首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lanthanum-based iron- and cobalt-containing perovskite is a promising cathode material because of its electrocatalytic activity at a relatively low operating temperature in solid oxide fuel cells (SOFCs), i.e., 700-800 °C. To enhance the electrocatalytic reduction of oxidants on La0.6Sr0.4Co0.2Fe0.8O3−δ (LSCF), nanocrystalline LSCF materials are successfully fabricated using a complexing method with chelants and inorganic nano dispersants. When inorganic dispersants are added to the synthesis process, the surface area of the LSCF powder increases from 18 to 88 m2 g−1, which results in higher electrocatalytic activity of the cathode. The performance of a unit cell of a SOFC with nanocrystalline LSCF powders synthesized with nano dispersants is increased by 60%, from 0.7 to 1.2 W cm−2.  相似文献   

2.
Porous La0.6Sr0.4Co0.2Fe0.8O3−δ (LSCF) cathodes are coated with a thin film of Sm0.2Ce0.8O1.95−δ (SDC) using a one-step infiltration process. Examination of the microstructures reveals that small SDC particles are formed on the surface of LSCF grains with a relatively narrow size distribution. Impedance analysis indicates that the SDC infiltration has dramatically reduced the polarization of LSCF cathode, reaching interfacial resistances of 0.074 and 0.44 Ω cm2 at 750 °C and 650 °C, respectively, which are about half of those for LSCF cathode without infiltration of SDC. The activation energies of the SDC infiltrated LSCF cathodes are in the range of 1.42-1.55 eV, slightly lower than those for a blank LSCF cathode. The SDC infiltrated LSCF cathodes have also shown improved stability under typical SOFC operating conditions, suggesting that SDC infiltration improves not only power output but also performance stability and operational life.  相似文献   

3.
The chemical compatibility and electrochemical properties of nanoLa0.6Sr0.4Co0.2Fe0.8O3−δ (LSCF)-infiltrated La0.8Sr0.2Ga0.8Mg0.2O3−δ (LSGM) scaffold were manufactured and assessed for the application as a solid oxide fuel cell cathode with an LSGM electrolyte. When the LSCF and LSGM powder mixture was fired above 950 °C, the characteristic peaks of the two materials merged and an insulation peak (derived from LaSrGaO4) was observed. To prevent reactions between LSCF and LSGM, an infiltration technique was utilized with the LSGM as a scaffold. Using this infiltration technique, nano LSCF particles (approximately 100 nm) can be uniformly coated on the LSGM scaffold surface. Good nano particle adhesion was observed at the LSGM/LSCF interface, even at relatively low firing temperatures (850 °C). The cathode polarization resistance (Rp) of the nano LSCF infiltrated LSGM scaffold cathode was lower than that of a conventional LSCF cathode. The improvement in performance of the nano LSCF-infiltrated cathode was attributed to an increase in the number of triple phase boundaries (TPB) as a result of the nano LSCF coating. In addition, the oxygen reduction reaction (ORR) paths were extended from the TPBs to the LSCF surface because LSCF particles are considerably smaller than the LSCF oxygen ion penetration depth (3–4 μm) over the temperature range of 700 °C–800 °C.  相似文献   

4.
Ba0.5Sr0.5Co0.8Fe0.2O3−δ–La0.9Sr0.1Ga0.8Mg0.2O3−δ composite cathodes are prepared successfully using combustion synthesis method. Microstructure, chemical compatibility and electrochemical performance have been investigated and analyzed in detail. SEM micrographs show that a structure with porosity and well-necked particles forms after sintering at 1000 °C in the composites. Grain growth is suppressed by addition of La0.9Sr0.1Ga0.8Mg0.2O3−δ phase and grain sizes decrease with increasing weight percent of La0.9Sr0.1Ga0.8Mg0.2O3−δ phase in the composites. Phase analysis demonstrates that chemical compatibility between Ba0.5Sr0.5Co0.8Fe0.2O3−δ and La0.9Sr0.1Ga0.8Mg0.2O3−δ is excellent when the weight percent of La0.9Sr0.1Ga0.8Mg0.2O3−δ in the composite is not more than 40%. Through fitting ac impedance spectra, it is found that the ohmic resistance and polarization resistance decrease with increasing La0.9Sr0.1Ga0.8Mg0.2O3−δ content. The polarization resistance reaches a minimum at about 30 and 40 wt.% La0.9Sr0.1Ga0.8Mg0.2O3−δ in the composite.  相似文献   

5.
Pre-treated LSGM starting powders decrease in particle size, leading to an increase in the LSGM relative density and electric conductivity. The starting powders are ball-milled with the assistance of absolute ethanol to reduce the particle size, dried ultrasonically to prevent the agglomeration of the powders and pre-calcined and re-balled to increase the rate of grain growth. These improvements make it possible to obtain single phase LSGM powders with small particle size at the calcination temperature of 1300 °C. A large-area (9 cm × 9 cm) LSGM electrolyte substrate has been prepared successfully by tape casting from these powders. The LSGM electrolyte exhibits a dense structure, the relative density reaches 96%, and the electrical conductivity is 0.08 S cm−1 at 800 °C.  相似文献   

6.
In this study, anode-supported planar IT-SOFCs, with a thin Sm0.2Ce0.8O2−δ (SDC) electrolyte film and a bi-layer cathode, are fabricated using tape-casting and screen-printing processes. The bi-layer cathode consists of a current collector La0.6Sr0.4Co0.2Fe0.8O3−δ (LSCF) layer and a functional LSCF-SDC composite layer in various thicknesses. Microstructure studies reveal that the interfaces among various layers show good adhesion, except for Cell A equipped with a cathode of pure LSCF. Cell A reports the lowest ohmic (R0) and polarization (RP) resistances. RP, which increases with the thickness of the LSCF-SDC composite layer in the cathode, rises rapidly as the temperature drops, particularly at temperatures ≤550 °C. This indicates the high electrical conductivity of the cathode as a major contribution to the decrease of RP at 500 °C. The best cell performances are observed at 650 °C for all cases, in which Cell A shows a maximum power density of 1.51 W cm−2 and an open circuit voltage of 0.80 V. Considering both of the electrical and the mechanical integrity of the single cell, insertion of the composite layer is required to guarantee a good adhesion of cathode layer to electrolyte layer. However, the thickness of the composite layer should be retained as thin as possible to minimize the R0 and RP and maximize the cell performance.  相似文献   

7.
The performance stability and degradation mechanism of La0.6Sr0.4Co0.2Fe0.8O3−δ (LSCF) cathodes and LSCF impregnated Gd0.1Ce0.9O2−δ (LSCF-GDC) cathodes are investigated under solid oxide fuel cell operation conditions. LSCF and LSCF-GDC cathodes show initially performance improvement but degrade under cathodic polarization treatment at 750 °C for 120 h. The results confirm the grain growth and agglomeration of LSCF and in particular GDC-LSCF cathodes as well as the formation of SrCoOx particles on the surface of LSCF under cathodic polarization conditions. The direct observation of SrCoOx formation has been made possible on the surface of dense LSCF electrode plate on GDC electrolyte. The formation of SrCoOx is most likely due to the interaction between the segregated Sr and Co from LSCF lattice under polarization conditions. The formation of SrCoOx would contribute to the deterioration of the electrocatalytic activity of the LSCF-based electrodes for the O2 reduction in addition to the agglomeration and microstructure coarsening.  相似文献   

8.
La0.6Sr0.4Co0.2Fe0.8O3−δ (LSCF)-YSZ (yttria stabilized zirconia) oxygen electrodes were developed by an infiltration process for reversible solid oxide fuel cells (RSOFCs). Electrochemical performance of the LSCF-YSZ composite oxygen electrode was investigated in both fuel cell and steam electrolysis modes. Galvanostatic polarization operated at ±600 mA cm−2 and 750 °C showed that the cell has a voltage degradation rate of 3.4% and 4.9% for fuel cell mode and steam electrolysis mode, respectively. Post-test SEM (scanning electronic microscopy) analysis of the electrodes indicates that the agglomeration of infiltrated LSCF particles is possibly responsible for the performance degradation of the cell.  相似文献   

9.
A simple and inexpensive co-precipitation route in aqueous medium is proposed to prepare La0.8Sr0.2Ga0.8Mg02O3−δ ionic conductor (LSGM). Different synthetic procedures and operating parameters (i.e. nature and amount of the precipitating agents, HNO3 addition and temperature) have been evaluated in order to underline their influence on the composition and microstructure of the final phase. Intermediate and final products were characterized by Thermal-Gravimetry, IR-spectroscopy, X-ray Powder Diffraction, Rietveld analysis and Scanning Electron Microscopy. The electrical properties were measured by Impedance Spectroscopy in the temperature range 250-800 °C. Slight variations of the synthetic procedure (such as precipitating agent amount or no HNO3 addition) have a considerable and detrimental effect on the ions losses and the subsequent achievement of the final phase. The use NH4OH as an alternative precipitating agent is dramatically disadvantageous. Ions losses during precipitation must be controlled (i) to avoid understoichiometry in the LSGM phase and (ii) to prevent the formation of large amounts of secondary phases. In fact, both affect the total electrical conductivity.The use of large excess of (NH4)2CO3 precipitating agent and the addition of HNO3 lead to the best material characterized by a rhombohedral structure, small amount of side phases, a relative density of 98% and a total conductivity of 6.44 × 10−2 S cm−1 at 800 °C and 1.13 × 10−2 S cm−1 at 600 °C.  相似文献   

10.
La0.8Sr0.2Ga0.8Mg0.2O3−δ (LSGM8282), La0.8Sr0.2Ga0.8Mg0.15Co0.05O3−δ (LSGMC5) and La0.8Sr0.2Ga0.8Mg0.115Co0.085O3−δ (LSGMC8.5) were prepared using a conventional solid-state reaction. Electrical conductivities and electronic conductivities of the samples were measured using four-probe impedance spectrometry, four-probe dc polarization and Hebb–Wagner polarization within the temperature range of 973–1173 K. The electrical conductivities in LSGMC5 and LSGMC8.5 increased with decreasing oxygen partial pressures especially in the high (>10−5 atm) and low oxygen partial pressure regions (<10−15 atm). However, the electrical conductivity in LSGM8282 had no dependency on the oxygen partial pressure. At temperatures higher than 1073 K, PO2PO2 dependencies of the free electron conductivities in LSGM8282, LSGMC5 and LSGMC8.5 were about −1/4, and PO2PO2 dependencies of the electron hole conductivities were about 0.25, 0.12 and 0.07, respectively. Oxygen ion conductivities in LSGMC5 and LSGMC8.5 increased with decreasing oxygen partial pressures especially in the high and low oxygen partial pressure regions, which was due to the increase in the concentration of oxygen vacancies. The change in the concentration of oxygen vacancies and the valence of cobalt with oxygen partial pressure were determined using a thermo-gravimetric technique. Both the electronic conductivity and oxygen ion conductivity in cobalt doped lanthanum gallate samples increased with increasing concentration of cobalt, suggesting that the concentration of cobalt should be optimized carefully to maintain a high electrical conductivity and close to 1 oxygen ion transference number.  相似文献   

11.
Ba1.0Sr1.0FeO4+δ (BSFO) with A2BO4 structure as a cathode material for intermediate temperature solid oxide fuel cells (IT-SOFCs) is synthesized through an ethylene diamine tetraacetic acid (EDTA)-citrate process, and characterized by X-ray diffraction. Field emission scanning electron microscopy shows that BSFO cathode is well attached to the La0.9Sr0.1Ga0.8Mg0.2O3−δ (LSGM) electrolyte. The electrical conductivity measured by DC four-probe method increases as the temperature increases. A linear relationship between ln(σT) and 1000/T indicates that the conducting behavior obeys the small polaron conductivity mechanism. Electrochemical performance of BSFO cathode on LSGM electrolyte is investigated in the temperature range from 500 °C to 800 °C. The results indicate that oxygen adsorption/dissociation process dominates cathodic reaction. Furthermore, the polarization resistance of BSFO cathode decreases with increasing temperature, and declines to 1.42 Ω cm2 at 800 °C. These results show that BSFO can be a promising cathode material used on LSGM electrolyte for IT-SOFCs.  相似文献   

12.
We have studied a new composite SOFC cathode consisting of LaCo0.4Ni0.6O3−δ (LCN60) and Ce0.9Gd0.1O1.95 (CGO). The polarisation resistance (RP) at 750 °C and OCV was measured to 0.05 ± 0.01 Ω cm2 and the activation energy was determined to be about 1 eV. The impedance spectra were modelled with an EQC model consisting of a high frequency ZRQ circuit and a medium frequency Gerischer impedance, ZG. The resistance of ZG was found to decrease with approximately a factor of two as a consequence of infiltration of (La0.6Sr0.4)0.99CoO3 into the porous LCN60-CGO structure. RP of both infiltrated and non-infiltrated LCN60-CGO cathodes is substantially lower than that of LSM-YSZ and comparable with single phase LSC cathodes at low T due to its low EA. RP was also found to be stable at 750 °C and OCV. The cathodes were integrated onto ScYSZ based anode supported cells which were measured to have an ASR of 0.16-0.18 Ω cm2 at 750 °C.  相似文献   

13.
LaCo0.6Ni0.4O3−δ (LCN64) was prepared through the polymeric steric entrapment precursor route with Polyvinyl alcohol (PVA) as the entrapment agent and was evaluated as a contact material between the metallic interconnect and the cathode in planar intermediate temperature solid oxide fuel cell stacks (IT-SOFC). The ratio of PVA to metal nitrates and the calcination temperature of the precursor were optimized for the process. The electrical conductivity and thermal expansion coefficient (TEC) of the synthesized LCN64 and its chemical compatibility with SUS 430 were also characterized. The results indicate that 1:4 is a proper ratio of PVA to metal nitrates for process control and safety management; and calcination of the precursor at temperatures above 650 °C leads to formation of single perovskite phase LCN64. The conductivity of fully sintered LCN64 is above 1150 S cm−1 in the temperature range between 100 °C and 800 °C, which is higher than those of conventional contact materials La1−xSrxMnO3 (LSM) and LaNiyFe1−yO3 (LNF). The average TEC is 17.22 × 10−6 K−1 at temperatures below 900 °C, which is higher than those of the metallic interconnect and cell components. Mn and Cr elements contained in SUS 430 migrated into the porous LCN64 layer at 800 °C without chemically forming resistive phases.  相似文献   

14.
A nanocrystalline powder with a lanthanum based iron- and cobalt-containing perovskite, La0.6Sr0.4Co0.2Fe0.8O3−δ (LSCF), is investigated for solid oxide fuel cell (SOFC) applications at a relatively low operating temperature (600-800 °C). A LSCF powder with a high surface area of 88 m2 g−1, which is synthesized via a complex method with using inorganic nano dispersants, is printed onto an anode supported cell as a cathode electrode. A LSCF cathode without a sintering process (in situ sintered cathode) is characterized and compared with that of a sintering process at 780 °C (ex situ sintered cathode). The in situ sintered SOFC shows 0.51 A cm−2 at 0.9 V and 730 °C, which is comparable with that of the ex situ sintered SOFC. The conventional process for SOFCs, the ex situ sintered SOFC, including a heat treatment process after printing the cathodes, is time consuming and costly. The in situ sinterable nanocrystalline LSCF cathode may be effective for making the process simple and cost effective.  相似文献   

15.
Solution impregnated La0.8Sr0.2Co0.8Ni0.2O3 + Gd-doped CeO2 (LSCN + GDC) cathodes for intermediate temperature solid oxide fuel cells (IT-SOFC) are prepared and their electrochemical properties are evaluated and compared with the conventional LSCN cathodes. The results indicate that the cathode performance can be enhanced by the presence of the nanosized microstructure produced with the solution impregnation method. It is determined that the amount of LSCN loading in the LSCN + GDC composite cathode needs to be higher than 35 wt% in order to achieve a performance superior to that of the conventional LSCN cathode. The optimum amount of LSCN loading is in the range of 45-55 wt% with an activation energy near 1.32 eV for oxygen reduction. At temperatures between 600 and 750 °C, the polarization resistance of the 55 wt% LSCN loaded LSCN + GDC cathode is in the range of 1.07 and 0.08 Ω cm2, which is only about one half of that for the conventional cathode.  相似文献   

16.
The mixed ionic and electronic conductors (MIEC) of La0.9Sr0.1Co0.8Ni0.2O3−δ (LSCN)-Ce0.8Sm0.2O1.9 (SDC) were investigated for potential application as a cathode material for solid oxide fuel cells (SOFCs) based on a SDC electrolyte. Electrochemical impedance spectroscopy (EIS) technique was performed over the temperature range of 600-850 °C to determine the cathode polarization resistance, which is represented by area specific resistance (ASR). This study systematically investigated the exchange current densities (i0) for oxygen reduction reaction (ORR), determined from the EIS data and high-field cyclic voltammetry. The 70LSCN-30SDC composite cathode revealed a high exchange current density (i0) value of 297.6 mA/cm2 at 800 °C determined by high-field technique. This suggested that the triple phase boundary (TPB) may spread over more surface of this composite cathode and revealing a high catalytically active surface area. The activation energies (Ea) of ORR determined from the slope of Arrhenius plots for EIS and high-field techniques are 96.9 kJ mol−1 and 90.4 kJ mol−1, respectively.  相似文献   

17.
Thermochemical compatibilities with Ce0.8Gd0.2O2−δ (GDC) electrolyte and electrochemical behaviors under the condition of anodic or cathodic current treatment are investigated for La0.8Sr0.2Co0.8Ni0.2O3−δ (LSCN) cathode of solid oxide fuel cell (SOFC). X-ray diffractometer (XRD) shows that cation exchange at 1150 °C leads to the formation of solid state solution between the cathode and electrolyte. Considering thermal expansion coefficient (TEC) and conductivity, La1−xSrxCo1−yNiyO3−δ with the composition of La0.8Sr0.2Co0.8Ni0.2O3−δ is indicated as a promising cathode for intermediate temperature SOFC. Electrochemical measurement reveals that the performance of LSCN cathode shows reversibility under anodic with subsequent cathodic current treatment. Further, the low frequency electrode process is strongly affected by anodic current. While the high frequency arc shows independent relationship with current polarization.  相似文献   

18.
The perovskite La0.6Sr0.4Co0.8Cu0.2O3−δ (LSCCu) oxide is synthesized by a modified Pechini method and examined as a novel cathode material for low-temperature solid oxide fuel cells (LT-SOFCs) based upon functional graded anode. The perovskite LSCCu exhibits excellent ionic and electronic conductivities in the intermediate-to-low-temperature range (400-800 °C). Thin Sm0.2Ce0.8O1.9 (SDC) electrolyte and NiO-SDC anode functional layer are prepared over macroporous anode substrates composed of NiO-SDC by a one-step dry-pressing/co-firing process. A single cell with 20 μm thick SDC electrolyte on a porous anode support and LSCCu-SDC cathode shows peak power densities of only 583.2 mW cm−2 at 650 °C and 309.4 mW cm−2 for 550 °C. While a cell with 20 μm thick SDC electrolyte and an anode functional layer on the macroporous anode substrate shows peak power densities of 867.3 and 490.3 mW cm−2 at 650 and 550 °C, respectively. The dramatic improvement of cell performance is attributed to the much improved anode microstructure that is confirmed by both SEM observation and impedance spectroscopy. The results indicate that LSCCu is a very promising cathode material for LT-SOFCs and the one-step dry-pressing/co-firing process is a suitable technique to fabricate high performance SOFCs.  相似文献   

19.
La0.8Sr0.2Co0.5Fe0.5O3−δ (LSCF) cathodes infiltrated with electrocatalytically active Pd and (Gd,Ce)O2 (GDC) nanoparticles are investigated as high performance cathodes for the O2 reduction reaction in intermediate temperature solid oxide fuel cells (IT-SOFCs). Incorporation of nano-sized Pd and GDC particles significantly reduces the electrode area specific resistance (ASR) as compared to the pure LSCF cathode; ASR is 0.1 Ω cm2 for the reaction on a LSCF cathode infiltrated with 1.2 mg cm−2 Pd and 0.06 Ω cm2 on a LSCF cathode infiltrated with 1.5 mg cm−2 GDC at 750 °C, which are all significantly smaller than 0.22 Ω cm2 obtained for the reaction on a conventional LSCF cathode. The activation energy of GDC- and Pd-impregnated LSCF cathodes is 157 and 176 kJ mol−1, respectively. The GDC-infiltrated LSCF cathode has a lower activation energy and higher electrocatalytic activity for the O2 reduction reaction, showing promising potential for applications in IT-SOFCs.  相似文献   

20.
An anode-supported La0.9Sr0.1Ga0.8Mg0.2O3 − δ (LSGM) electrolyte membrane is successfully fabricated by simple, cost-effective spin coating process. Nano-sized NiO and Ce0.8Gd0.2O3 − α (GDC) powders derived from precipitation and citric-nitrate process, respectively, are used for anode support. The dense and uniform LSGM membrane of ca. 50 μm in thickness is obtained by sintering at relatively low temperature 1300 °C for 5 h. A single cell based on the as-prepared LSGM electrolyte membrane exhibits desirable high cell performance and generates high output power densities of 760 mW cm−2 at 700 °C and 257 mW cm−2 at 600 °C, respectively, when operated with humidified hydrogen as the fuel and air as the oxidant. The single cell is characterized by field-emission scanning electron microscope (FESEM), X-ray diffraction (XRD) and electrochemical AC impedance. The results demonstrate that it is feasible to fabricate dense LSGM membrane for solid oxide fuel cell by this simple, cost-effective and efficient process. In addition, optimized anode microstructure significantly reduces polarization resistance (0.025 Ω cm2 at 700 °C).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号