首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study, energy, exergy, environmental and sustainability assessments of jet and hydrogen (H2) fueled J79-GE-17 turbojet engine are done. The results are compared for hydrogen and JP-8 fueled modes. It is found that aviation performance metrics are better for hydrogen utilization mode. By using hydrogen fuel instead of JP-8 fuel; the specific thrust and power rates reduce 1.037%, the specific fuel consumption decreases 63.987% the energy efficiency of the turbojet engine reduces from 30.293% to 29.979%, the exergy efficiency of the combustion chamber component increases 10.581%, and the turbojet engine exergy efficiency rises from 28.54% to 30.73%. The sustainability of the hydrogen fuel utilization for the J79-GE-17 turbojet engine is higher than JP-8 fuel utilization mode. The hydrogen utilization decreases the emission index as 73.36% and the environmental impact as 99.05% comparing to JP-8 usage mode. As a result, hydrogen fuel utilization in this engine is a better choice for emissions and environment, while it can be used as effective as JP-8 fuel.  相似文献   

2.
This study examines the exergetic sustainability effect of PEM electrolyzer (PEME) integrated high pressure hydrogen gas storage system whose capacity is 3 kg/h. For this purpose, the indicators, previously used in the literature, are taken into account and their variations are parametrically studied as a function of the PEME operating pressure and storage pressure by considering i) PEME operating temperature at 70 °C, ii) PEME operating pressures at 10, 30, 50 and 100 bar, iii) hydrogen gas flow rate at 3 kg/h and iv) storage pressure between 200 and 900 bar. Consequently, the results from the parametric investigation indicate that, with the ascent of storage pressure from 200 to 900 bar at a constant PEME operating pressure (=50 bar), exergetic efficiency changes decreasingly between 0.612 and 0.607 while exergetic sustainability between 1.575 and 1.545. However, it is estimated that waste exergy ratio changes increasingly between 0.388 and 0.393 while environmental effect factor between 0.635 and 0.647. Additionally, it is said that the higher PEME outlet pressure causes the higher exergetic sustainability index, the lower environmental effect factor, the lower waste exergy output, the higher exergetic efficiency. However, the higher storage pressure causes the lower exergetic efficiency, the higher waste exergy output, the higher environmental effect factor and the lower exergetic sustainability index. Thus, it is recommended that this type of the system should be operated at higher PEME outlet pressure, and at an optimum hydrogen storage pressure.  相似文献   

3.
In this paper, hydrogen is considered as a renewable and sustainable solution for reducing global fossil fuel consumption and combating global warming and studied exergetically through a parametric performance analysis. The environmental impact results are then compared with the ones obtained for fossil fuels. In this regard, some exergetic expressions are derived depending primarily upon the exergetic utilization ratios of fossil fuels and hydrogen: the fossil fuel based global waste exergy factor, hydrogen based global exergetic efficiency, fossil fuel based global irreversibility coefficient and hydrogen based global exergetic indicator. These relations incorporate predicted exergetic utilization ratios for hydrogen energy from non-fossil fuel resources such as water, etc., and are used to investigate whether or not exergetic utilization of hydrogen can significantly reduce the fossil fuel based global irreversibility coefficient (ranging from 1 to +∞) indicating the fossil fuel consumption and contribute to increase the hydrogen based global exergetic indicator (ranging from 0 to 1) indicating the hydrogen utilization at a certain ratio of fossil fuel utilization. In order to verify all these exergetic expressions, the actual fossil fuel consumption and production data are taken from the literature. Due to the unavailability of appropriate hydrogen data for analysis, it is assumed that the utilization ratios of hydrogen are ranged between 0 and 1. For the verification of these parameters, the variations of fossil fuel based global irreversibility coefficient and hydrogen based global exergetic indicator as the functions of fossil fuel based global waste exergy factor, hydrogen based global exergetic efficiency and exergetic utilization of hydrogen from non-fossil fuels are analyzed and discussed in detail. Consequently, if exergetic utilization ratio of hydrogen from non-fossil fuel sources at a certain exergetic utilization ratio of fossil fuels increases, the fossil fuel based global irreversibility coefficient will decrease and the hydrogen based global exergetic indicator will increase.  相似文献   

4.
A novel solid oxide fuel cell (SOFC) multigeneration system fueled by biogas derived from agricultural waste (maize silage) is designed and analyzed from the view point of energy and exergy analysis. The system is proposed in order to limit the greenhouse gas emissions as it uses a renewable energy source as a fuel. Electricity, domestic hot water, hydrogen and cooling load are produced simultaneously by the system. The system includes a solid oxide fuel cell; which is the primary mover, a biogas digester subsystem, a cascaded closed loop organic Rankine cycle, a single effect LiBr-water absorption refrigeration cycle, and a proton exchange membrane electrolyzer subsystem. The proposed cascaded closed-loop ORC cycle is considered as one of the advanced heat recovery technologies that significantly improve thermal efficiency of integrated systems. The thermal performance of the proposed system is observed to be higher in comparison to the simple ORC and the recuperated ORC cycles. The integration of a splitter to govern the flue gas separation ratio is also introduced in this study to cater for particular needs/demands. The separation ratio can be used to vary the cooling load or the additional power supplied by the ORC to the system. It is deduced that net electrical power, cooling load, heating capacity of the domestic hot water and total energy and exergy efficiency are 789.7 kW, 317.3 kW, 65.75 kW, 69.86% and 47.4% respectively under integral design conditions. Using a parametric approach, the effects of main parameters on the output of the device are analyzed. Current density is an important parameter for system performance. Increasing the current density leads to increased power produced by the system, decreased exergy efficiency in the system and increased energy efficiency. After-burner, air and fuel heat exchangers are observed to have the highest exergy destruction rates. Lower current density values are desirable for better exergy-based sustainability from the exergetic environmental impact assessment. Higher current density values have negative effect on the environment.  相似文献   

5.
A new integrated combined cooling, heating and power system which includes a solid oxide fuel cell, Stirling engine, steam turbine, linear Fresnel solar field and double effect absorption chiller is introduced and investigated from energy, exergy and thermodynamic viewpoints. In this process, produced electrical power by the fuel cell and steam turbines is 6971.8 kW. Stirling engine uses fuel cell waste heat and produces 656 kW power. In addition, absorption chiller is driven by waste heat of the Stirling engine and generates 2118.8 kW of cooling load. Linear Fresnel solar field produces 961.7 kW of thermal power as a heat exchanger. The results indicate that, electrical, energy and exergy efficiencies and total exergy destruction of the proposed system are 49.7%, 67.5%, 55.6% and 12560 kW, respectively. Finally, sensitivity analysis to investigate effect of the different parameters such as flow rate of inputs, outlet pressure of the components and temperature changes of the solar system on the hybrid system performance is also done.  相似文献   

6.
ABSTRACT

This study investigates the merits of exergy analysis over energy analysis for small direct injection (DI) diesel engine using the blend of waste cooking oil biodiesel and petroleum diesel. Taguchi’s “L’ 16” orthogonal array has been used for the design of experiment. The engine tested at different engine speeds, load percentages, and blend ratios, using the waste cooking oil biodiesel. Basic performance parameters and fuel input exergy, exergetic efficiency (second law efficiency), exergy associated with heat transfer, exergy associated with the exhaust gas and destruction of exergy are calculated for each blend of waste cooking oil biodiesel and diesel. Results show that the optimum operating conditions for minimum brake-specific fuel consumption (BSFC) and exergy destruction are achieved when engine speed at 1900 rev/min, load percentage is 75%, and the engine is fueled with B40.  相似文献   

7.
In this study, energy and exergy analyses of a 1 kW Horizon H-1000 XP Proton Exchange Membrane (PEM) Fuel Cell has been investigated. A testing apparatus has been established to analyze the system efficiencies based on the first and second laws of thermodynamics. In this mechanism pure hydrogen has been directly used as a fuel in compressed gas formation. Purity of hydrogen was above 99.99%. The system performance was investigated through experimental studies on energy and parametric studies on exergy by changing the operating pressure and operation temperature. The results showed that the energy efficiency of PEM fuel cell is 45.58% for experimental study and 41.27% for parametric study at full load. Also, 2.25% and 4.2% performance improvements were obtained by changing the operating temperature ratio (T/T0) from 1 to 1.2 and operating pressure ratio (P/P0) from 1 to 2, respectively.  相似文献   

8.
In this paper, the thermodynamic study of a combined geothermal power-based hydrogen generation and liquefaction system is investigated for performance assessment. Because hydrogen is the energy of future, the purpose of this study is to produce hydrogen in a clear way. The results of study can be helpful for decision makers in terms of the integrated system efficiency. The presented integrated hydrogen production and liquefaction system consists of a combined geothermal power system, a PEM electrolyzer, and a hydrogen liquefaction and storage system. The exergy destruction rates, exergy destruction ratios and exergetic performance values of presented integrated system and its subsystems are determined by using the balance equations for mass, energy, entropy, energy and exergy and evaluated their performances by means of energetic and exergetic efficiencies. In this regard, the impact of some design parameters and operating conditions on the hydrogen production and liquefaction and its exergy destruction rates and exergetic performances are investigated parametrically. According to these parametric analysis results, the most influential parameter affecting system exergy efficiency is found to be geothermal source temperature in such a way that as geothermal fluid temperature increases from 130 °C to 200 °C which results in an increase of exergy efficiency from 38% to 64%. Results also show that, PEM electrolyzer temperature is more effective than reference temperature. As PEM electrolyzer temperature increases from 60 °C to 85 °C, the hydrogen production efficiency increases from nearly 39% to 44%.  相似文献   

9.
This paper presents some new exergy-based parameters for PEM fuel cells to study how some of their operating aspects and system characteristics affect the environment and sustainability, based on some actual and literature data. The exergetic parameters of a PEM fuel cell developed here, in conjunction with environmental impact and sustainable development, are exergy efficiency, exergetic stability factor, environmental benign index and exergetic sustainability index. Any increase in efficiency improves exergetic sustainability. However, any increase in waste exergy ratio, exergy destruction factor, environmental destruction coefficient and environmental destruction index results in an increasing environmental impact of the PEM fuel cell and hence, a decreasing sustainability. Such parameters are expected to quantify how PEM fuel cells become more environmentally benign and sustainable.  相似文献   

10.
Hybridized engines have become the focus of research nowadays in order to update the existing engines in different transportation sectors. This paper presents a hybridized aircraft engine consisting of a molten carbonate fuel cell system and a commercial turbofan system. The MCFC units are connected to a steam reforming and a water gas shift system. Also, five clean fuels are selected, such as dimethyl ether, hydrogen, ethanol, methane, and methanol, which are combined with different mass ratios to form five different fuel blends. The hybridized aircraft is investigated using three approaches: exergy analysis, exergoeconomic analysis, and exergoenvironmental analysis. It is found that the proposed engine has an average exergetic efficiency of 88% and an average exergy destruction ratio of 12%. The specific exergetic cost of electricity of the engine has an average value of 710 $/GJ for the high-pressure turbine and 230$/GJ for the intermediate and low-pressure turbines, as well as 50 $/GJ for the MCFC. The average specific exergoenvironmental impact of electricity is 14 mPt/MJ for turbines and 4 mPt/MJ for the MCFC. In addition, a blend of ethanol and hydrogen appears to be a viable option economically and environmentally.  相似文献   

11.
The present study was set to explore the effect of a novel soluble hybrid nanocatalyst in diesel/biodiesel fuel blends on exergetic performance parameters of a DI diesel engine. Experiments were carried out using two types of diesel/biodiesel blends (i.e., B5 and B20) at four concentrations (0, 30, 60 and 90 ppm) of the hybrid nanocatalyst, i.e., cerium oxide immobilized on amide-functionalized multiwall carbon nanotubes (MWCNT). Furthermore, the exergy analysis was performed at five different loads and two engine speeds. The results obtained revealed that the exergetic parameters were profoundly influenced by engine speed and load. In general, increasing engine speed and load increased the magnitude of the destructed exergy. Moreover, the exergy efficiency increased by increasing engine load, while it decreased by elevating engine speed. However, the applied fuel blends had approximately similar exergetic efficiency and sustainability index. Interestingly, a remarkable reduction in emissions was obtained by incorporating the soluble catalyst nanoparticles to the diesel/biodiesel blends. Thus, it could be concluded that the diesel/biodiesel blends containing amide-functionalized MWCNTs-CeO2 catalyst might substitute the use of pure diesel fuel without any unfavorable change in the exergetic performance parameters of the DI engines.  相似文献   

12.
以燃料重整的固体氧化物燃料电池发电系统为研究对象,通过数值模拟方法对固体氧化物燃料电池发电系统的性能、(火用)损、(火用)效率以及多变量运行参数优化进行了分析。研究结果表明:重整反应中燃料利用系数、电池工作温度、水碳比、电堆电流密度等参数对系统性能影响显著;电堆工作在不同电流密度下都有其对应的最佳工作温度、最佳燃料利用系数工况点;水碳比会改变重整反应产氢量,从而影响电化学反应速率,空气加热器的(火用)损所占份额最大;优化后的系统效率及(火用)效率为0.480 9和0.462 6,效率提升约4%。  相似文献   

13.
The main objective of this study is to parametrically compare the exergetic performance of air and hydrogen gas flow through the curved annular duct. For this purpose, it is assumed that, i) air and hydrogen are considered to be ideal gas, ii) the flow of these gases is steady state and laminar fully developed, ii) these gases have constant physical properties, iii) the channel inner and outer walls are exposed to constant wall boundary condition. Moreover, the following important parameters are taken into consideration: i) aspect ratio (four different values which are 5.50, 3.80, 2.90 and 2.36), ii) environment temperature (ranging from ?30 to 30 with 10 °C intervals), iii) Dean number (varying between 24 and 208), and iv) operating pressure (=1 atm). Considering these parameters, exergy destruction and exergy efficiencies are calculated for each aspect ratio. Consequently, exergetic efficiency rises with the increase of Dean number, inner wall temperature, aspect ratio and the decrease of dead state temperature. Also, it is noticed that the gas specie highly affects the volumetric entropy generation rate, exergy destruction rate and exergy efficiency.  相似文献   

14.
This study deals with the exergetic performance assessment of a combined heat and power (CHP) system installed in Eskisehir city of Turkey. Quantitative exergy balance for each component and the whole CHP system was considered, while exergy consumptions in the system were determined. The performance characteristics of this CHP system were evaluated using exergy analysis method. The exergetic efficiency of the CHP system was accounted for 38.16% with 49 880 kW as electrical products. The exergy consumption occurred in this system amounted to 80 833.67 kW. The ways of improving the exergy efficiency of this system were also analysed. As a result of these, a simple way of increasing the exergy efficiency of the available CHP system was suggested that the valves‐I–III and the MPSC could be replaced by a 3500 kW‐intermediate pressure steam turbine (IPST). If the IPST is installed to the CHP system (called the modified CHP (MCHP) system), the exergetic efficiency of the MCHP system is calculated to be 40.75% with 53 269.53 kW as electrical products. The exergy consumption is found to be 77 444.14 kW in the MCHP system. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

15.
《能源学会志》2020,93(4):1624-1633
Depletion of fossil fuels and stringent emission norms focus attention to discover an evitable source of alternative fuel in order to attribute a significant compensation on conventional fuels. Besides, waste management policies encourage the valorization of different wastes for the production of alternative fuels in order to reduce the challenges of waste management. In this context, pyrolysis has become an emerging trend to convert different wastes into alternate fuel and suitable to be used as a substitute fuel for CI engines. The current investigation provides a sustainable and feasible solution for waste plastic management by widening the gap between global plastic production and plastic waste generation. It investigates the performance and emission of a single cylinder DI four stroke diesel engine using waste plastic oil (WPO) derived from pyrolysis of waste plastics using Zeolite-A as catalyst. Engine load tests have been conducted taking waste plastic oil and subsequently a blend of waste plastic oil by 10%, 20%, and 30% in volume proportions with diesel as fuel. The performance of the test engine in terms of brake thermal efficiency is found marginally higher and brake specific fuel consumption comparatively lowest for 20% WPO-diesel blend than pure diesel. The NOx and HC emission is found lower under low load condition and became higher by increasing the load as compared to diesel. Fuel exergy was significantly increasing after blending of WPO with pure diesel, but exergetic efficiency of the blended fuels followed the reverse trend. However, increase in load of the engine improved the exergetic efficiency. The 20% WPO–diesel blended fuel is found suitable to be used as an alternative fuel for diesel engine.  相似文献   

16.
This work presents the strategies applied to improve the performance of a spark ignition (SI) biogas engine. A diesel engine with a high compression ratio (CR) was converted to SI to be fueled with gaseous fuels. Biogas was used as the main fuel to increase knocking resistance of the blends. Biogas was blended with natural gas, propane, and hydrogen to improve fuel combustion properties. The spark timing (ST) was adjusted for optimum generating efficiencies close to the knocking threshold. The engine was operated on each blend at the maximum output power under stable combustion conditions. The maximum output power was measured at partial throttle limited by engine knocking threshold. The use of biogas in the engine resulted in a power derating of 6.25% compared with the original diesel engine (8 kW @ 1800 rpm). 50% biogas + 50% natural gas was the blend with the highest output power (8.66 kW @1800 rpm) and the highest generating efficiency (29.8%); this blend indeed got better results than the blends enriched with propane and hydrogen. Tests conditions were selected to achieve an average knocking peak pressure between 0.3 and 0.5 bar and COV of IMEP lower than 4% using 200 consecutive cycles as reference. With the blends of biogas, propane, and hydrogen, the output power obtained was just over 8 kW whereas the blends of biogas, natural gas, and hydrogen the output power were close to 8.6 kW. Moreover, a new approach to evaluate the maximum output power in gas engines is proposed, which does not depend on the engine % throttle but on the limit defined by the knocking threshold and cyclic variations.  相似文献   

17.
In this study, a new solar and geothermal based integrated system is developed for multigeneration of electricity, fresh water, hydrogen and cooling. The system also entails a solar integrated ammonia fuel cell subsystem. Furthermore, a reverse osmosis desalination system is used for fresh water production and a proton exchange membrane based hydrogen production system is employed. Moreover, an absorption cooling system is utilized for district cooling via available system waste heat. The system designed is assessed thermodynamically through approaches of energy and exergy analyses. The overall energy efficiency is determined to be 42.3%. Also, the overall exergy efficiency is assessed, and it is found to be 21.3%. The exergy destruction rates in system components are also analysed and the absorption cooling system generator as well as geothermal flash chamber are found to have comparatively higher exergy destruction rates of 2370.2 kW and 643.3 kW, respectively. In addition, the effects of varying system parameters on the system performance are studied through a parametric analyses of the overall system and associated subsystems.  相似文献   

18.
邓玥  仲兆平 《太阳能学报》2022,43(4):468-473
以生物质费托合成制取液体燃料工艺为基础,利用Aspen Plus软件建立其流程的仿真模型,研究各单元操作参数变化对航空煤油产量的影响,并在最优工况下对系统进行能量分析.结果表明:生物质气化单元对航油产量的影响主要来自产物合成气中H2与CO物质的量之比(H2/CO),最优操作条件为T=750℃,P=0.1 MPa,进口水...  相似文献   

19.
In recent years, there has been increasing interest in fuel cell hybrid systems. In this paper, a novel multi-generation combined energy system is proposed. The system consists of a molten carbonate fuel cell (MCFC), a thermally regenerative electro-chemical cycle (TREC), a thermo photovoltaic cell (TPV), an alkaline electrolyzer (AE) and an absorption refrigerator (AR). It has four useful outputs, namely electricity, hydrogen, cooling and heating. The overall system is thermodynamically modeled in a detailed manner while its simulation and modeling are done through the TRNSYS software tool. Power output, cooling-heating and produced hydrogen rates are determined using energetic and exergetic analysis methods. Results are obtained numerically and plotted. The maximum power output from the system is 16.14 kW while maximum energy efficiency and exergy efficiency are 86.8% and 80.4%,. The largest exergy destruction is due to the MCFC.  相似文献   

20.
A tubular solid oxide fuel cell (TSOFC) module fed by methane is modelled and analyzed thermodynamically from the exergy point of view in this paper. The model of TSOFC module consists of mixer, pre-reformer, internal reforming fuel cell group, afterburner and internal pre-heater components. The model of the components forming module is given based on mass, energy and exergy balance equations. The developed thermodynamic model is simulated, and the obtained performance characteristics are compared and validated with the experimental data taken from the literature concerning TSOFC module. For exergetic performance analysis, the effects of operating variables such as current density, pressure, and fuel utilization factor on exergetic performances (module exergy efficiency, module exergetic performance coefficient, module exergy output and total exergy destruction rate, and components' exergy efficiencies, exergy destruction rates) are investigated. From the analysis, it is determined that the biggest exergy loss stems from exhaust gasses. Other important sources of exergy destruction involve fuel cell group and afterburner. Consequently, the developed thermodynamic model is expected to provide not only a convenient tool to determine the module exergetic performances and component irreversibility but also an appropriate basis to design complex hybrid power generation plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号