结果也证实了这一理论分析.  相似文献   

10.
李肯立  赵欢  李仁发  李庆华 《软件学报》2007,18(6):1319-1327
将串行动态二表算法应用于并行三表算法的设计中,提出一种求解背包、精确的可满足性和集覆盖等背包类NP完全问题的并行三表六子表算法.基于EREW-PRAM模型,该算法可使用O(2n/8)的处理机在O(27n/16)的时间和O(213n/48)的空间求解n维背包类问题,其时间-空间-处理机折衷为O(25n/6).与现有文献的性能对比分析表明,该算法极大地提高了并行求解背包类问题的时间-空间-处理机折衷性能.由于该算法能够破解更高维数的背包类公钥和数字水印系统,其结论在密钥分析领域具有一定的理论和实际意义.  相似文献   

11.
Previous research on developing parallel triangulation algorithms concentrated on triangulating planar point sets.O(log3 n) running time algorithms usingO(n) processors have been developed in Refs. 1 and 2. Atallah and Goodrich(3) presented a data structure that can be viewed as a parallel analogue of the sequential plane-sweeping paradigm, which can be used to triangulate a planar point set inO(logn loglogn) time usingO(n) processors. Recently Merks(4) described an algorithm for triangulating point sets which runs inO(logn) time usingO(n) processors, and is thus optimal. In this paper we develop a parallel algorithm for triangulating simplicial point sets in arbitrary dimensions based on the idea of the sequential algorithm presented in Ref. 5. The algorithm runs inO(log2 n) time usingO(n/logn) processors. The algorithm hasO(n logn) as the product of the running time and the number of processors; i.e., an optimal speed-up.  相似文献   

12.
We present efficient algorithms for solving several fundamental graph-theoretic problems on a Linear Array with a Reconfigurable Pipelined Bus System (LARPBS), one of the recently proposed models of computation based on optical buses. Our algorithms include finding connected components, minimum spanning forest, biconnected components, bridges and articulation points for an undirected graph. We compute the connected components and minimum spanning forest of a graph in O(log n) time using O(m+n) processors where m and n are the number of edges and vertices in the graph and m=O(n 2) for a dense graph. Both the processor and time complexities of these two algorithms match the complexities of algorithms on the Arbitrary and Priority CRCW PRAM models which are two of the strongest PRAM models. The algorithms for these two problems published by Li et al. [7] have been considered to be the most efficient on the LARPBS model till now. Their algorithm [7] for these two problems require O(log n) time and O(n 3/log n) processors. Hence, our algorithms have the same time complexity but require less processors. Our algorithms for computing biconnected components, bridges and articulation points of a graph run in O(log n) time on an LARPBS with O(n 2) processors. No previous algorithm was known for these latter problems on the LARPBS.  相似文献   

13.
S. Sunder  Xin He 《Algorithmica》1996,16(3):243-262
We present a parallel algorithm for solving the minimum weighted completion time scheduling problem for transitive series parallel graphs. The algorithm takesO(log2 n) time withO(n 3) processors on a CREW PRAM, wheren is the number of vertices of the input graph. This is the first NC algorithm for solving the problem.Research supported in part by NSF Grants CCR-9011214 and CCR-9205982.  相似文献   

14.
The main results of this paper are efficient parallel algorithms, MSP and LOCATE, for computing minimal spanning trees and locating minimal paths in directed graphs, respectively. Algorithm MSP has time complexityO(log3 n) usingO(n 3/logn) processors, while LOCATE has time complexityO(logn) usingO(n 2) processors. Algorithm MSP is derived from sequential algorithms, when the unbounded parallelism model is used.  相似文献   

15.
Computing an optimal solution to the knapsack problem is known to be NP-hard. Consequently, fast parallel algorithms for finding such a solution without using an exponential number of processors appear unlikely. An attractive alternative is to compute an approximate solution to this problem rapidly using a polynomial number of processors. In this paper, we present an efficient parallel algorithm for finding approximate solutions to the 0–1 knapsack problem. Our algorithm takes an , 0 < < 1, as a parameter and computes a solution such that the ratio of its deviation from the optimal solution is at most a fraction of the optimal solution. For a problem instance having n items, this computation uses O(n5/2/3/2) processors and requires O(log3n + log2nlog(1/)) time. The upper bound on the processor requirement of our algorithm is established by reducing it to a problem on weighted bipartite graphs. This processor complexity is a significant improvement over that of other known parallel algorithms for this problem.  相似文献   

16.
Given ann-vertex simple polygon we address the following problems: (i) find the shortest path between two pointss andd insideP, and (ii) compute the shortestpath tree between a single points and each vertex ofP (which implicitly represents all the shortest paths). We show how to solve the first problem inO(logn) time usingO(n) processors, and the more general second problem inO(log2 n) time usingO(n) processors, and the more general second problem inO(log2 n) time usingO(n) processors for any simple polygonP. We assume the CREW RAM shared memory model of computation in which concurrent reads are allowed, but no two processors should attempt to simultaneously write in the same memory location. The algorithms are based on the divide-and-conquer paradigm and are quite different from the known sequential algorithmsResearch supported by the Faculty of Graduate Studies and Research (McGill University) grant 276-07  相似文献   

17.
Parallel algorithms for the problems of selection and searching on sorted matrices are formulated. The selection algorithm takesO(lognlog lognlog*n) time withO(n/lognlog*n) processors on an EREW PRAM. This algorithm can be generalized to solve the selection problem on a set of sorted matrices. The searching algorithm takesO(log logn) time withO(n/log logn) processors on a Common CRCW PRAM, which is optimal. We show that no algorithm using at mostnlogcnprocessors,c≥ 1, can solve the matrix search problem in time faster than Ω(log logn) and that Ω(logn) steps are needed to solve this problem on any model that does not allow concurrent writes.  相似文献   

18.
This paper presents BSR-parallel algorithms for some problems in fundamental graph theory : transitive closure, connected components, spanning tree, bridges and articulation points of a graph and bipartite graph recognition. There already exist constant time algorithms to solve these problems on a mesh with reconfigurable bus system using O(N 4) processors. Here we show that these problems can be solved in constant time using only O(N 2) processors on the BSR model (N is the number of vertices of the graph G). Therefore, our algorithms are more work-efficient. These new results suggest that many other problems in graph theory can be solved in constant time using the BSR model.  相似文献   

19.
《国际计算机数学杂志》2012,89(3-4):205-226
Ghosh and Bhattacharjee propose [2] (Intern. J. Computer Math., 1984, Vol. 15, pp. 255-268) an algorithm of determining breadth first spanning trees for graphs, which requires that the input graphs contain some vertices, from which every other vertex in the input graph can be reached. These vertices are called starting vertices. The complexity of the GB algorithm is O(log2 n) using O{n 3) processors. In this paper an algorithm, named BREADTH, also computing breadth first spanning trees, is proposed. The complexity is O(log2 n) using O{n 3/logn) processors. Then an efficient parallel algorithm, named- BREADTHFOREST, is proposed, which generalizes algorithm BREADTH. The output of applying BREADTHFOREST to a general graph, which may not contain any starting vertices, is a breadth first spanning forest of the input graph. The complexity of BREADTHFOREST is the same as BREADTH.  相似文献   

20.
An optimal parallel algorithm for volume ray casting   总被引:3,自引:0,他引:3  
Volume rendering by ray casting is computationally expensive. For interactive volume visualization, rendering must be done in real time (30 frames/s). Since the typical size of a 3D dataset is 2563, parallel processing is imperative. In this paper, we present anO(logn) EREW algorithm for volume rendering. We useO(n 3) processors that can be optimized toO(log3 n) time withO(n 3/log3 n) processors. We have implemented our algorithm on a MasPar MP-1. The implementation results show that a frame of size 2563 is generated in 11 s by 4096 processors. This time can be further reduced by the use of large number of processors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号