首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Wear》1987,117(1):37-48
The erosion behavior of AISI 4140 steel under various heat treatment conditions was investigated. A variety of microstructures, such as the primary and tempered martensites, varying proportions of martensite and bainite, cementite spheroids embedded in a ferrite matrix and ferrite and pearlite were obtained. The erosion tests were performed in a sand-blast-type test rig. Except in the region where temper embrittlement occurred, the erosion decreased with increasing tempering temperatures. Erosion decreased with the increasing percentage of bainite in the austempered condition and also with increasing tempering time during spheroidization. From the point of view of the mechanical properties, erosion decreased with increasing ductility and decreasing hardness or ultimate strength. The abraded surfaces were also studied using scanning electron microscopy.  相似文献   

2.
Fretting of AISI 301 stainless steel sheet in contact with AISI 52100 steel from 20 °C to 550 °C in air and argon has been studied. Transitions in the mechanical properties of 301SS and oxidative behavior of this pair have been identified as a function of temperature. Strength and ductility of 301SS is reduced from 20 °C to 250 °C, increasing susceptibility to fretting damage. Steady state friction decreases as temperature increases, reducing cyclic stresses. Wear resistance increases in this temperature range, increasing fatigue damage due to the increase in fatigue life associated with increased wear. This study aims to identify the causes of the transitions in behavior and determine the net outcome of the competing effects with regard to fatigue damage.  相似文献   

3.
Magnetic abrasive finishing of hardened AISI 52100 steel   总被引:1,自引:1,他引:0  
Surface finish has a vital influence on functional properties such as wear resistance and power loss due to friction on most of the engineering components. Magnetic abrasive finishing (MAF) is one of the advanced finishing process in which a surface is finished by removing the material in the form of microchips by abrasive particles in the presence of magnetic field in the finishing zone. In this study an electromagnet with four poles has been used which was found to give better performance in terms of achieving surface quality in lesser processing time. Voltage, mesh number, revolutions per minute (rpm) of electromagnet, and percentage weight of abrasives have been identified as important process parameters affecting surface roughness. The experiments were planned using response surface methodology and percentage change in surface roughness (??Ra) was considered as response. Analysis of experimental data showed that percentage change in surface roughness (??Ra) was highly influenced by mesh number followed by percentage weight of abrasives, rpm of electromagnet, and voltage. In this study, the least surface roughness value obtained was as low as 51?nm in 120?s processing time on a hardened AISI 52100 steel workpiece of 61 HRC hardness. In order to study the surface texture produced and to identify finishing mechanism, scanning electron microscopy and atomic force microscopy were also conducted. Shearing and brittle fracture of small portion of peaks of grounded workpiece have been found to be finishing mechanisms during MAF of AISI 52100 steel.  相似文献   

4.
Alan V. Levy  Johnny Yan  Vas D. Arora 《Wear》1985,101(2):117-126
The erosion behavior of carburized AISI 8620 steel for sand slurry service was investigated. The jet impingement type of test was used where sand slurry is directed at flat specimens to determine the erosion rates and mechanism of erosion. The effects of steel heat treatments, slurry velocities and particle concentrations on erosion rates were investigated.  相似文献   

5.
M. Tabur  M. Izciler  F. Gul  I. Karacan 《Wear》2009,266(11-12):1106-1112
In this study, AISI 8620 steel was boronized using the solid state boronizing technique. Processes were carried out at the temperatures of 850, 900 and 950 °C for 2, 4 and 6 h of treatment. Abrasive wear behavior of the samples boronized at different temperatures and treatment durations have been examined. Using boronized and unboronized samples, abrasive tests were conducted using pin on disc test apparatus. 80 and 120 mesh aluminum oxide (Al2O3) abrasive papers were used in the abrasion experiments and the samples were subjected to abrasion under 10, 20 and 30 N loads. Boronized steels exhibited an improvement in abrasive wear resistance reaching up to 500%. Microstructures and wear surfaces of the samples were inspected using SEM microscopy. SEM examinations revealed that the thickness of the boride layer on the steel surfaces changes with changing process durations and temperatures. The presence of boride formed in the borided layer at the surface of the steels were determined by XRD analysis and microhardness values of the iron borides (FeB, Fe2B) formed on the steel surface were found to be over 1600 HV.  相似文献   

6.
This paper compares finite element model (FEM) simulations with experimental and analytical findings concerning precision radial turning of AISI D2 steel. FEM machining simulation employs a Lagrangian finite element-based machining model applied to predict cutting and thrust forces, cutting temperature and plastic strain distribution. The results show that the difference between the experimental and simulated cutting force is near 20%, irrespectively of the friction coefficient used in the simulation work (approximately 19.8% for a friction of 0.25% and 18.4% for the Coulomb approach). Concerning the thrust force, differences of about 22.4% when using a friction coefficient of μ?=?0.25 and about 56.9% when using the Coulomb friction coefficient (μ?=?0.378) were found. The maximum cutting temperature obtained using the analytical model is 494.07°C and the difference between experimentation and simulation methods is 15.2% when using a friction coefficient of 0.25 and when using the Coulomb friction only 3.1%. Regarding the plastic strain, the differences between analytical calculations and FEM simulations (for the presented friction values) suggest that the finite element method is capable of predictions with reasonable precision.  相似文献   

7.
Said Jahanmir 《Wear》1981,74(1):51-65
Wear tests were conducted using AISI 4340 steel sliding on AISI 01 tool steel under boundary lubrication conditions. The AISI 4340 steel was heat treated to obtain different microstructures and hardness levels. The results indicated that the wear behavior depends on the heat treatment procedure. It was found that hardness alone cannot be used as a measure of wear and that the microstructure and other mechanical properties should also be used. Chemical reaction products containing phosphorus, sulfur and zinc were found on the wear surfaces lubricated with a fully formulated light oil containing zinc dithiophosphates. The chemically reacted film was nonuniform and consisted of patches 1–1500 μm in size. The larger patches were formed on the surface of steel with a pearlite-ferrite microstructure and resulted in a high wear rate. In contrast, the small patches and the thin blue and brown films were formed on the wear surface of tempered martensite steel and produced low wear rates.  相似文献   

8.
Finite element modeling of burnishing of AISI 1042 steel   总被引:2,自引:0,他引:2  
The aim of this study is to analyze the evolution of surface roughness finished by burnishing. Burnishing is done on a surface that was initially turned or turned and then ground. In a previous work, we have defined an analytical model to determine the Rt factor of burnished surfaces in relation to the feed f, the material displacement δ and the roughness Rti of the initial surface. δ has been calculated using the Hertz contact theory which supposes that the behavior of the workpiece material is elastic. Hence, in this paper, we have defined a finite element model in which the elasto-plastic behavior of the piece is taken into account to determine the material displacement δ. This model has also permitted the calculation of the residual stresses related to the macroscopic contact geometry. Good correlations have been found between experimental and finite element results when burnishing an AISI 1042 steel.  相似文献   

9.
An investigation of surface roughness of burnished AISI 1042 steel   总被引:3,自引:0,他引:3  
The aim of this study is to analyse the evolution of surface roughness finished by burnishing. Burnishing is done on a surface that was initially turned or turned and then ground.It has been noted that burnishing an AISI 1042 steel offers the best surface quality when using a small feed value. This finishing process improves roughness and introduces compressive residual stresses in the machined surface. So, it can replace grinding in the machining range of the piece.Also, an analytical model has been defined to determine the Rt factor in relation to the feed. Good correlations have been found between the experimental and analytical results.  相似文献   

10.
《Wear》1987,116(3):309-317
Temperature rises in workpieces were measured during the cutting of various hardnesses of steel by a ceramic tool. Thermocouples were embedded in a specially designed workpiece for the temperature measurement. This workpiece provided practical and accurate positioning of the thermocouples and it allowed the acquisition of reliable data from the cutting experiments. The effects of the workpiece hardness and cutting speed were examined and analyzed. The relationships between the workpiece temperature rise and residual stresses or structural change in a machined surface layer were discussed.It is concluded that the temperature rise in a steel workpiece during cutting by a ceramic tool is so low that it is less likely to cause any surface damage under normal conditions.  相似文献   

11.
We describe the microstructure of Nd:YAG continuous wave laser surface melted high‐speed steel, namely AISI M2, treated with different laser scanning speeds and beam diameters on its surface. Microstructural characterization of the remelted surface layer was performed using light optical and scanning electron microscopy and X‐ray diffraction. The combination of the three techniques provided new insights into the substantial changes induced by laser surface melting of the steel surface layer. The advantage of the method is that it avoids the difficult and tedious work of preparing samples of this hard material for transmission electron microscopy, which is the technique normally used to study these fine microstructures. A melted zone with a dendritic structure and a partially melted zone with a heterogeneous cellular structure were observed. M2C carbides with different morphologies were identified in the resolidified surface layer after laser melting.  相似文献   

12.
Direct laser cladding of SiC dispersed AISI 316L stainless steel   总被引:2,自引:0,他引:2  
The present study concerns development of SiC dispersed (5 and 20 wt%) AISI 316L stainless steel metal-matrix composites by direct laser cladding with a high power diode laser and evaluation of its mechanical properties (microhardness and wear resistance). A defect free and homogeneous composite layer is formed under optimum processing condition. The microstructure consists of partially dissociated SiC, Cr3C2 and Fe2Si in grain refined stainless steel matrix. The microhardness of the clad layer increases to a maximum of 340 VHN (for 5% SiC dispersed) and 800 VHN (for 20% SiC dispersed) as compared to 150 VHN of commercially available AISI 316L stainless steel. Direct laser clad SiC dispersed AISI 316L stainless steel has shown an improved wear resistance against diamond surface with a maximum improvement in 20% SiC dispersed AISI 316L stainless steel. The mechanism of wear was predominantly abrasive in nature.  相似文献   

13.
A. Begelinger  A.W.J. De Gee 《Wear》1974,28(1):103-114
The mechanism of thin film lubrication of sliding point contacts of AISI 52100 steel has been studied as a function of load, sliding speed, composition and temperature of the lubricant.Below certain critical combinations of Hertzian pressure, speed and temperature the surfaces are kept apart by an elastohydrodynamic lubricant film. The load carrying capacity of this film depends primarily on the effective viscosity of the lubricant in the contact region which decreases with bulk oil temperature and with increasing sliding speed, because of friction induced thermal effects. After breakdown of the EHD film, boundary lubrication may still prevent severe adhesive wear. The transition from the boundary lubricated regime towards the regime of severe adhesive wear is a function of load (normal force), speed and bulk oil temperature and possibly depends on the conjunction temperature. Irrespective of the initial lubrication condition, oxidation of the steel surfaces leads to the (re)establishment of low friction, mild wear conditions.  相似文献   

14.
Abstract

Many studies were performed about the influence of minimum quantity lubrication (MQL) technique on cutting performance in the literature, but there is no paper examining the effect of different MQL flow rates and cutting parameters on machinability of AISI 4140 material as a whole. In this study, the effects of different MQL flow rates and cutting parameters on surface roughness, main cutting force and cutting tool flank wear (VB), with great importance among the machinability criteria, and forming as a result of the machining of AISI 4140, were revealed. At the end of the experiments, it was determined that rise of flow rate affected main cutting forces positively to a certain extent; yet, it exhibited no significant effect on surface roughness, but reduced VB. Also, it was observed that both main cutting force and surface roughness increased with the increase of feed, while generally decreased with the increase of cutting speed. It was seen that flank wear was positively affected by the increase in flow rate; and this decreased with the increase in flow rate. R2 values obtained as 99.8% and 99.9% for main cutting forces and surface roughness values modeled statistically with the help of quadratic equations, respectively.  相似文献   

15.
The use of magnesium alloys in engineering applications is becoming increasingly important as a relatively low density allows savings in energy consumption and therefore reduction in air pollution. An associated reduction in inertia makes these alloys potential candidates for friction components, but they suffer from poor wear resistance. Laser surface alloying with appropriate powder mixture is an innovative technique to improve surface properties of metallic alloys. In this study, the effect of laser surface alloying using Al12%Si powder on wear resistance of a magnesium alloy ZE41 is investigated. Hardness and wear resistance of the alloy are significantly enhanced after treatment.  相似文献   

16.
Pure AISI 316L steel is investigated after solution heat treatment (1050 °C/H2O) and structural sensitization (650 °C). Two quite different intergranular corrosion tests are used to determine the degree of structural sensitization due to the precipitation of secondary phases along the grain boundaries (mainly the M23C6 and σ‐phase): the oxalic acid etch test and the electrochemical potentio‐kinetic reactivation test. Generally, the dissolution of chromium‐rich carbides (M23C6) is provoked by oxalic acid etch tests, whereas the chromium‐depleted zones, in the vicinity of chromium‐rich carbides (M23C6), are attacked by electrochemical potentio‐kinetic reactivation tests. Both intergranular corrosion tests are used to determine the maximum degree of structural sensitization. Thus structural analysis by carbon replicas reveals the Laves phase, and both the M23C6 and (Cr,Mo)x(Fe,Ni)y phases. The results of intergranular corrosion tests are related to the findings of the structural analysis.  相似文献   

17.
为了进一步研究AISI420不锈钢的切削机制,在Third Wave Advant Edge中建立车削有限元模型,进行车削加工仿真模拟,并对实验数据进行回归分析,得到三向切削力的预测模型。结果表明:车削力预测模型拟合度较好,回归分析效果显著,有较高的置信度,可为AISI420不锈钢的切削研究提供理论参考。  相似文献   

18.
Abstract

The aim of this research is to study the tribological behaviour of AISI 316L stainless steel for surgical implants (total hip prosthesis). The tribological behaviour is evaluated by wear tests, using tribometers ball on disc and sphere on plane. These tests consisted of measuring the weight loss and the friction coefficient of stainless steel (SS) AISI 316L. The oscillating friction and wear tests have been carried out in ambient air with an oscillating tribotester in accord with standards ISO 7148, ASTM G99-95a and ASTM G133-95 under different conditions of normal applied load (3, 6 and 10 N) and sliding speed (1, 15 and 25 mm s?1). A ball of 100Cr 6, 10 mm in diameter, is used as counter pairs. These tribological results are compared with those carried out with a tribometer type pin on disc under different conditions of normal load applied P (19·43, 28 and 44 N) and sliding speed (600 and 1020 rev min?1). The behaviour observed for both samples suggests that the wear and friction mechanism during the tests is the same, and to increase the resistance to wear and friction of biomedical SS AISI 316L alloy used in total hip prosthesis (femoral stems), surface coating and treatment are necessary.  相似文献   

19.
Influences of microstructural and textural properties of friction stir processing (FSP) on dry reciprocating wear properties of AISI D2 tool steel are investigated in this study. The mechanical improvement is attributed not only to the homogenous distribution of very small carbides in a refined matrix, but also to significant development of textures during FSP. The excellent wear resistance is ascribed to nanohardness enhancement of the FSPed steel. Dominant shear components of {111} 〈110〉 and {112} 〈111〉 with the lowest Taylor׳s factor and the high density of close-packed planes formation significantly enhance the wear resistance of FSPed sample at 500 rpm.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号