首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Previous studies have shown that ferrites give a positive effect in improving the hydrogen sorption properties of magnesium hydride (MgH2). In this study, another ferrite, i.e., BaFe12O19, has been successfully synthesised via the solid state method, and it was milled with MgH2 to enhance the sorption kinetics. The result showed that the MgH2 + 10 wt% BaFe12O19 sample started to release hydrogen at about 270 °C which is about 70 °C lower than the as-milled MgH2. The doped sample was able to absorb hydrogen for 4.3 wt% in 10 min at 150 °C, while as-milled MgH2 only absorbed 3.5 wt% of hydrogen under similar conditions. The desorption kinetic results showed that the doped sample released about 3.5 wt% of hydrogen in 15 min at 320 °C, while the as-milled MgH2 only released about 1.5 wt% of hydrogen. From the Kissinger plot, the apparent activation energy of the BaFe12O19-doped MgH2 sample was 115 kJ/mol which was lower than the milled MgH2 (141 kJ/mol). Further analyses demonstrated that MgO, Fe and Ba or Ba-containing contribute to the improvement by serving as active species, thus enhancing the MgH2 for hydrogen storage.  相似文献   

2.
The catalytic effects of K2NbF7 on the hydrogen storage properties of MgH2 have been studied for the first time. MgH2 + 5 wt% K2NbF7 has reduced the onset dehydrogenation temperature to 255 °C, which is 75 °C lower than the as-milled MgH2. For the rehydrogenation kinetic, at 150 °C, MgH2 + 5 wt% K2NbF7 absorbs 4.7 wt% of hydrogen in 30 min whereas the as-milled MgH2 only absorbs 0.7 wt% of hydrogen under similar condition. For the dehydrogenation kinetic, at 320 °C, the MgH2 + 5 wt% K2NbF7 is able to release 5.2 wt% of hydrogen in 5.6 min as compared to 0.3 wt% by the as-milled MgH2 under similar condition. Comparatively, the Ea value of MgH2 + 5 wt% K2NbF7 is 96.3 kJ/mol, which is 39 kJ/mol lower compared to the as-milled MgH2. The MgF2, the KH and the Nb that are found after the heating process are believed to be the active species that have improved the system properties. It is concluded that the K2NbF7 is a good catalyst to improve the hydrogen storage properties of MgH2.  相似文献   

3.
In this study, a low-cost biomass charcoal (BC)-based nickel catalyst (Ni/BC) was introduced into the MgH2 system by ball-milling. The study demonstrated that the Ni/BC catalyst significantly improved the hydrogen desorption and absorption kinetics of MgH2. The MgH2 + 10 wt% Ni/BC-3 composite starts to release hydrogen at 187.8 °C, which is 162.2 °C lower than the initial dehydrogenation temperature of pure MgH2. Besides, 6.04 wt% dehydrogenation can be achieved within 3.5 min at 300 °C. After the dehydrogenation is completed, MgH2 + 10 wt% Ni/BC-3 can start to absorb hydrogen even at 30 °C, which achieved the absorption of 5 wt% H2 in 60 min under the condition of 3 MPa hydrogen pressure and 125 °C. The apparent activation energies of dehydrogenation and hydrogen absorption of MgH2 + 10 wt% Ni/BC-3 composites were 82.49 kJ/mol and 23.87 kJ/mol lower than those of pure MgH2, respectively, which indicated that the carbon layer wrapped around MgH2 effectively improved the cycle stability of hydrogen storage materials. Moreover, MgH2 + 10 wt% Ni/BC-3 can still maintain 99% hydrogen storage capacity after 20 cycles. XRD, EDS, SEM and TEM revealed that the Ni/BC catalyst evenly distributed around MgH2 formed Mg2Ni/Mg2NiH4 in situ, which act as a “hydrogen pump” to boost the diffusion of hydrogen along with the Mg/MgH2 interface. Meanwhile, the carbon layer with fantastic conductivity enormously accelerated the electron transfer. Consequently, there is no denying that the synergistic effect extremely facilitated the hydrogen absorption and desorption kinetic performance of MgH2.  相似文献   

4.
High dehydrogenation temperature and slow dehydrogenation kinetics impede the practical application of magnesium hydride (MgH2) serving as a potential hydrogen storage medium. In this paper, Fe–Ni catalyst modified three-dimensional graphene was added to MgH2 by ball milling to optimize the hydrogen storage performance, the impacts and mechanisms of which are systematically investigated based on the thermodynamic and kinetic analysis. The MgH2+10 wt%Fe–Ni@3DG composite system can absorb 6.35 wt% within 100 s (300 °C, 50 atm H2 pressure) and release 5.13 wt% within 500 s (300 °C, 0.5 atm H2 pressure). In addition, it can absorb 6.5 wt% and release 5.7 wt% within 10 min during 7 cycles, exhibiting excellent cycle stability without degradation. The absorption-desorption mechanism of MgH2 can be changed by the synergistic effects of the two catalyst materials, which significantly promotes the improvement of kinetic performance of dehydrogenation process and reduces the hydrogen desorption temperature.  相似文献   

5.
In the present work we investigate the hydrogen sorption properties of composites in the MgH2–Ni, MgH2–Ni–LiH and MgH2–Ni–LiBH4 systems and analyze why Ni addition improve hydrogen sorption rates while LiBH4 enhance the hydrogen storage capacity. Although all composites with Ni addition showed significantly improved hydrogen storage kinetics compared with the pure MgH2, the fastest hydrogen sorption kinetics is obtained for Ni-doped MgH2. The formation of Mg2Ni/Mg2NiH4 in Ni-doped MgH2 composite and its microstructure allows to uptake 5.0 wt% of hydrogen in 25 s and to release it in 8 min at 275 °C. In the MgH2–Ni–LiBH4 composite, decomposition of LiBH4 occurs during the first dehydriding leading to the formation of diborane, which has a Ni catalyst poison effect via the formation of a passivating boron layer. A combination of FTIR, XRD and volumetric measurements demonstrate that the formation of MgNi3B2 in the MgH2–Ni–LiBH4 composite happens in the subsequent hydriding cycle from the reaction between Mg2Ni/Mg2NiH4 and B. Activation energy analysis demonstrates that the presence of Ni particles has a catalytic effect in MgH2–Ni and MgH2–Ni–LiH systems, but it is practically nullified by the addition of LiBH4. The beneficial role of LiBH4 on the hydrogen storage capacity of the MgH2–Ni–LiBH4 composite is discussed.  相似文献   

6.
Investigations on the catalytic effects of a non-reactive and stable additive, SrTiO3, on the hydrogen storage properties of the 4MgH2Na3AlH6 destabilized system were carried out for the first time. The Na3AlH6 compound and the destabilized systems used in the investigations are prepared using ball milling method. The doped system, 4MgH2Na3AlH6SrTiO3, had an initial dehydrogenation temperature of 145 °C, which 25 °C lower as compared to the un-doped system. The isothermal absorption and desorption capacity at 320 °C has increased by 1.2 wt% and 1.6 wt% with the addition of SrTiO3 as compared to the 4MgH2Na3AlH6 destabilized system. The decomposition activation energy of the doped system is estimated to be 117.1 kJ/mol. As for the XRD analyses at different decomposition stages, SrTiO3 is found to be stable and inert. In addition to SrTiO3, similar phases are found in the doped and the un-doped system during the decomposition and dehydrogenation processes. Therefore, the catalytic effect of the SrTiO3 is speculated owing to its ability to modify the physical structure of the 4MgH2Na3AlH6 particles through pulverization effect.  相似文献   

7.
As a high-density solid-state hydrogen storage material, magnesium hydride (MgH2) is promising for hydrogen transportation and storage. Yet, its stable thermodynamics and sluggish kinetics are unfavorable for that required for commercial application. Herein, nickel/vanadium trioxide (Ni/V2O3) nanoparticles with heterostructures were successfully prepared via hydrogenating the NiV-based two-dimensional layered double hydroxide (NiV-LDH). MgH2 + 7 wt% Ni/V2O3 presented more superior hydrogen absorption and desorption performances than pure MgH2 and MgH2 + 7 wt% NiV-LDH. The initial discharging temperature of MgH2 was significantly reduced to 190 °C after adding 7 wt% Ni/V2O3, which was 22 and 128 °C lower than that of 7 wt% NiV-LDH modified MgH2 and additive-free MgH2, respectively. The completely dehydrogenated MgH2 + 7 wt% Ni/V2O3 charged 5.25 wt% H2 in 20 min at 125 °C, while the hydrogen absorption capacity of pure MgH2 only amounted to 4.82 wt% H2 at a higher temperature of 200 °C for a longer time of 60 min. Moreover, compared with MgH2 + 7 wt% NiV-LDH, MgH2 + 7 wt% Ni/V2O3 shows better cycling performance. The microstructure analysis indicated the heterostructural Ni/V2O3 nanoparticles were uniformly distributed. Mg2Ni/Mg2NiH4 and metallic V were formed in-situ during cycling, which synergistically tuned the hydrogen storage process in MgH2. Our work presents a facile interfacial engineering method to enhance the catalytic activity by constructing a heterostructure, which may provide the mentality of designing efficient catalysts for hydrogen storage.  相似文献   

8.
Herein, we demonstrate the successful preparation of a novel complex transition metal oxide (TiVO3.5) by oxidizing a solid-solution MXene (Ti0.5V0.5)3C2 at 300 °C and its high activity as a catalyst precursor in the hydrogen storage reaction of MgH2. The prepared TiVO3.5 inherits the layered morphology of its MXene precursor, but the layer surface becomes very coarse because of the presence of numerous nanoparticles. Adding a minor amount of TiVO3.5 remarkably reduces the dehydrogenation and hydrogenation temperatures of MgH2 and enhances the reaction kinetics. The 10 wt% TiVO3.5-containing sample exhibits optimal hydrogen storage properties, as it desorbs approximately 5.0 wt% H2 in 10 min at 250 °C and re-absorbs 3.9 wt% H2 in 5 s at 100 °C and under 50 bar of hydrogen pressure. The apparent activation energy is calculated to be approximately 62.4 kJ/mol for the MgH2-10 wt% TiVO3.5 sample, representing a 59% reduction in comparison with pristine MgH2 (153.8 kJ/mol), which reasonably explains the remarkably reduced dehydrogenation operating temperature. Metallic Ti and V are detected after ball milling with MgH2; they are uniformly dispersed on the MgH2 matrix and act as actual catalytic species for the improvement of the hydrogen storage properties of MgH2.  相似文献   

9.
In the present study, we have investigated the combined effect of different transition metals such as Ti, Fe and Ni on the de/rehydrogenation characteristics of nano MgH2. Mechanical milling of MgH2 with 5 wt% each of Ti, Fe and Ni for 24 h at 12 atm of H2 pressure lead to the formation of nano MgH2-Ti5Fe5Ni5. The decomposition temperature of nano MgH2-Ti5Fe5Ni5 is lowered by 90 °C as compared to nano MgH2 alone. It is also found that the nano MgH2-Ti5Fe5Ni5 absorbs 5.3 wt% within 15 min at 270 °C and 12 atm hydrogen pressures. However, nano MgH2 reabsorbs only 4.2 wt% under identical condition. An interesting result of the present study is that mechanical milling of MgH2 separately with Fe and Ni besides refinement in particle size also leads to the formation of alloys Mg2NiH4 and Mg2FeH6 respectively. On the other hand, when MgH2 is mechanically milled together with Ti, Fe and Ni, the dominant result is the formation of nano particles of MgH2. Moreover the activation energy for dehydrogenation of nano MgH2 co-catalyzed with Ti, Fe and Ni is 45.67 kJ/mol which is 35.71 kJ/mol lower as compared to activation energy of nano MgH2 (81.34 kJ/mol). These results are one of the most significant in regard to improvement in de/rehydrogenation characteristics of known MgH2 catalyzed through transition metal elements.  相似文献   

10.
In the present work, nanocrystalline Mg2Ni with an average size of 20–50 nm was prepared via ball milling of a 2MgH2Ni powder followed by compression under a pressure of 280 MPa. The phase component, microstructure, and hydrogen sorption properties were characterized by using X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscope (TEM), pressure-composition-temperature (PCT) and synchronous thermal analyses (DSC/TG). Compared to the non-compressed 2MgH2Ni powder, the compressed 2MgH2Ni pellet shows lower dehydrogenation temperature (290 °C) and a single-phase Mg2Ni is obtained after hydrogen desorption. PCT measurements show that the nanocrystalline Mg2Ni obtained from dehydrogenated 2MgH2Ni pellet has a single step hydrogen absorption and desorption with fairly low absorption (?57.47 kJ/mol H2) and desorption (61.26 kJ/mol H2) enthalpies. It has very fast hydrogen absorption kinetics at 375 °C with about 3.44 wt% hydrogen absorbed in less than 5 min. The results gathered in this study show that ball milling followed by compression is an efficient method to produce Mg-based ternary hydrides.  相似文献   

11.
The chain-like carbon nanotubes (CNTs) decorated with CoFeB (CoFeB/CNTs) prepared by oxidation-reduction method is introduced into MgH2 to facilitate its hydrogen storage performance. The addition of CoFeB/CNTs enables MgH2 to start desorbing hydrogen at only 177 °C. Whereas pure MgH2 starts hydrogen desorption at 310 °C. The dehydrogenation apparent activation energy of MgH2 in CoFeB/CNTs doped-MgH2 composite is only 83.2 kJ/mol, and this is about 59.5 kJ/mol lower than that of pure MgH2. In addition, the completely dehydrogenated MgH2−10 wt% CoFeB/CNTs sample can start to absorb hydrogen at only 30 °C. At 150 °C and 5 MPa H2, the MgH2 in CoFeB/CNTs doped-MgH2 composite can absorb 6.2 wt% H2 in 10 min. The cycling kinetics can remain rather stable up to 20 cycles, and the hydrogen storage capacity retention rate is 98.5%. The in situ formation of Co3MgC, Fe, CoFe and B caused by the introduction of CoFeB/CNTs can provide active and nucleation sites for the dehydrogenation/rehydrogenation reactions of MgH2. Moreover, CNTs can provide hydrogen diffusion pathways while also enhancing the thermal conductivity of the sample. All of these can facilitate the dehydrogenation/rehydrogenation performance and cyclic stability of MgH2.  相似文献   

12.
This is a first report on the use of the bis(tricyclohexylphosphine)nickel (II) dichloride complex (abbreviated as NiPCy3) into MgH2 based hydrogen storage systems. Different composites were prepared by planetary ball-milling by doping MgH2 with (i) free tricyclohexylphosphine (PCy3) without or with nickel nanoparticles, (ii) different NiPCy3 contents (5–20 wt%) and (iii) nickel and iron nanoparticles with/without NiPCy3. The microstructural characterization of these composites before/after dehydrogenation was performed by TGA, XRD, NMR and SEM-EDX. Their hydrogen absorption/desorption kinetics were measured by TPD, DSC and PCT. All MgH2 composites showed much better dehydrogenation properties than the pure ball-milled MgH2. The hydrogen absorption/release kinetics of the Mg/MgH2 system were significantly enhanced by doping with only 5 wt% of NiPCy3 (0.42 wt% Ni); the mixture desorbed H2 starting at 220 °C and absorbed 6.2 wt% of H2 in 5 min at 200 °C under 30 bars of hydrogen. This remarkable storage performance was not preserved upon cycling due to the complex decomposition during the dehydrogenation process. The hydrogen storage properties of NiPCy3-MgH2 were improved and stabilized by the addition of Ni and Fe nanoparticles. The formed system released hydrogen at temperatures below 200 °C, absorbed 4 wt% of H2 in less than 5 min at 100 °C, and presented good reversible hydriding/dehydriding cycles. A study of the different storage systems leads to the conclusion that the NiPCy3 complex acts by restricting the crystal size growth of Mg/MgH2, catalyzing the H2 release, and homogeneously dispersing nickel over the Mg/MgH2 surface.  相似文献   

13.
Bimetallic catalysts possess unique physical and chemical properties that distinct from the individual, which offer the opportunity to ameliorate the hydrogen storage properties of MgH2. Herein, a Ni3Fe catalyst homogeneously loaded on the surface of reduced graphene oxide (Ni3Fe/rGO) was prepared based on layered double hydroxide (LDH) precursor. The novel Ni3Fe/rGO nano-catalyst was subsequently doped into MgH2 to improve its hydrogen storage performance. The MgH2-5 wt.% Ni3Fe/rGO composite requires only 100 s to reach 6 wt% hydrogen capacity at 100 °C, while for MgH2 doped with 5 wt% Ni3Fe, Ni/rGO and Fe/rGO all require more than 500 s to uptake 3 wt% hydrogen under the same condition. The onset dehydrogenation temperature of the MgH2-5 wt.% Ni3Fe/rGO composite is about 185 °C, much lower than that of the MgH2 doped with 5 wt% Ni3Fe (205 °C), Ni/rGO (210 °C) and Fe/rGO (250 °C), and it can release H2 completely even in 1000 s at 275 °C. Besides, the MgH2-5 wt% Ni3Fe/rGO displays the lowest dehydrogenation apparent activation energy of 59.3 kJ/mol calculated by Kissinger equation. The synergetic effect attributing to rGO, in-situ formed active species of Mg2Ni and Fe is in charge of the excellent catalytic effect on hydrogen storage behavior of MgH2. Meanwhile, this study supplies innovative insights to design high efficiency catalysts based on the LDH precursor.  相似文献   

14.
The dehydrogenation reaction pathway of a 0.91 (0.62LiBH4-0.38NaBH4)-0.09Ni mixture in the temperature range of 25–650 °C in flowing Ar and the cycling stability in H2 are presented. No H2 is released immediately after melting at 225 °C. The major dehydrogenation occurs above 350 °C. Adding nano-sized Ni reduces the dehydrogenation peak temperatures by 20–25 °C, leading to three decomposition steps where Ni4B3 and Li1.2Ni2.5B2 are found in the major dehydrogenation products for the 1st and the 3rd step; whilst the Ni-free mixture decomposes through a two-step decomposition pathway. A total of 8.1 wt% of hydrogen release from the 0.91 (0.62LiBH4-0.38NaBH4)-0.09Ni mixture is achieved at 650 °C in Ar. This mixture has a poor hydrogen cycling stability as its reversible hydrogen content decreases from 5.1 wt% to 1.1 wt% and 0.6 wt% during three complete desorption-absorption-cycles. However, the addition of nano-sized Ni facilitates the reformation of LiBH4.  相似文献   

15.
The effects of MnFe2O4 nanopowder synthesised via a simple ‘hydrothermal’ method on the hydrogen storage properties of MgH2 are investigated for the first time. The particle size of the as-synthesised MnFe2O4 nanoparticles is determined to be about 10 nm. We observe that MnFe2O4 catalyst decreases the decomposition temperature of MgH2 and enhances the sorption kinetics. Interestingly, the onset hydrogen desorption temperature of 10 wt% MnFe2O4-doped MgH2 sample gets lowered from 350 °C to 240 °C with faster kinetics, and the sample shows an average dehydrogenation rate 8–9 times faster than that of the as-milled MgH2 sample. By adding 10 wt% of as-prepared MnFe2O4 to MgH2, approximately 5.5 wt% hydrogen can be absorbed in 10 min at 200 °C. In contrast, the un-doped MgH2 sample absorbed only 4.0 wt% hydrogen in the same period of time. From the Kissinger analysis, the apparent activation energy for hydrogen released in the MnFe2O4-added MgH2 composite is found to be 108.42 kJ/mol, which is much lower than the activation energy for hydrogen released in the as-milled MgH2 (146.57 kJ/mol). It is believed that the in situ formed Fe particle and Mn-containing phases together play a synergistic role in remarkably improving MgH2 storage properties.  相似文献   

16.
Herein, a novel flower-like Ni MOF with good thermostability is introduced into MgH2 for the first time, and which demonstrates excellent catalytic activity on improving hydrogen storage performance of MgH2. The peak dehydrogenation temperature of MgH2-5 wt.% Ni MOF is 78 °C lower than that of pure MgH2. Besides, MgH2-5 wt.% Ni MOF shows faster de/hydrogenation kinetics, releasing 6.4 wt% hydrogen at 300 °C within 600 s and restoring about 5.7 wt% hydrogen at 150 °C after dehydrogenation. The apparent activation energy for de/hydrogenation reactions are calculated to be 107.8 and 42.8 kJ/mol H2 respectively, which are much lower than that of MgH2 doped with other MOFs. In addition, the catalytic mechanism of flower-like Ni MOF is investigated in depth, through XRD, XPS and TEM methods. The high catalytic activity of flower-like Ni MOF can be attributed to the combining effect of in-situ generated Mg2Ni/Mg2NiH4, MgO nanoparticles, amorphous C and remaining layered Ni MOF. This research extends the knowledge of elaborating efficient catalysts via MOFs in hydrogen storage materials.  相似文献   

17.
The Mg-based hydrogen storage alloy with multiple platforms is successfully prepared by ball milling Co powder and Mg-RE-Ni precursor alloy, and its hydrogen storage behavior was investigated in detail by XRD, EDS, TEM, PCI, and DSC methods. The ball-milled alloy consists of the main phase Mg, the catalytic phases Mg2Ni, Mg2Co as well as a small amount of Mg12Ce, and convert into the MgH2–CeH2.73-Mg2NiH4–Mg2CoH5 composite after hydrogenation. The composite has three PCI platforms corresponding to the reversible de/hydrogenation reaction of Mg/MgH2, Mg2Ni/Mg2NiH4 and Mg6Co2H11/Mg2CoH5. Among them, the transformation between Mg2Ni and Mg2NiH4 triggers the “spill-over” effect which promote the decomposition of MgH2 phases and enhances the hydrogen desorption kinetics. Meanwhile, the conversion of the Mg6Co2H11 to Mg2CoH5 phase induces the “chain reaction” effect, which leads to preferential nucleation of Mg phase and improves the hydrogen absorption kinetics. Therefore, the Mg-RE-Ni-Co alloy has a double improvement on hydrogen absorption and desorption kinetics. Concretely, the alloy has an optimal hydrogen absorption temperature of 200 °C, at which it can absorb 5.5 wt. % H2 within 40 s. Under the conditions, the capacity of absorption almost reaches the maximum reversible value (about 5.6 wt. %). Besides, the alloy has a dehydrogenation activation energy of 67.9 kJ/mol and can desorb 5.0 wt. % H2 within 60 min at the temperature of 260 °C.  相似文献   

18.
In this work, Zn(BH4)2 and/or Ni were added to MgH2 in order to improve the hydrogen absorption and release properties of MgH2. 99 wt% MgH2 + 1 wt% Zn(BH4)2, 99 wt% MgH2 + 0.5 wt% Zn(BH4)2 + 0.5 wt% Ni, and 95 wt% MgH2 + 2.5 wt% Zn(BH4)2 + 2.5 wt% Ni samples [named MgH2-1Zn(BH4)2, MgH2-0.5Zn(BH4)2-0.5Ni, and MgH2-2.5Zn(BH4)2-2.5Ni, respectively] were prepared by milling in a planetary ball mill in a hydrogen atmosphere. MgH2-0.5Zn(BH4)2-0.5Ni had the highest initial hydriding and dehydriding rates and the largest quantities of hydrogen absorbed and released for 20 min. MgH2-0.5Zn(BH4)2-0.5Ni dehydrided at the fourth cycle had small particles, large particles, and agglomerates. The sizes of the fine particles on the agglomerates were slightly smaller than those in the as-milled sample and quite flat surfaces of the agglomerates were not observed. MgH2-0.5Ni-0.5Zn(BH4)2 dehydrided at 623 K under 1.0 bar H2 at the 4th cycle contained Mg, MgO, and small amounts of β-MgH2 and Mg2Ni. The initial hydriding rates at n = 2, 3, and 4 were higher than that at n = 1. The quantity of hydrogen absorbed for 60 min, Ha (60 min), decreased as the number of cycles, n, increased. The initial dehydriding rate increased and the quantity of hydrogen released for 60 min, Hr (60 min), decreased as n increased. Outside the particles and agglomerates, particles became finer due to expansion and contraction, while in their interiors cracks were believed to coalesce due to annealing effect. MgH2-0.5Ni-0.5Zn(BH4)2 had an effective hydrogen storage capacity (the quantity of hydrogen absorbed for 60 min) of about 5.5 wt% (5.52 ± 0.10 wt% at 593 K under 12 bar H2). The PCT curve of MgH2-0.5Ni-0.5Zn(BH4)2 showed that the hydrogen storage capacity was 6.64 ± 0.25 wt%.  相似文献   

19.
The mutual destabilization of LiAlH4 and MgH2 in the reactive hydride composite LiAlH4-MgH2 is attributed to the formation of intermediate compounds, including Li-Mg and Mg-Al alloys, upon dehydrogenation. TiF3 was doped into the composite for promoting this interaction and thus enhancing the hydrogen sorption properties. Experimental analysis on the LiAlH4-MgH2-TiF3 composite was performed via temperature-programmed desorption (TPD), differential scanning calorimetry (DSC), isothermal sorption, pressure-composition isotherms (PCI), and powder X-ray diffraction (XRD). For LiAlH4-MgH2-TiF3 composite (mole ratio 1:1:0.05), the dehydrogenation temperature range starts from about 60 °C, which is 100 °C lower than for LiAlH4-MgH2. At 300 °C, the LiAlH4-MgH2-TiF3 composite can desorb 2.48 wt% hydrogen in 10 min during its second stage dehydrogenation, corresponding to the decomposition of MgH2. In contrast, 20 min was required for the LiAlH4-MgH2 sample to release so much hydrogen capacity under the same conditions. The hydrogen absorption properties of the LiAlH4-MgH2-TiF3 composite were also improved significantly as compared to the LiAlH4-MgH2 composite. A hydrogen absorption capacity of 2.68 wt% under 300 °C and 20 atm H2 pressure was reached after 5 min in the LiAlH4-MgH2-TiF3 composite, which is larger than that of LiAlH4-MgH2 (1.75 wt%). XRD results show that the MgH2 and LiH were reformed after rehydrogenation.  相似文献   

20.
The hydrogen absorption capacity of the Mg51Zn20 intermetallic compound was investigated. The equilibrium pressures at 300, 330 and 380°C were found to be 3.6, 8.05 and 31.0 atm., respectively. The highest hydrogen content in Mg51Zn20 corresponds to the nominal composition Mg51Zn20H95 (3.62 wt % hydrogen). Evidence of MgH2 formation in the hydrided material was found.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号