共查询到20条相似文献,搜索用时 15 毫秒
1.
M.S. Yahya N.N. Sulaiman N.S. Mustafa F.A. Halim Yap M. Ismail 《International Journal of Hydrogen Energy》2018,43(31):14532-14540
The catalytic effects of K2NbF7 on the hydrogen storage properties of MgH2 have been studied for the first time. MgH2 + 5 wt% K2NbF7 has reduced the onset dehydrogenation temperature to 255 °C, which is 75 °C lower than the as-milled MgH2. For the rehydrogenation kinetic, at 150 °C, MgH2 + 5 wt% K2NbF7 absorbs 4.7 wt% of hydrogen in 30 min whereas the as-milled MgH2 only absorbs 0.7 wt% of hydrogen under similar condition. For the dehydrogenation kinetic, at 320 °C, the MgH2 + 5 wt% K2NbF7 is able to release 5.2 wt% of hydrogen in 5.6 min as compared to 0.3 wt% by the as-milled MgH2 under similar condition. Comparatively, the Ea value of MgH2 + 5 wt% K2NbF7 is 96.3 kJ/mol, which is 39 kJ/mol lower compared to the as-milled MgH2. The MgF2, the KH and the Nb that are found after the heating process are believed to be the active species that have improved the system properties. It is concluded that the K2NbF7 is a good catalyst to improve the hydrogen storage properties of MgH2. 相似文献
2.
A. Ranjbar Z.P. Guo X.B. Yu D. Attard A. Calka H.K. Liu 《International Journal of Hydrogen Energy》2009,34(17):7263
In this work, MgH2–SiC–Ni was prepared by magneto-mechanical milling in hydrogen atmosphere. Scanning electron microscope mapping images showed a homogeneous dispersion of both Ni and SiC among MgH2 particles. Based on the differential scanning calorimetry traces, the temperature of desorption is reduced by doping MgH2 with SiC and Ni. Hydrogen absorption/desorption behaviour of the samples was investigated by Sievert's method at 300 °C, and the results showed that both capacity and kinetics were improved by adding SiC and Ni. The hydrogen desorption kinetic investigation indicated that for pure MgH2, the rate-determining step is surface controlled and recombination, while for the MgH2–SiC–Ni sample it is controlled as described by the Johnson–Mehl–Avrami 3D model (JMA 3D). 相似文献
3.
A bi-component catalyst TiB2/GNSs (GNSs is the abbreviation of graphene nanosheets) is synthesized by a solid-state method. Microstructural characterizations based on SEM (scanning electron microscopy), TEM (transmission electron microscopy) and N2 physisorption show that the size of TiB2/GNSs catalyst is at nanoscale (20–30 nm) with a surface area of 84.69 m2 g−1. The TiB2/GNSs nanoparticles ball milled with MgH2 and exhibit enhanced catalytic effects on the dehydrogenation properties of MgH2 compares to TiB2 and GNSs individually. DSC (differential scanning calorimetry) measurements confirm that the peak desorption temperature of MgH2-5 wt%TiB2/GNSs composites can be lowered more than 44 °C than the pure as-milled MgH2. And the dehydrogenation kinetics of TiB2/GNSs-doped MgH2 is severalfold acceleration compares to the pure as-milled MgH2. It is proposed that the TiB2/GNSs nanoparticles could significantly enhance the intimate interface between TiB2/GNSs and hydride, therefore, provide more active “catalytic sites” and H “diffusion channels” to reduce the dehydrogenation temperature and improve the dehydrogenation kinetics of MgH2. The synergistic effect of nano-GNSs and TiB2 nanoparticles contributes to the highly efficient for dehydrogenation of MgH2-5wt%TiB2/GNSs composites. 相似文献
4.
Guang-lin Xia Hai-yan LengNai-xin Xu Zhi-lin LiZhu Wu Jun-lin Du Xue-bin Yu 《International Journal of Hydrogen Energy》2011,36(12):7128-7135
Though LiBH4-MgH2 system exhibits an excellent hydrogen storage property, it still presents high decomposition temperature over 350 °C and sluggish hydrogen absorption/desorption kinetics. In order to improve the hydrogen storage properties, the influence of MoCl3 as an additive on the hydrogenation and dehydrogenation properties of LiBH4-MgH2 system is investigated. The reversible hydrogen storage performance is significantly improved, which leads to a capacity of about 7 wt.% hydrogen at 300 °C. XRD analysis reveals that the metallic Mo is formed by the reaction between LiBH4 and MoCl3, which is highly dispersed in the sample and results in improved dehydrogenation and hydrogenation performance of LiBH4-MgH2 system. From Kissinger plot, the activation energy for hydrogen desorption of LiBH4-MgH2 system with additive MoCl3 is estimated to be ∼43 kJ mol−1 H2, 10 kJ mol−1 lower than that for the pure LiBH4-MgH2 system indicating that the kinetics of LiBH4-MgH2 composite is significantly improved by the introduction of Mo. 相似文献
5.
N.A. Sazelee N.H. Idris M.F. Md Din N.S. Mustafa N.A. Ali M.S. Yahya F.A. Halim Yap N.N. Sulaiman M. Ismail 《International Journal of Hydrogen Energy》2018,43(45):20853-20860
Previous studies have shown that ferrites give a positive effect in improving the hydrogen sorption properties of magnesium hydride (MgH2). In this study, another ferrite, i.e., BaFe12O19, has been successfully synthesised via the solid state method, and it was milled with MgH2 to enhance the sorption kinetics. The result showed that the MgH2 + 10 wt% BaFe12O19 sample started to release hydrogen at about 270 °C which is about 70 °C lower than the as-milled MgH2. The doped sample was able to absorb hydrogen for 4.3 wt% in 10 min at 150 °C, while as-milled MgH2 only absorbed 3.5 wt% of hydrogen under similar conditions. The desorption kinetic results showed that the doped sample released about 3.5 wt% of hydrogen in 15 min at 320 °C, while the as-milled MgH2 only released about 1.5 wt% of hydrogen. From the Kissinger plot, the apparent activation energy of the BaFe12O19-doped MgH2 sample was 115 kJ/mol which was lower than the milled MgH2 (141 kJ/mol). Further analyses demonstrated that MgO, Fe and Ba or Ba-containing contribute to the improvement by serving as active species, thus enhancing the MgH2 for hydrogen storage. 相似文献
6.
M.S. Yahya W.B. Lew F.A. Halim Yap M. Ismail 《International Journal of Hydrogen Energy》2018,43(45):20801-20810
Investigations on the catalytic effects of a non-reactive and stable additive, SrTiO3, on the hydrogen storage properties of the 4MgH2Na3AlH6 destabilized system were carried out for the first time. The Na3AlH6 compound and the destabilized systems used in the investigations are prepared using ball milling method. The doped system, 4MgH2Na3AlH6SrTiO3, had an initial dehydrogenation temperature of 145 °C, which 25 °C lower as compared to the un-doped system. The isothermal absorption and desorption capacity at 320 °C has increased by 1.2 wt% and 1.6 wt% with the addition of SrTiO3 as compared to the 4MgH2Na3AlH6 destabilized system. The decomposition activation energy of the doped system is estimated to be 117.1 kJ/mol. As for the XRD analyses at different decomposition stages, SrTiO3 is found to be stable and inert. In addition to SrTiO3, similar phases are found in the doped and the un-doped system during the decomposition and dehydrogenation processes. Therefore, the catalytic effect of the SrTiO3 is speculated owing to its ability to modify the physical structure of the 4MgH2Na3AlH6 particles through pulverization effect. 相似文献
7.
MgH2 with 10 wt.% Ti0.4Mn0.22Cr0.1V0.28 alloy (termed the BCC alloy for its body centred cubic structure) and 5 wt.% carbon nanotubes (CNTs) were prepared by planetary ball milling, and its hydrogen storage properties were compared with those of the pure MgH2 and the binary mixture of MgH2 and the BCC alloy. The sample with CNTs showed considerable improvement in hydrogen sorption properties. Its temperature of desorption was 125 °C lower than for the pure sample and 59 °C lower than for the binary mixture. In addition, the gravimetric capacity of the ternary sample was 6 wt.% at 300 °C and 5.6 wt.% at 250 °C, and it absorbed 90% of this amount at 150 s and 516 s at 300 °C and 250 °C, respectively. It can be hypothesised from the results that the BCC alloy assists the dissociation of hydrogen molecules into hydrogen atoms and also promotes hydrogen pumping into the Mg/BCC interfaces, while the CNTs facilitate access of H-atoms into the interior of Mg grains. 相似文献
8.
T. Sadhasivam M. Sterlin Leo Hudson Sunita K. Pandey Ashish Bhatnagar Milind K. Singh K. Gurunathan O.N. Srivastava 《International Journal of Hydrogen Energy》2013
This paper reports the catalytic effects of mischmetal (Mm) and mischmetal oxide (Mm-oxide) on improving the dehydrogenation and rehydrogenation behaviour of magnesium hydride (MgH2). It has been found that 5 wt.% is the optimum catalyst (Mm/Mm-oxide) concentration for MgH2. The Mm and Mm-oxide catalyzed MgH2 exhibits hydrogen desorption at significantly lower temperature and also fast rehydrogenation kinetics compared to ball-milled MgH2 under identical conditions of temperature and pressure. The onset desorption temperature for MgH2 catalyzed with Mm and Mm-oxide are 323 °C and 305 °C, respectively. Whereas the onset desorption temperature for the ball-milled MgH2 is 381 °C. Thus, there is a lowering of onset desorption temperature by 58 °C for Mm and by 76 °C for Mm-oxide. The dehydrogenation activation energy of Mm-oxide catalyzed MgH2 is 66 kJ/mol. It is 35 kJ/mol lower than ball-milled MgH2. Additionally, the Mm-oxide catalyzed dehydrogenated Mg exhibits faster rehydrogenation kinetics. It has been noticed that in the first 10 min, the Mm-oxide catalyzed Mg (dehydrogenated MgH2) has absorbed up to 4.75 wt.% H2 at 315 °C under 15 atmosphere hydrogen pressure. The activation energy determined for the rehydrogenation of Mm-oxide catalyzed Mg is ∼62 kJ/mol, whereas that for the ball-milled Mg alone is ∼91 kJ/mol. Thus, there is a decrease in absorption activation energy by ∼29 kJ/mol for the Mm-oxide catalyzed Mg. In addition, Mm-oxide is the native mixture of CeO2 and La2O3 which makes the duo a better catalyst than CeO2, which is known to be an effective catalyst for MgH2. This takes place due to the synergistic effect of CeO2 and La2O3. It can thus be said that Mm-oxide is an effective catalyst for improving the hydrogen sorption behaviour of MgH2. 相似文献
9.
In this study, the hydrogen storage properties of MgH2 with the addition of K2TiF6 were investigated for the first time. The temperature-programmed desorption results showed that the addition of 10 wt% K2TiF6 to the MgH2 exhibited a lower onset desorption temperature of 245 °C, which was a decrease of about 105 °C and 205 °C compared with the as-milled and as-received MgH2, respectively. The dehydrogenation and rehydrogenation kinetics of 10 wt% K2TiF6-doped MgH2 were also significantly improved compared to the un-doped MgH2. The results of the Arrhenius plot showed that the activation energy for the hydrogen desorption of MgH2 was reduced from 164 kJ/mol to 132 kJ/mol after the addition of 10 wt% K2TiF6. Meanwhile, the X-ray diffraction analysis showed the formation of a new phase of potassium hydride and titanium hydride together with magnesium fluoride and titanium in the doped MgH2 after the dehydrogenation and rehydrogenation process. It is reasonable to conclude that the K2TiF6 additive doped with MgH2 played a catalytic role through the formation of active species of KH, TiH2, MgF2 and Ti during the ball milling or heating process. It is therefore proposed that this newly developed product works as a real catalyst for improving the hydrogen sorption properties of MgH2. 相似文献
10.
Guang Liu Fangyuan Qiu Jia Li Yijing Wang Li Li Chao Yan Lifang Jiao Huatang Yuan 《International Journal of Hydrogen Energy》2012
In this paper, amorphous NiB nanoparticles were fabricated by chemical reduction method and the effect of NiB nanoparticles on hydrogen desorption properties of MgH2 was investigated. Measurements using temperature-programmed desorption system (TPD) and volumetric pressure–composition isotherm (PCI) revealed that both the desorption temperature and desorption kinetics have been improved by adding 10 wt% amorphous NiB. For example, the MgH2–10 wt%NiB mixture started to release hydrogen at 180 °C, whereas it had to heat up to 300 °C to release hydrogen for the pure MgH2. In addition, a hydrogen desorption capacity of 6.0wt% was reached within 10 min at 300 °C for the MgH2–10 wt%NiB mixture, in contrast, even after 120 min only 2.0 wt% hydrogen was desorbed for pure MgH2 under the same conditions. An activation energy of 59.7 kJ/mol for the MgH2/NiB composite has been obtained from the desorption data, which exhibits an enhanced kinetics possibly due to the additives reduced the barrier and lowered the driving forces for nucleation. Further cyclic kinetics investigation using high-pressure differential scanning calorimetry technique (HP-DSC) indicated that the composite had good cycle stability. 相似文献
11.
J. Grbović Novaković Lj. Matović M. Drvendžija N. Novaković D. Rajnović M. Šiljegović Z. Kačarević Popović S. Milovanović N. Ivanović 《International Journal of Hydrogen Energy》2008
In order to understand the influence of defect zones on desorption behavior of MgH2, Xe 120 keV ion irradiation of this material has been performed. DSC, SEM measurements, and SRIM calculations have been used to characterize induced modifications and its influence on the hydrogen desorption behavior of MgH2. We have demonstrated that the near-surface area of MgH2 plays the crucial role in hydrogen desorption kinetics. DSC analysis provides clear picture of vacancies influence on H diffusion and desorption in MgH2, and points out that there is possibility to control the thermodynamic parameters by controlled ion bombardment. 相似文献
12.
In this paper, the hydrogen storage properties and reaction mechanism of the 4MgH2 + LiAlH4 composite system with the addition of Fe2O3 nanopowder were investigated. Temperature-programmed-desorption results show that the addition of 5 wt.% Fe2O3 to the 4MgH2 + LiAlH4 composite system improves the onset desorption temperature to 95 °C and 270 °C for the first two dehydrogenation stage, which is lower 40 °C and 10 °C than the undoped composite. The dehydrogenation and rehydrogenation kinetics of 5 wt.% Fe2O3-doped 4MgH2 + LiAlH4 composite were also improved significantly as compared to the undoped composite. Differential scanning calorimetry measurements indicate that the enthalpy change in the 4MgH2–LiAlH4 composite system was unaffected by the addition of Fe2O3 nanopowder. The Kissinger analysis demonstrated that the apparent activation energy of the 4MgH2 + LiAlH4 composite (125.6 kJ/mol) was reduced to 117.1 kJ/mol after doping with 5 wt.% Fe2O3. Meanwhile, the X-ray diffraction analysis shows the formation of a new phase of Li2Fe3O4 in the doped composite after the dehydrogenation and rehydrogenation process. It is believed that Li2Fe3O4 acts as an actual catalyst in the 4MgH2 + LiAlH4 + 5 wt.% Fe2O3 composite which may promote the interaction of MgH2 and LiAlH4 and thus accelerate the hydrogen sorption performance of the MgH2 + LiAlH4 composite system. 相似文献
13.
The present study compares the dehydrogenation kinetics of (2LiNH2+MgH2) and (LiNH2+LiH) systems and their vulnerabilities to the NH3 emission problem. The (2LiNH2+MgH2) and (LiNH2+LiH) mixtures with different degrees of mechanical activation are investigated in order to evaluate the effect of mechanical activation on the dehydrogenation kinetics and NH3 emission rate. The activation energy for dehydrogenation, the phase changes at different stages of dehydrogenation, and the level of NH3 emission during the dehydrogenation process are studied. It is found that the (2LiNH2+MgH2) mixture has a higher rate for hydrogen release, slower rate for approaching a certain percentage of its equilibrium pressure, higher activation energy, and more NH3 emission than the (LiNH2+LiH) mixture. On the basis of the phenomena observed, the reaction mechanism for the dehydrogenation of the (2LiNH2+MgH2) system has been proposed for the first time. Approaches for further improving the hydrogen storage behavior of the (2LiNH2+MgH2) system are discussed in light of the newly proposed reaction mechanism. 相似文献
14.
The objective of the present work is the comparative study of the behaviour of the Nb- and Ti-based additives in the MgH2 single hydride and the MgH2 + 2LiBH4 reactive hydride composite. The selected additives have been previously demonstrated to significantly improve the sorption reaction kinetics in the corresponding materials. X-Ray Diffraction (XRD), X-Ray Absorption Spectroscopy (XAS), X-Ray Photoelectron Spectroscopy (XPS) and Electron Microscopy (TEM) analysis were carried out for the milled and cycled samples in absence or presence of the additives. It has been shown that although the evolution of the oxidation state for both Nb- and Ti-species are similar in both systems, the Nb additive is performing its activity at the surface while the Ti active species migrate to the bulk. The Nb-based additive is forming pathways that facilitate the diffusion of hydrogen through the diffusion barriers both in desorption and absorption. For the Ti-based additive in the reactive hydride composite, the active species are working in the bulk, enhancing the heterogeneous nucleation of MgB2 phases during desorption and producing a distinct grain refinement that favours both sorption kinetics. The results are discussed in regards to possible kinetic models for both systems. 相似文献
15.
Charles W. James Jr. Kyle S. BrinkmanJoshua R. Gray Jose A. Cortes-ConcepcionDonald L. Anton 《International Journal of Hydrogen Energy》2014
While the storage of hydrogen for portable and stationary applications is regarded as critical in bringing PEM fuel cells to commercial acceptance, little is known of the environmental exposure risks posed in utilizing condensed phase chemical storage options as in complex hydrides. It is thus important to understand the effect of environmental exposure of metal hydrides in the case of accident scenarios. Simulated tests were performed following the United Nations standards to test for flammability and water reactivity in air for a destabilized lithium borohydride and magnesium hydride system in a 2 to 1 molar ratio respectively. It was determined that the mixture acted similarly to the parent, lithium borohydride, but at slower rate of reaction seen in magnesium hydride. To quantify environmental exposure kinetics, isothermal calorimetry was utilized to measure the enthalpy of reaction as a function of exposure time to dry and humid air, and liquid water. The reaction with liquid water was found to increase the heat flow significantly during exposure compared to exposure in dry or humid air environments. Calorimetric results showed the maximum normalized heat flow of the fully charged material was 6 mW/mg under liquid phase hydrolysis; and 14 mW/mg for the fully discharged material also occurring under liquid phase hydrolysis conditions. 相似文献
16.
Pavel Rizo-Acosta Fermín Cuevas Michel Latroche 《International Journal of Hydrogen Energy》2018,43(34):16774-16781
Magnesium hydride is extensively examined as a hydrogen store due to its high hydrogen content and low cost. However, high thermodynamic stability and sluggish kinetics hinder its practical application. To overcome this last drawback, different Ti amounts (y = 0, 0.025, 0.05, 0.1, 0.2 and 0.3) were added to magnesium to form (1-y)MgH2+yTiH2 nanocomposites (NC) by reactive ball milling under hydrogen gas. Thermodynamic stability of the MgH2 phase in NCs was determined using a manometric Sieverts rig. Reversible hydrogen capacity and reaction kinetics were determined at 573 K over 20 sorption cycles under a limited reaction time of 15 min. On increasing Ti amount, reaction kinetics are enhanced both in absorption and desorption leading to a higher reversibility for hydrogen storage with the MgH2 phase. However, titanium increases the molar weight of NCs and forms irreversible titanium hydride. The highest reversible capacity (4.9 wt% H) was obtained for the lowest here studied TiH2 content (y = 0.025). 相似文献
17.
《International Journal of Hydrogen Energy》2021,46(66):33186-33196
Additive doping is one of the effective methods to overcome the shortcomings of MgH2 on the aspect of relatively high operating temperatures and slow desorption kinetics. In this paper, hollow g-C3N4 (TCN) tubes with a diameter of 2 μm are synthesized through the hydrothermal and high-temperature pyrolysis methods, and then nickel is chemically reduced onto TCN to form Ni/TCN composite at 278 K. Ni/TCN is then introduced into the MgH2/Mg system by means of hydriding combustion and ball milling. The MgH2–Ni/TCN composite starts to release hydrogen at 535 K, which is 116 K lower than the as-milled MgH2 (651 K). The MgH2–Ni/TCN composite absorbs 5.24 wt% H2 within 3500 s at 423 K, and takes up 3.56 wt% H2 within 3500 s, even at a temperature as low as 373 K. The apparent activation energy (Ea) of the MgH2 decreases from 161.1 to 82.6 kJ/mol by the addition of Ni/TCN. Moreover, the MgH2–Ni/TCN sample shows excellent cycle stability, with a dehydrogenation capacity retention rate of 98.0% after 10 cycles. The carbon material enhances sorption kinetics by dispersing and stabilizating MgH2. Otherwise, the phase transformation between Mg2NiH4 and Mg2NiH0.3 accelerates the re/dehydrogenation reaction of the composite. 相似文献
18.
Kuikui Wang Guanglei Wu Haijie Cao Hongliang Li Xiusong Zhao 《International Journal of Hydrogen Energy》2018,43(15):7440-7446
In this study, we used a combination of graphene oxide-based porous carbon (GC) and titanium chloride (TiCl3) to improve the reversible dehydrogenation properties of magnesium hydride (MgH2). Examining the effects of GC and TiCl3 on the hydrogen storage properties of MgH2, the study found GC was a useful additive as confinement medium for promoting the reversible dehydrogenation of MgH2. And TiCl3 was an efficient catalytic dopant. A series of controlled experiments were carried out to optimize the sample preparation method and the addition amount of GC and TiCl3. In comparison with the neat MgH2 system, the MgH2/GC-TiCl3 composite prepared under optimized conditions exhibited enhanced dehydrogenation kinetics and lower dehydrogenation temperature. A combination of phase/microstructure/chemical state analyses has been conducted to gain insight into the promoting effects of GC and TiCl3 on the reversible dehydrogenation of MgH2. Our study found that GC was a useful scaffold material for tailoring the nanophase structure of MgH2. And TiCl3 played an efficient catalytic effect. Therefore, the remarkably improved dehydrogenation properties of MgH2 should be attributed to the synergetic effects of nanoconfinement and catalysis. 相似文献
19.
The hydrogen desorption properties of Magnesium Hydride (MgH2) ball milled with cassiterite (SnO2) have been investigated by X-ray powder diffraction and thermal analysis. Milling of pure MgH2 leads to a reduction of the desorption temperature (up to 60 K) and of the activation energy, but also to a reduction of the quantity of desorbed hydrogen, referred to the total MgH2 present, from 7.8 down to 4.4 wt%. SnO2 addition preserves the beneficial effects of grinding on the desorption kinetics and limits the decrease of desorbed hydrogen. Best tradeoff – activation energy lowered from 175 to 148 kJ/mol and desorbed hydrogen, referred to the total MgH2 present, lowered from 7.8 to 6.8 wt% – was obtained by co-milling MgH2 with 20 wt% SnO2. 相似文献
20.
Chunyu Zhu Haruya Hayashi Itoko Saita Tomohiro Akiyama 《International Journal of Hydrogen Energy》2009,34(17):7283
This paper describes the direct synthesis of magnesium hydride (MgH2) nanofibers by hydriding chemical vapor deposition (HCVD), in which the effect of hydrogen pressure on the production rate, the composition and the shape of products obtained were examined by using X-ray diffraction (XRD), scanning electron microscopy (SEM) and Brunauer–Emmett–Teller (BET). The XRD patterns showed that the main product in each case was MgH2; in particular, the products formed at 2, 3 and 4 MPa were highly pure. In contrast, at a hydrogen pressure of 1 MPa, unhydrided Mg was deposited along with MgH2. The SEM images also revealed orientation of the as-deposited products; higher pressures of 3 and 4 MPa caused the formation of straight and curved nanofibers, and lower ones of 1 and 2 MPa, highly curved nanofibers and nanorods with a few straight nanofibers. With pressurizing hydrogen, not only the BET specific surface areas of the products but also the production rate increased. The results also appealed that HCVD could control the shape/size of MgH2 nanofibers by changing the pressure via only a single operation. 相似文献