首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bimetallic PtNi-decorated graphitic carbon nitride (g-C3N4) nanotubes were prepared through calcining the mixture of urea and thiourea in the presence of Pluronic F127, followed by deposition of bimetallic PtNi nanoparticles (NPs) via chemical reduction. It is found that the photocatalytic activity of PtNi/g-C3N4 nanotubes is strongly dependent on the molar ratio of Pt/Ni and the highest activity is observed for Pt1Ni1/g-C3N4. Under visible light (λ > 420 nm) irradiation, the H2 generation rate over Pt1Ni1/g-C3N4 nanotubes is 104.7 μmol h?1 from a triethanolamine (10 vol%) aqueous solution, which is higher than that of Pt/g-C3N4 nanotubes (98.6 μmol h?1) and is about 47.6 times higher than that of pure g-C3N4 nanotubes. The cyclic photocatalytic reaction indicates that our Pt1Ni1/g-C3N4 nanotubes function as a stable photocatalyst for visible light-driven H2 production. The effect of bimetallic PtNi NPs in the transfer and separation of photogenerated charge carriers occurring in the excited g-C3N4 nanotubes was investigated by performing photo-electrochemical and photoluminescence measurements. Our results reveal that bimetallic PtNi could replace Pt as a promising cocatalyst for photocatalytic H2 evolution with better performance and lower cost.  相似文献   

2.
MOFs (ZIF-67) and g-C3N4 catalyst-modified MoS2 nanoparticles are prepared by means of doping g-C3N4 in the process of ZIF-67 formation and then introducing MoS2 nanoparticles on the surface of collaborative structure between MOFs and g-C3N4. The MOFs (ZIF-67) and g-C3N4 catalyst-modified MoS2 photocatalyst exhibits efficient hydrogen production with about 321 μmol under visible light irradiation in 4 h, which is almost about 30 times higher than that of over the pure g-C3N4 photocatalyst. A series of characterization studies such as SEM, XRD, TEM, EDX, XPS, UV–vis DRS, FTIR, transient fluorescence and electro-chemistry show that the novel structure of g-C3N4 and MOF is formed, the more active sites appears and the efficiency of photo-generated charge separation is improved. MoS2, as a narrow band semiconductor, is grafted on the surface of g-C3N4/MOF, which could effectively harvest visible light and swift charge separation. The results are well mutual corroboration with each other. In addition, a eosin Y-sensitized reaction mechanism is introduced.  相似文献   

3.
In this work, novel CuS/g-C3N4 composite photocatalysts were successfully prepared via a simple in-situ growth method. CuS nanoparticles, with an average diameter of ca.10 nm, were well dispersed on the surface of g-C3N4, revealing that g-C3N4 nanosheets were promising support for in-situ growth of nanosize materials. The CuS/g-C3N4 composites exhibited highly enhanced visible light photocatalytic H2 evolution from water-splitting compared to pure g-C3N4. The optimum photocatalytic activity of 2 wt% CuS/g-C3N4 composite photocatalytic H2 evolution was about 13.76 times higher than pure g-C3N4. The enhanced photocatalytic activity is attributed to the interfacial charge transfer (IFCT). In this system, electrons in the valence band (VB) of g-C3N4 can transfer directly to CuS clusters, causing the reduction of partial CuS to Cu2S, which can act as an electron sink and co-catalyst to promote the separation and transfer of photo-generated electrons. The accumulated photoinduced electrons in CuS/Cu2S clusters could effectively reduce H+ to produce H2. This work provides a possibility for constructing low-cost CuS as a substitute for noble metals in the photocatalytic production of H2 via a facile method based on g-C3N4.  相似文献   

4.
A highly active photocatalyst based on g-C3N4 coated SrTiO3 has been synthesized simply by decomposing urea in the presence of SrTiO3 at 400 °C. The catalyst demonstrates a high H2 production rate ∼440 μmol h−1/g catalyst in aqueous solution under visible light irradiation, which is much higher than conventional anion doped SrTiO3 or physical mixtures of g-C3N4 and SrTiO3. The improved photocatalytic activity can be ascribed to the close interfacial connections between g-C3N4 and SrTiO3 where photo-generated electron and holes are effectively separated. The newly synthesized catalyst also exhibited a stable performance in the repeated experiments.  相似文献   

5.
Reduced graphene oxide (rGO) supported g-C3N4-TiO2 ternary hybrid layered photocatalyst was prepared via ultrasound assisted simple wet impregnation method with different mass ratios of g-C3N4 to TiO2. The synthesized composite was investigated by various characterization techniques, such as XRD, FTIR, Raman Spectra, FE-SEM, HR-TEM, UV vis DRS Spectra, XPS Spectra and PL Spectra. The optical band gap of g-C3N4-TiO2/rGO nanocomposite was found to be red shifted to 2.56 eV from 2.70 eV for bare g-C3N4. It was found that g-C3N4 and TiO2 in a mass ratio of 70:30 in the g-C3N4-TiO2/rGO nanocomposite, exhibits the highest hydrogen production activity of 23,143 μmol g?1h?1 through photocatalytic water splitting. The observed hydrogen production rate from glycerol-water mixture using g-C3N4-TiO2/rGO was found to be 78 and 2.5 times higher than g-C3N4 (296 μmol g?1 h?1) and TiO2 (11,954 μmol g?1 h?1), respectively. A direct contact between TiO2 and rGO in the g-C3N4-TiO2/rGO nanocomposite produces an additional 10,500 μmol g?1h?1 of hydrogen in 4 h of photocatalytic reaction than the direct contact between g-C3N4 and rGO. The enhanced photocatalytic hydrogen production activity of the resultant nanocomposite can be ascribed to the increased visible light absorption and an effective separation of photogenerated electron-hole pairs at the interface of g-C3N4-TiO2/rGO nanocomposite. The effective separation and transportation of photogenerated charge carriers in the presence of rGO sheet was further confirmed by a significant quenching of photoluminescence intensity of the g-C3N4-TiO2/rGO nanocomposite. The photocatalytic hydrogen production rate reported in this work is significantly higher than the previously reported work on g-C3N4 and TiO2 based photocatalysts.  相似文献   

6.
In this paper, the Bi2WO6 quantum dots (QDs) decorated g-C3N4 nanoplates were successfully synthesized via a one-step hydrothermal method. The morphology of the Bi2WO6 could be tuned from regular nanoplates to quantum dots. Remarkably, the Bi2WO6 QDs coupled with g-C3N4 not only prevented the aggregation, but also decreased the size of Bi2WO6 QDs about 3.5 nm. Meanwhile, the charge separation mechanisms of Bi2WO6 QDs/g-C3N4 photocatalyst were investigated by electrochemical impedance spectra, Mott-Schottky and linear voltammetry scans. As a result, the photoelectrochemical (PEC) experiments provided forceful evidence for the charge separation mechanism of the Bi2WO6 QDs/g-C3N4 Z-scheme. The Z-scheme system not only accelerated the separation efficiency of charge, but also improved the ability of PEC water splitting at measured 1.23 V vs. RHE.  相似文献   

7.
Novel mesoporous phosphate incorporated g-C3N4 (CNM-Px) polymeric material was synthesized via a facile hydrothermal-calcination method, using melamine as precursor and phosphoric acid as dopant. The successful incorporation of phosphate into the framework of g-C3N4 nanosheets was verified by XRD, FT-IR and XPS characterizations and the possible formation mechanism was put forward. The as-fabricated CNM-Px samples were applied to photocatalytic hydrogen evolution reaction and exhibited remarkably improved photocatalytic performance both under simulated sunlight and visible light irradiation. The concentration of phosphoric acid was also well tuned and the optimal concentration was 2.5 mol L?1. The hydrogen evolution rate of the optimized sample CNM-P2.5 (the concentration of treating phosphoric acid was 2.5 mol L?1) reached 8163 μmol g?1 h?1 under simulated sunlight irradiation, which is 3.7 times higher than that of pristine g-C3N4 (CNM). It also showed dramatically improved hydrogen evolution rate under visible light irradiation, which was 2105 μmol g?1 h?1, about 6.7 times higher than that of CNM. The excellent photocatalytic activity of CNM-Px samples is due to the synergic advantages of larger surface area and reduced recombination of photo-generated electrons and holes. This study paves the way for tailoring design and synthesis of highly active metal-free carbon nitride materials for photocatalytic hydrogen evolution.  相似文献   

8.
AuPd bimetallic nanoparticle (NP) modified ultra-thin graphitic carbon nitride nanosheet photocatalysts were synthesized via photochemical deposition-precipitation followed by hydrogen reduction. The crystal structure, chemical properties, and charge carrier behavior of these photocatalysts were characterized by X-ray diffraction (XRD), surface photovoltage spectroscopy (SPS), transient photovoltage spectroscopy (TPV), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), high-resolution transmission electron microscopy (HRTEM), and UV-Vis diffuse-reflectance spectroscopy (DRS). Photocatalytic H2 evolution experiments indicate that the hydrogen treated AuPd nanoparticles can effectively promote the separation efficiency of electron-hole pairs photo-excited in the g-C3N4 photocatalyst, which consequently promotes photocatalytic H2 evolution. The 1.0 wt% AuPd/g-C3N4 (H2) composite photocatalyst showed the best performance with a corresponding photocatalytic H2 evolution rate of 107 μmol h?1. The photocatalyst can maintain most of its photocatalytic activity after four photocatalytic experiment cycles. These results demonstrate that the synergistic effect of light reduction and hydrogen reduction of AuPd and g-C3N4 help to greatly improve the photocatalytic activity of the composite photocatalyst.  相似文献   

9.
Graphitic carbon nitride (g-C3N4) is one of the promising two-dimensional metal-free photocatalysts for solar water splitting. Regrettably, the fast electron-hole pair recombination of g-C3N4 reduces their photocatalytic water splitting efficiency. In this work, we have synthesized the CuO/g-C3N4 heterojunction via wet impregnation followed by a calcination method for photocatalytic H2 production. The formation of CuO/g-C3N4 heterojunction was confirmed by XRD, UV–vis and PL studies. Notably, the formation of heterojunction not only improved the optical absorption towards visible region and also enhanced the carrier generation and separation as confirmed by PL and photocurrent studies. The photocatalytic H2 production results revealed that CuO/g-C3N4 photocatalyst demonstrated the increased photocatalytic H2 production rate than bare g-C3N4. The maximum H2 production rate was obtained with 4 wt % CuO loaded g-C3N4 photocatalyst. Importantly, the rate of H2 production was further improved by introducing simple redox couple Co2+/Co3+. Addition of Co2+ during photocatalytic H2 production shuttled the photogenerated holes by a reversible conversion of Co2+ to Co3+ with accomplishing water oxidation. The effective shuttling of photogenerated holes decreased the election-hole pair recombination and thereby enhancing the photocatalytic H2 production rate. It is worth to mention that the addition of Co2+ with 4 wt % CuO/g-C3N4 photocatalyst showed ∼7.5 and ∼2.0 folds enhanced photocatalytic H2 production rate than bare g-C3N4/Co2+ and CuO/g-C3N4 photocatalysts. Thus, we strongly believe that the present simple redox couple mediated charge carrier separation without using noble metals may provide a new idea to reduce the recombination rate.  相似文献   

10.
Transition metal phosphides are considered as the most prospective replacements for noble metal cocatalysts used for H2 evolution during photocatalytic water splitting. In this work, Ni2P/g-C3N4 composite photocatalyst was synthesized using a simple in-situ hydrothermal method by one step. Benefiting from the excellent light trapping, efficient transfer of charge carriers and strong stability of Ni2P nanoparticles, as well as the stable interface contact between Ni2P and g-C3N4, the Ni2P/g-C3N4 exhibit greatly enhanced H2 evolution performance during photocatalytic water splitting. The optimized H2 evolution rate can reach 3344 μmol h?1 g?1 over 17.5 wt% Ni2P/g-C3N4, which is 68.2 times greater than that of pure g-C3N4 and even much greater than that of 15 wt% Pt/g-C3N4. The apparent quantum efficiency (QE) is about 9.1% under 420 nm monochromatic. The enhancement mechanism was demonstrated in detail by transient photocurrent responses, photoluminescence spectra and electrochemical impedance spectroscopy. This work develops a facile strategy to fabricate transition metal phosphide/semiconductor heterojunction systems with potential application for photocatalytic H2 evolution.  相似文献   

11.
In this paper, a g-C3N4/WO3-carbon microsphere composite-based photocatalyst was successfully prepared by a one-pot thermal synthesis method for sunlight driven decomposition of water to produce hydrogen. The results show that the g-C3N4/WO3-carbon microspheres had better photocatalytic properties and stability. Under visible light and sunlight irradiation, the hydrogen production efficiency of the photocatalytic decomposition of water was 107.75 times and 70.54 times greater than that of pure g-C3N4, respectively. The experimental and characterization results show that g-C3N4 and WO3 formed a Z-scheme heterojunction on the surface of the g-C3N4/WO3-carbon microsphere composite-based photocatalyst. Carbon microspheres modified on g-C3N4 nanosheets and WO3 had good conductivity and promoted the transfer of photogenerated electrons in g-C3N4 nanosheets. The addition of carbon microspheres increased the specific surface area of the composite photocatalyst. The g-C3N4/WO3-carbon microsphere composite-based photocatalyst showed strong adaptability to the fluctuating light intensity, providing feasibility for industrialized mass production.  相似文献   

12.
A 2D g-C3N4(pPCN)/rGO heterojunction for photocatalytic hydrogen production is fabricated by a facile dissolution strategy facilitated by H2SO4. The bulk g-C3N4 (CN) can be directly exfoliated into ultrathin protonated g-C3N4 (PCN) nanosheets under the assistance of H2SO4, and PCN can be further modified by rGO in a dissolved state under the electrostatic self-assembly process. The nanocomposite exhibits a large surface area (146.47 m2/g) and intimate contact interfaces between pPCN and rGO due to the specific synthesis method. Based on the DRS, PL and photoelectrochemical analyses, the introduction of rGO can greatly improve the light absorption and photogenerated charge carrier separation and transfer of g-C3N4. The optimal pPCN/2 wt% rGO nanocomposite shows an efficient photocatalytic H2 evolution rate of 715 μmol g?1 h?1 under visible light irradiation, which is 2.6 and 13 times higher than those obtained on pPCN and CN. In addition, a photocatalytic mechanism over a 2D pPCN/rGO heterojunction is proposed. This work offers a new effective strategy for fascinating gC3N4based nanocomposites with promising hydrogen generation.  相似文献   

13.
The composite photocatalyst NixMo1?xS2/MOF-5@g-C3N4 was successfully synthesized by means of hydrothermal with two step methods and the effective photocatalytic activity improvement was obtained. With the introduction of NixMo1?xS2, the H2 production reached the maximum about 319 μmol under continuous visible light irradiation for 5 h, which was 30 times higher than that of pure g-C3N4 photocatalyst. A series of characterization results shown that the MOF-5@g-C3N4 on the surface of NixMo1?xS2 provided the more active sites and improved the efficiency of photo-generated charge separation with SEM, XRD, TEM, EDX, XPS, UV–vis DRS, BET, FTIR, transient fluorescence and electro-chemistry etc. and the results of which were in good mutual corresponding with each other. Furthermore, the reaction mechanism over the compound catalyst Nix-Mo1?xS2/MOF-5@g-C3N4 was proposed.  相似文献   

14.
Novel carbon dots (CDs)/graphitic carbon nitride (g-C3N4) hybrids were fabricated via an in situ thermal polymerization of the precursors, urea and glucose. This heterojunction catalyst exhibited enhanced photocatalytic H2 evolution activity under visible-light (λ > 420). A sample of CDs/g-C3N4 hybrids, CN/G0.5, which was prepared from 0.5 mg of glucose in 6.0 g of urea (8.3 × 10?3 wt% glucose), exhibited the best photocatalytic performance for hydrogen production from water under visible light irradiation, which is about 4.55 times of that of the bulk g-C3N4 (BCN). The improvement of photocatalytic activity was mainly attributed to the construction of built-in electric field at the interface of CDs and g-C3N4, which could improve the separation of photogenerated electron-hole pair. Moreover, the tight connection of CDs with g-C3N4 would serve as a well electron transport channel, which could promote the photocatalytic H2 evolution ability.  相似文献   

15.
In this research, we did not use any template, but a prickly structure urchin like morphology made of composite TiO2/g-C3N4 was synthesized by a one-step solvothermal method. It is generally reported that TiO2 is a pure phase, besides, the photocatalytic effect of multiphase TiO2 will be better. After the g-C3N4 was successfully loaded on the TiO2 surface, the morphology did not change. The special sea urchin morphology provides more active sites for catalysis. The band gap becomes smaller, because two materials were combined to form an interface effect. Meanwhile, it could effectively separate electron hole pairs, and promote charge transfer efficiency. More active substances were produced under visible light, such as superoxide radicals and holes. The scavenging experiment further confirms that superoxide radicals and holes play an important role in the catalytic process. The photocatalytic degradation of ibuprofen under visible light was improved. A possible enhanced photocatalytic mechanism of g-C3N4/TiO2 heterojunction photocatalysts was proposed.  相似文献   

16.
Novel photocatalysts, which consist of two visible light responsive semiconductors including graphite-like carbon nitride (g-C3N4) and Fe2O3, were successfully synthesized via electrodeposition followed by chemical vapor deposition. The morphology of the g-C3N4/Fe2O3 can be tuned from regular nanosheets to porous cross-linked nanostructures. Remarkably, the optimum activity of the g-C3N4/Fe2O3 is almost 70 times higher than that of individual Fe2O3 for photoelectrochemical water splitting. The enhancement of photoelectrochemical activity could be assigned to the morphology change of the photocatalysts and the effective separation and transfer of photogenerated electrons and holes originated from the intimately contacted interfaces. The g-C3N4/Fe2O3 composites could be developed as high performance photocatalysts for water splitting and other optoelectric devices.  相似文献   

17.
Well dispersed CdS quantum dots were successfully grown in-situ on g-C3N4 nanosheets through a solvothermal method involving dimethyl sulfoxide. The resultant CdS–C3N4 nanocomposites exhibit remarkably higher efficiency for photocatalytic hydrogen evolution under visible light irradiation as compared to pure g-C3N4. The optimal composite with 12 wt% CdS showed a hydrogen evolution rate of 4.494 mmol h−1 g−1, which is more than 115 times higher than that of pure g-C3N4. The enhanced photocatalytic activity induced by the in-situ grown CdS quantum dots is attributed to the interfacial transfer of photogenerated electrons and holes between g-C3N4 and CdS, which leads to effective charge separation on both parts.  相似文献   

18.
Excellent light harvest, efficient charge separation and sufficiently exposed surface active sites are crucial for a given photocatalyst to obtain excellent photocatalytic performances. The construction of two-dimensional/two-dimensional (2D/2D) or zero-dimensional/2D (0D/2D) binary heterojunctions is one of the effective ways to address these crucial issues. Herein, a ternary CdSe/WS2/g-C3N4 composite photocatalyst through decorating WS2/g-C3N4 2D/2D nanosheets (NSs) with CdSe quantum dots (QDs) was developed to further increase the light harvest and accelerate the separation and migration of photogenerated electron-hole pairs and thus enhance the solar to hydrogen conversion efficiency. As expected, a remarkably enhanced photocatalytic hydrogen evolution rate of 1.29 mmol g−1 h−1 was obtained for such a specially designed CdSe/WS2/g-C3N4 composite photocatalyst, which was about 3.0, 1.7 and 1.3 times greater than those of the pristine g-C3N4 NSs (0.43 mmol g−1 h−1), WS2/g-C3N4 2D/2D NSs (0.74 mmol g−1 h−1) and CdSe/g-C3N4 0D/2D composites (0.96 mmol g−1 h−1), respectively. The superior photocatalytic performance of the prepared ternary CdSe/WS2/g-C3N4 composite could be mainly attributed to the effective charge separation and migration as well as the suppressed photogenerated charge recombination induced by the constructed type-II/type-II heterojunction at the interfaces between g-C3N4 NSs, CdSe QDs and WS2 NSs. Thus, the developed 0D/2D/2D ternary type-II/type-II heterojunction in this work opens up a new insight in designing novel heterogeneous photocatalysts for highly efficient photocatalytic hydrogen evolution.  相似文献   

19.
In this paper, a novel Au/g-C3N4/ZnIn2S4 plasma photocatalyst heterojunction composite with 3D hierarchical microarchitecture has been successfully constructed by integrating Au/g-C3N4 plasmonic photocatalyst composite with 3D ZnIn2S4 nanosheet through a simple hydrothermal process. The Au nanoparticles were firstly anchored on the surface of pristine g-C3N4 material to get Au/g-C3N4 plasmonic photocatalyst. Ascribing to the surface plasmon resonance of Au nanoparticles, the obtained Au/g-C3N4 plasmonic photocatalyst shows a significant improved photocatalytic activity toward hydrogen production from water with visible light response comparing with pristine g-C3N4. Further combining Au/g-C3N4 plasmonic photocatalyst with 3D ZnIn2S4 nanosheet to construct a heterojunction composite. Owing to the synergistic effect of the surface plasmon resonance of Au nanoparticles in Au/g-C3N4 and the heterojunction structure in the interface of Au/g-C3N4 and ZnIn2S4, the prepared Au/g-C3N4/ZnIn2S4 plasma photocatalyst heterojunction composite shows an excellent photocatalytic activity toward hydrogen production from water with visible light response, which is around 7.0 and 6.3 times higher than that of the pristine C3N4 and Znln2S4 nanosheet, respectively. The present work might provide some insights for exploring other efficient heterojunction photocatalysts with excellent properties.  相似文献   

20.
It is still challenging to design effective g-C3N4 photocatalysts with high separation efficiency of photo-generated charges and strong visible light absorption. Herein, a simple, template-free and “bottom-up” strategy has been developed to prepare 1D/2D g-C3N4 isotype heterojunction composed of carbon-doped nanowires and ultra-thin nanosheets. The ethanediamine (EE) grafted on melamine ensures the growth of 1D g-C3N4 nanowires with high carbon doping, and the ultra-thin g-C3N4 nanosheets were produced through HCl-assisted hydrothermal strategy. The apparent grain boundary between 2D nanosheets and 1D carbon-doped nanowires manifested the formation of the isotype heterojunction. The built-in electric field provide strong driving force for photogenerated carriers separation. Meanwhile, the doping carbon in g-C3N4 nanowires promotes visible light absorption. As a result, the photocatalytic H2 evolution activity of 1D/2D g-C3N4 isotype heterojunction is 8.2 time that of the pristine g-C3N4, and an excellent stability is also obtained. This work provides a promising strategy to construct isotype heterojunction with different morphologies for effective photocatalytic H2 evolution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号