共查询到20条相似文献,搜索用时 0 毫秒
1.
Combustion characteristics of lean hydrogen/air mixture in a planar micro-channel with a bluff body were investigated experimentally and numerically. Effects of the inlet velocity and equivalence ratio on the blow-off limit, combustion efficiency and exhaust gas temperature were examined. The results show that the blow-off limit is greatly extended as compared with that of the micro-combustor without a bluff body. Moreover, the blow-off limit increases as the equivalence ratio is increased from 0.4 to 0.6. Furthermore, with the increase of inlet velocity, the flame front is prolonged and becomes narrower, and the high temperature segment of outer wall shifts downstream. In addition, the combustion efficiency and exhaust gas temperature increase first and then decrease with the increase of the inlet velocity. Finally, comparatively high combustion efficiency can be maintained over the whole combustible velocity range at a moderate equivalence ratio. 相似文献
2.
《Applied Thermal Engineering》2014,62(1):13-19
We recently developed a micro-combustor with a triangular bluff body, which has a demonstrated 5-time extension in the blow-off limit compared to straight channel. In the present work, the effect of bluff body shape on the blow-off limit was investigated with a detailed H2/air reaction mechanism. The results show that the blow-off limits for the triangular and semicircular bluff bodies are 36 and 43 m/s respectively at the same equivalence ratio of 0.5. Analyses reveal that flame blowout occurs due to the stretching effect in the shear layers for both the triangular and semicircular bluff bodies. Moreover, it is found that the triangular bluff body has a smaller blow-off limit because of the stronger flame stretching as compared with the semicircular case. Calculations indicate that the two cases have negligible differences in heat losses because the reaction zones and high temperature regions are located in the combustor centers. Therefore, the heat losses have a negligible effect on the difference in the blow-off limit of the two micro-combustors. 相似文献
3.
针对某新型适用于燃煤粉工业锅炉的燃烧器,冷态实验研究了其一次风出口处加装的钝体高度改变对燃烧器流场特性的影响。研究结果表明:钝体高度越高并不能使得回流效果越好,适当高度的钝体可以起到增加气流回流的效果。 相似文献
4.
Xunwei Liu Weiwei Shao Yan Liu Yong Tian Zhedian Zhang Yunhan Xiao Gilbert Otto Kraemer 《International Journal of Hydrogen Energy》2021,46(7):5776-5789
As a promising commercial hydrogen-rich gas turbine combustion technology, micro-mixing combustion has been characterized for its excellent performance with low NOx emissions. New flame stabilization mechanism of micro-mixing flames may produce new design criteria. In order to explore that, cold flow characteristics of a novel Micromix model burner based on multiple confluent round jets has been studied experimentally and numerically, which is considered to be the basis for the exploration. A three-dimensional laser Doppler velocimetry system (3D-LDV) was used to measure the flow field of the model burner. It was found that the cold flow characteristics of the burner were different from the twin plane jets, the twin round jets, and the low Reynolds number confluent round jets. Compared to which, the interior of the micro-mixing nozzle is at a very high turbulence intensity level, and the jets merging point of the burner moved upstream; however, the position of the combined point of the burner was close to the confluent round jets. There is no recirculation region between jets near the burner outlet when the nozzle spacing was equal to 3 times the nozzle diameter and the Reynolds number was less than 16,702. The steady computational Reynolds averaged equations (RANS) model results were used to compare with the experimental results. It was found that the RANS results can match the experimental results well, and the three RANS models predict the spatial mixing deficiency less than 1% at the outlet, indicating that the fuel and air were almost completely premixed uniformly. 相似文献
5.
Much work is reported in the literature pertaining to premixed burners using hydrocarbon fuels. However, very little work is available on similar burners using producer gas as a fuel. The present work aims at testing and optimization of a premixed burner with producer gas as a fuel.A burner of 150 kW capacity is used in the experimental investigations. The burner is of concentric tube type fully premixed in which air is supplied through central pipe and gas is supplied through annular passage. Swirl vane is provided to air and gas for thorough mixing. The bluff body is provided for flame stabilization. The premixed burner was tested on open core throat-less down draft gasifier for flame quality. A stable and uniform flame was observed with this premixed burner. Thereafter, an instrumented test set up to evaluate burner performance was installed on an open core gasifier. The burner was experimentally optimized for size and location of bluff body and flammability limits. The burner was optimized by using bluff bodies of 46, 61, 73, 80, 85, 98, 110 and 122 mm diameters. The burner was operated in batch operation of 6–8 h for optimization of various parameters. The experiment reveled that the uniform and high-temperature premixed flame was observed at conventional bluff body having blockage ratio of 0.65. The flammability limits for producer gas fired burner was established in the range of 40–55. 相似文献
6.
Cooling of a bluff body is a topic of interest for many engineers and scientists. Forced convection over the bluff body generates flow separation, which in turn affects the heat transfer characteristics and increases the irreversibilities involved in the system. In the present study, flow over a rectangular solid body with constant heat flux is considered. The governing flow and energy equations are solved in two‐dimensional space numerically using a control volume approach. In order to investigate the effect of the fluid properties on the heating process, three different fluids are taken into account. These are air, ethylene glycol and therminol. To determine the irreversibilities involved in the system, entropy analysis is carried out. It is found that fluid properties have considerable effect on the entropy generation. The entropy generation due to heat transfer well exceeds the entropy generation due to fluid friction. The surface temperature of the solid body highly depends on the cooling fluid employed. Copyright © 1999 John Wiley & Sons, Ltd. 相似文献
7.
8.
Flames are often stabilised on bluff-bodies, yet their surface temperatures are rarely measured. This paper presents temperature measurements for the bluff body surface of the Cambridge/Sandia Stratified Swirl Burner. The flame is stabilized by a bluff body, designed to provide a series of turbulent premixed and stratified methane/air flames with a variable degree of swirl and stratification. Recently, modellers have raised concerns about the role of surface temperature on the resulting gas temperatures and the overall heat loss of the burner. Laser-induced phosphorescence is used to measure surface temperatures, with Mg4GeO6F:Mn as the excitation phosphor, creating a spatially resolved temperature map. Results show that the temperature of the bluff body is in the range 550–900 K for different operating conditions. The temperature distribution is strongly correlated with the degree of swirl and local equivalence ratio, reflecting the temperature distribution obtained in the gas phase. The overall heat loss represents only a small fraction (<0.5%) of the total heat load, yet the local surface temperature may affect the local heat transfer and gas temperatures. 相似文献
9.
《International Journal of Hydrogen Energy》2019,44(47):25985-25999
Major challenges for micro combustors are high heat losses and inappropriate residence time. In this study, it was aimed to eliminate these challenges via placing bluff bodies into the combustion zone and combusting fuel with oxygen enriched air. To this end, micro combustor models with different geometries were constructed and in these models, premixed H2/air combustion was simulated by using ANSYS/Fluent CFD code to investigate effects of bluff body shape, location and thickness, and low level O2 enhancement on performance determining parameters such as rate of conversion of fuel to useable heat, temperature uniformity, pollutant emissions etc. To further analyze effects of micro combustor geometry, a perforated plate was also placed into the combustion zone. Thermal performance of the micro combustor with perforated plate insertion in O2 enriched conditions was found to be highest in terms of increased reaction kinetics and heat transfer characteristics. The trade-offs of respective design are increased NOx emissions and slightly decreased temperature uniformity. 相似文献
10.
Junlei Wang Guifeng Zhao 《Energy Sources, Part A: Recovery, Utilization, and Environmental Effects》2018,40(15):1788-1797
In the present study, an energy harvester with coarse passive turbulence control (PTC) structure is represented to harvest piezoelectric wind energy. Wind tunnel experiments are conducted to investigate the influence of the PTC on the vibrational amplitude of the vortex-induced vibration and piezoelectric power output. Parametric studies of the PTC numbers and sizes are presented to determine the optimized PTC structure to enhance the efficiency of piezoelectric energy harvesting. The experimental results show that the specific parameters of θ= 60° and W = 8 mm are the most efficient PTC group for designing a vortex-induced vibration-based energy harvester with the coarse surface device. 相似文献
11.
《International Journal of Hydrogen Energy》2020,45(1):1096-1106
The spreading of hydrogen jet within the combustion chamber is extremely important for the fuel consumption and enactment of scramjet engines. In this article, a numerical method is used to simulate the influence of wavy wall on distribution of the hydrogen cross flow jet in the downstream of the injectors. To examine the main role of wavy surface on the fuel distribution, a 3-D model is selected with an appropriate grid to detect the primary interaction of the hydrogen fuel jet with the deflected supersonic free stream. Code was developed to solve the Navier-stokes equation with energy and species mass transport equations. This study compares the effect of the amplitude of the wavy upstream wall on the main flow structure and hydrogen fuel distribution within the confined channel. The effects of hydrogen jet pressure on the main stream are also studied. Our findings display that the mixing rate of fuel inside the combustor rises about 35% when high amplitude surface wall is applied in the upstream of jet. 相似文献
12.
The motion of micro-particles with different mass flow rate in the planer turbulent jet flow has been simulated,using LES method to obtain the flow vorticity evolution and Lagrangian method to track micro-particles.The results showed that when the flow rate is small,the particles more likely to present in the vortex periphery,the distribution pattern is similar to the flow pattern.When the flow rate is high,some particles will escape from the motion region to the original static region,so that in the jet region,particles are relatively evenly distributed.When the flow field is full developed,the particles average concentration in the y direction affected by the mass flow rate relative slightly,the normalized mean particles concentrations at different flow rate were similar to Gaussian shape. 相似文献
13.
The concentric bluff-body jet burner is widely used in industrial combustion systems. This kind of burner often generates
a considerably complex recirculation zone behind the bluff body. As a result, the fuel often remains in the recirculation
zone, achieving stability of flame. This study investigates, by means of experiments, the variations of the aerodynamics as
the fluid is injected into a combustion chamber through a double concentric burner with a bluff-body. The observation and
measurement of the aerodynamics in our experiment are conducted under a cold flow. The controlled parameters in our experiment
are: variations in the blockage ratio of the center bluff body, the cone angle of the bluff body, and the velocity ratio (U
s/Up) of the secondary jet and primary jet; the injection of helium bubbles into the primary and secondary jets to observe the
recirculation zone behind the bluff body; using Tufts for observing the characteristics of corner recirculation zone in a
combustion chamber, measuring the average velocity of each point within the aerodynamics by the 5-hole pitot tube; measuring
the distribution of static pressure of the combustion chamber walls with a static pressure tap. 相似文献
14.
Understanding the characteristics of a hydrogen gas jet exiting from a compressed vessel during vessel rupture or venting is crucial for determining safety requirements for distribution and use of hydrogen. Such jets can undergo several flow regimes during venting, from initial supersonic flow, to transonic, to subsonic flow regimes as the pressure in the vessel decreases. A bow shock wave is a characteristic flow structure during the initial stage of the jet development, and this paper focuses on the development of the bow shock wave and the jet structure behind it. The transient behaviour of an impulsively initiated jet is investigated using unsteady, compressible flow simulations. Both the cases of a hydrogen jet exiting into quiescent hydrogen and of a hydrogen jet exiting into air are presented. The gases are considered to be ideal, and the computational domain is axisymmetric. The jet structure, including the shock wave and flow separation due to an adverse pressure gradient at the nozzle is investigated with a focus on the differences between the single- and multi-component flow scenarios. 相似文献
15.
The flow field features and heat transfer enhancement are investigated on a gas turbine blade by applying the jet impingement cooling method. The distribution of the flow field and the Nusselt number (Nu) was determined on the targeted surface in the cooling channel. The injection holes of different shapes, such as circular, square, and rectangular were considered. The Reynolds numbers (Re) of the airflow in the range of 2000–5000 and aspect ratios of 0.5–2 were particularly focused. The flow vortices and recirculation in the cooling channel and their influence on the heat transfer enhancement were analyzed in detail under different airflow and geometric conditions. Decreasing the ratio of the distance between jet-to-target plate to the diameter of the jet orifice (H/d) increased the heat transfer rate and produced high-intensity vortices and recirculation zones. It was noticed that the formation and generation of vortices and recirculation have important effects on the convective heat transfer rate at the impingement surface. Local Nusselt number, formation of complex vortices, and airflow recirculation in the cooling channel decreased with the increase in the distance between the jet hole and the targeted surface. It was found that with the increase in the Reynolds number of the jet, heat transfer between cold airflow and the targeted surface increased. Moreover, it was observed that the cooling performance of the round and square jet holes was better than the rectangular holes. 相似文献
16.
为了研究扑翼的获能机理,以NACA0012为基准翼型提出了一种添加射流控制的扑翼获能装置,并基于动网格技术进行了数值计算,研究了当雷诺数Re=13 800 时射流位置、射流方式等关键参数对扑翼获能效率的影响规律。结果表明,与原型扑翼相比,添加射流控制能够有效提升扑翼的获能效率。另外,采用射流速度遵循正弦规律的新型射流控制方式不仅能增强扑翼运行结构的稳定性,而且能在一定程度上提升扑翼的获能效率。 相似文献
17.
Hiroshi Kawanabe Kiyoshi Kawasaki Toshio Seno Chihiro Kondo Masahiro Shioji 《亚洲传热研究》2007,36(5):303-313
The flow and mixing process of unsteady jets are fundamentally analyzed by large eddy simulations. The effects of nozzle velocity and turbulence intensity on the turbulent eddy structure and mixing process between the nozzle fluid and ambient fluid were investigated. The results show that a toroidal‐shaped vortex, which emerges around the jet tip, primarily accelerates the entraining flow. Also, increasing the turbulence intensity in the nozzle encourages mixing in the jet without changing the jet‐contour. Furthermore, when the rise‐up time of the initial nozzle velocity is elongated, turbulent mixing is suppressed. © 2007 Wiley Periodicals, Inc. Heat Trans Asian Res, 36(5): 303–313, 2007; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/htj.20158 相似文献
18.
《International Journal of Hydrogen Energy》2022,47(88):37204-37217
This paper was intended to delineate numerical research for hydrogen catalytic combustion over a circular cylinder. The wire/rod-type catalytic reactor is a simple geometry reactor with an economical design with less pressure loss. For the single rod in the reaction channel, the flow characteristic and the difference of conversion efficiency between non-gas-phase reaction and gas-phase reaction have been delineated in the present study. The flow field and the chemical reactions were numerically modeled using 2D Large Eddy Simulation combined with the gas-phase and surface reaction mechanisms. The results show that the current numerical simulation has been validated to precisely predict the vortex shedding and its frequency in the cold flows. Despite the variation trends being dominated by the upstream flow, the vortex shedding phenomena were affected by the flue gas generated from the rod surface. It can be seen from the linear relationship between the vortex shedding frequency of reacting flow and Reynolds Number. It is noted that the vortex shedding vanished if the gas-phase reaction was ignited in the reaction channel. In addition, the geometric modified conversion efficiency was proposed to delineate an indicator that could be potential for the optimization of rod-type catalytic reactor. In summary, the fundamental study of a rod in a 2D flow channel can provide information for optimizing the catalytic design or the rod array arrangement in the reactor. Moreover, the rod can also be a partial catalytic flame holder to ignite and stabilize the gas-phase reaction. The obtained results could be the potential for practical applications of rod-type catalytic combustion, catalytic gas turbine, hydrogen generation, partially catalytic reaction flame holder, and other catalytic reactions that can be appreciated. 相似文献
19.
Large eddy simulation of reacting flow in a hydrogen jet into supersonic cross-flow combustor with an inlet compression ramp 总被引:1,自引:0,他引:1
Majie Zhao Taotao Zhou Taohong Ye Minming Zhu Hongda Zhang 《International Journal of Hydrogen Energy》2017,42(26):16782-16792
Large eddy simulation (LES) has been performed to investigate transverse hydrogen jet mixing and combustion process in a scramjet combustor model with a compression ramp at inlet to generate shock train. Partially Stirred Reactor (PaSR) sub-grid combustion model with a skeleton of 19 reactions and 9 species hydrogen/air reaction mechanism was used. The numerical solver is implemented in an Open Source Field Operation and Manipulation (OpenFOAM) and validated against experimental data in terms of mean wall pressure. Effects of a shock train induced by the inlet compression ramp on the flame stabilization process are then studied. It can be observed that the interaction of the oblique shock and the jet mixing layer enhance the combustion and stabilize the flame. Symmetrical recirculation zone, which contributes to the flame anchoring of the supersonic transverse jet combustion, is observed in the near wall region of 10 < x/D < 20. The hydrogen fuel is transported from the center of jet plume to the near wall region on both sides of the central plane (z/D = 0) and thus intense combustion near the wall is observed due to the enhanced mixing and shock compression heating. Besides, the jet penetration in the reacting field is different from that in non-reacting case with the influence of the interaction between the reflected oblique shock and the jet shear layer on the windward side. 相似文献
20.
The large eddy simulation (LES) is applied to an unconfined swirling flow of an air surrounding a bluff-body having a central jet of air, and the complicated flowfield that involves the recirculation and vortex breakdown is investigated. The Smagorinsky model is used as the sub-grid scale model. The results of the present numerical simulation are compared with the experimental data of the mean and stochastic root mean square (RMS) variations of two velocity components. Although the inflow conditions are specified in a simple manner, the obtained numerical results are in reasonable agreement with the experiments, except for a part of RMS variation values near downstream of the bluff body. The present numerical calculations can successfully reproduce the two characteristics of the flow, i.e., an upstream recirculation zone established just downstream of the burner plane and the additional recirculation zone established at the more downstream location. 相似文献