首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cutter runout is a common phenomenon affecting the cutting performances in milling operations. To date, most of the milling process models considering cutter runout were established based on the circular tooth path approximation, which brought errors into the runout estimation. In this paper, a new approach is presented for modelling the milling process geometry with cutter runout based on the true tooth trajectory of cutter in milling. The mathematical relationship between the trajectories generated by successive cutter teeth with runout is analysed. The milling process geometrical parameters, including the instantaneous undeformed chip thickness, the entry and exit angles of a cutting tooth, and the ideal peripheral machined workpiece surface roughness, are modelled according to the true tooth trajectories. Numerical method is used to solve the derived transcendental equations. A simulation study of the effects of cutter runout on milling process geometry is conducted using the models. It was found that the change of cutter radius for a tooth relative to its preceding one is the most important factor in evaluating the effects of cutter runout.  相似文献   

2.
Calculations of chip thickness and cutting forces in flexible end milling   总被引:3,自引:0,他引:3  
In the end milling process of a flexible workpiece, it is well recognized that the precise determination of the instantaneous uncut chip thickness (IUCT) is essential for the cutting force calculation. This paper will present a general method that incorporates simultaneously the cutter/workpiece deflections and the immersion angle variation into the calculation of the IUCT and cutting forces. Contributions are twofold. Firstly, considering the regeneration model, a new scheme for the IUCT calculation is determined based on the relative positions between two adjacent tooth path centers. Secondly, a general approach is established to perform numerical validations. On one hand, the engagement/separation of the cutter from the workpiece is instantaneously identified. On the other hand, the calculation of the IUCT is iteratively performed. To demonstrate the validity of the method, several examples are used to show the convergence history of the cutting force and the IUCT during the flexible end milling process. Both theoretical analyses and numerical results show that the regeneration mechanism is short lived and will disappear after several tooth periods in flexible static end milling process .  相似文献   

3.
The prediction model of instantaneous uncut chip thickness is critical for micro-end milling process, which can directly affect the cutting forces, surface accuracy, and process stability of the micro-end milling process. This paper presents an instantaneous uncut chip thickness model systematically based on the actual trochoidal trajectory of tooth and the tool run-out in micro-end milling process. The variable entry and exit angles of tool, which are affected by the tool run-out, are concerned in the model. The related instantaneous uncut chip thickness is evaluated by considering the theoretical instantaneous uncut chip thickness and the minimum uncut chip thickness, which is formulated by two types of material removal mechanisms, in the elastic-plastic deformation region and the complete chip formation region, respectively. In comparison with the instantaneous chip thickness obtained from the conventional model, the feasibility of the proposed model can be proved by the related simulation results with variable process parameters including feed per tooth, radial depth of cut, and tool run-out. In addition, the predicted and measured cutting forces are compared with validate the accuracy of the proposed instantaneous uncut chip thickness model for the micro-end milling process.  相似文献   

4.
Micro milling, as a versatile micro machining process, is kinematically similar to conventional milling; however, it is significantly different from conventional milling with respect to chip formation mechanisms and uncut chip thickness modelling, due to the comparable size of the edge radius to the chip thickness, and the small per-tooth feeding. Considering tool runout and dynamic displacement between the tool and the workpiece, the contour of the workpiece left by previous tool paths is typically in a wavy form, and the wavy surface provides a feedback mechanism to cutting force generation because the instantaneous uncut chip thickness changes with both the vibration during the current tool path and the surface left by the previous tool paths. In this study, a more accurate uncut chip thickness model was established including the precise trochoidal trajectory of the cutting edge, tool runout and dynamic modulation caused by the machine tool system vibration. The dynamic regenerative effect is taken into account by considering the influence of all the previous cutting trajectories using numerical iteration; thus, the multiple time delays (MTD) are considered in this model. It is found that transient separation of the tool-workpiece occurring at a low feed per tooth, caused by MTD and the existing cutting force models, is no longer applicable when transient tool-workpiece separation occurs. Based on the proposed uncut chip thickness model, an improved cutting force model of micro milling is developed by full consideration of the ploughing effect and elastic recovery of the workpiece material. The proposed cutting force model is verified by micro end milling experiments, and the results show that the proposed model is capable of producing more accurate cutting force prediction than other existing models, particularly at small feed per tooth.  相似文献   

5.
A theoretical cutting force model for helical end milling with cutter runout is developed using a predictive machining theory, which predicts cutting forces from the input data of workpiece material properties, tool geometry and cutting conditions. In the model, a helical end milling cutter is discretized into a number of slices along the cutter axis to account for the helix angle effect. The cutting action for a tooth segment in the first slice is modelled as oblique cutting with end cutting edge effect and tool nose radius effect, whereas the cutting actions of other slices are modelled as oblique cutting without end cutting edge effect and tool nose radius effect. The influence of cutter runout on chip load is considered based on the true tooth trajectories. The total cutting force is the sum of the forces at all the cutting slices of the cutter. The model is verified with experimental milling tests.  相似文献   

6.
The cutting force prediction is essential to optimize the process parameters of machining such as feed rate optimization, etc. Due to the significant influences of the runout effect on cutting force variation in milling process, it is necessary to incorporate the cutter runout parameters into the prediction model of cutting forces. However, the determination of cutter runout parameters is still a challenge task until now. In this paper, cutting process geometry models, such as uncut chip thickness and pitch angle, are established based on the true trajectory of the cutting edge considering the cutter runout effect. A new algorithm is then presented to compute the cutter runout parameters for flat-end mill utilizing the sampled data of cutting forces and derived process geometry parameters. Further, three-axis and five-axis milling experiments were conducted on a machining centre, and resulting cutting forces were sampled by a three-component dynamometer. After computing the corresponding cutter runout parameters, cutter forces are simulated embracing the cutter runout parameters obtained from the proposed algorithm. The predicted cutting forces show good agreements with the sampled data both in magnitude and shape, which validates the feasibility and effectivity of the proposed new algorithm of determining cutter runout parameters and the new way to accurately predict cutting forces. The proposed method for computing the cutter runout parameters provides the significant references for the cutting force prediction in the cutting process.  相似文献   

7.
A simple improved method is suggested for determining constant cutting force coefficients, irrespective of the cutting condition and cutter rotation angle. This can be achieved through the combination of experimentally deternimed cutting forces with those from simulation, performed by a mechanistic cutting force model and a geometric uncut chip thickness model. Additionally, this study presents an approach that estimates runout-related parameters, and the runout offset and its location angle, using only one measurement of cutting force. This method of estimating 3D end milling force coefficients was experimentally verified for a wide range of cutting conditions, and gave significantly better predictions of cutting forces than any other methods. The estimated value of the runout offset also agreed well with the measured value.  相似文献   

8.
Based on the machining tool path and the true trajectory equation of the cutting edge relative to the workpiece, the engagement region between the cutter and workpiece is analyzed and a new model is developed for the numerical simulation of the machined surface topography in a multiaxis ball-end milling process. The influence of machining parameters such as the feed per tooth, the radial depth of cut, the angle orientation tool, the cutter runout, and the tool deflection upon the topography are taken into account in the model. Based on the cutter workpiece engagement, the cutting force model is established. The tool deflections are extracted and used in the surface topography model for simulation. The predicted force profiles were compared to the measured ones. A reasonable agreement between the experimental and the predicted results was found.  相似文献   

9.
在对螺旋棒铣刀铣削力建模中考虑了切削厚度变化对铣削力影响的指数关系、铣刀偏心对实际切削厚度、切入与切出角、铣削力波动的影响,并提出采用实测各刀齿铣削最大值比求解铣刀偏心和识别铣削力系数的方法。在考虑铣刀偏心因素的情况下仿真与实测的铣削力达到非常好的一致性。提出的铣削力仿真方法充分反映了铣削力的实际状态,提高了铣削力仿真精度。  相似文献   

10.
In free-form surface machining, the prediction of five-axis ball-end milling forces is quite a challenge due to difficulties of determining the underformed chip thickness and engaged cutting edge. Part and tool deflections under high cutting forces may result in poor part quality. To solve these concerns, this paper presents process modeling and optimization method for five-axis milling based on tool motion analysis. The method selected for geometric stock modeling is the dexel approach, and the extracted cutter workpiece engagements are used as input to a force prediction. The cutter entry?Cexit angles and depth of cuts are found and used to calculate the instantaneous cutting forces. The process is optimized by varying the feed as the tool?Cworkpiece engagements vary along the toolpath, and the unified model provides a powerful tool for analyzing five-axis milling. The new feedrate profiles are shown to considerably reduce the machining time while avoiding process faults.  相似文献   

11.
切削力预测是制定与优化加工工艺的重要环节。针对曲线端铣加工过程,提出一种基于斜角切削的切削力建模方法。将刀具沿轴向微分,以曲线微分几何计算微元刃上的工作基面。在微元刃的工作法平面参考系中,应用最小能量原理,构建微元刃中力矢量、速度矢量、流屑角、法向摩擦角、法向剪切角及剪应力等切削参数之间的约束。以单齿直线铣削试验对切削参数进行标定,其中法向摩擦角、法向剪切角及剪应力等可表示为瞬时未变形切屑厚度的函数。选取高强度钢PCrNi3MoVA试件,分别进行圆弧和Bézier曲线端铣加工试验。试验结果表明,曲线端铣时切削力的变化与瞬时进给方向和曲线曲率相关。切削力预测值的幅值大小和变化趋势与试验值一致,验证了该切削力建模方法的有效性。  相似文献   

12.
马万太  樊树海  楼佩煌 《中国机械工程》2005,16(24):2171-2175,2202
研究了径向跳动对刀齿的实际切削半径、切屑形状以及切屑厚度的影响机理。研究了各刀齿沿刀刃螺旋线的切削微元实际切削半径的数学表示和变化规律,实际切削半径的变化改变了刀齿的切削路径,使各刀齿上切屑形状分布不均匀。建立了三维切削下切屑厚度的数学表示,提出了递延累加切屑厚度计算算法。实验验证表明,计算的切削力与测量结果能很好地吻合,瞬时切削力、切削力峰值、平均切削力的预测精度达到85%以上。  相似文献   

13.
瞬时刚性切削力的建模是铣削加工物理仿真的基础,然而,球头铣刀的刀齿形状复杂,加工过程中姿态多变,瞬时刚性铣削力的建模难度较大。在考虑刀具姿态调整的情况下,通过齐次坐标变换建立了刀齿的运动轨迹,提出了一种识别刀具和工件瞬时接触区的改进Z-MAP算法,通过计算当前刀齿的参考线与工件的边界面或刀齿扫掠面的交点求出瞬时未变形切屑厚度,并采用非线性回归的方法辨识了切削力系数,在此基础上使用微元积分法建立了瞬时切削力的计算模型。为了验证仿真模型的可靠性,分别进行了垂直加工和倾斜加工试验,试验和仿真结果具有较高的一致性,表明该建模仿真方法是有效的,可以为实际加工中参数的选择和优化提供理论依据。  相似文献   

14.
王伟 《工具技术》2017,51(4):69-73
针对高速铣削加工的切削载荷控制问题,提出一种适用于平头立铣刀2.5维铣削加工,考虑切削载荷的余量规划策略——恒力余量。通过加工试验证实了该策略的有效性,并讨论了走刀方向、刀触点轨迹线的连续性、刀具浸入包角和刀具半径对恒力余量规划结果的影响。与传统的几何等距余量规划方法相比,恒力余量策略能够显著改善切削载荷的波动情况,避免切削载荷的突变,为控制铣削载荷提供有效途径。  相似文献   

15.
针对不同走刀路径下的复杂曲面加工过程进行球头铣刀铣削Cr12MoV加工复杂曲面研究,分析不同走刀路径下铣削力和刀具磨损的变化趋势。试验结果表明:通过对比分析直线铣削和曲面铣削过程中的最大未变形切屑厚度,可以得出单周期内曲面铣削的力大于直线铣削过程的力,铣削相同铣削层时环形走刀测得的切削力普遍大于往复走刀测得的切削力;以最小刀具磨损为优化目标,运用方差分析法分析得出不同走刀路径的影响刀具磨损的主次因素,同时利用残差分析方法建立球头铣刀加工复杂曲面刀具磨损预测模型,并通过试验进行验证。  相似文献   

16.
A solid trimming method is proposed to determine cutter–workpiece engagement (CWE) maps, which are essential to investigate cutting forces, machining errors, and chatter stability in multi-axis milling. In this method, CWE maps, defined as the instantaneous contact area from the cutting flutes’ entrance to exit, are extracted by trimming the removal volume (RV) with the feasible contact surfaces. Compared to the traditional Boolean operation approach, the trimming method extracts CWE maps without the requirement of abundant surface/surface intersection operations. Moreover, instead of using the union solid model associated with all cutter locations, RV is calculated for the first time by introducing the existing concept of analytical tool swept volume, which is previously limited to tool path planning. Verification tests show that the proposed method has the advantages of high accuracy and efficiency.  相似文献   

17.
Cutting force prediction for ball nose milling of inclined surface   总被引:2,自引:2,他引:0  
Ball nose milling of complex surfaces is common in the die/mould and aerospace industries. A significant influential factor in complex surface machining by ball nose milling for part accuracy and tool life is the cutting force. There has been little research on cutting force model for ball nose milling on inclined planes. Using such a model ,and by considering the inclination of the tangential plane at the point of contact of the ball nose model, it is possible to predict the cutting force at the particular cutting contact point of the ball nose cutter on a sculptured surface. Hence, this paper presents a cutting force model for ball nose milling on inclined planes for given cutting conditions assuming a fresh or sharp cutter. The development of the cutting force model involves the determination of two associated coefficients: cutting and edge coefficients for a given tool and workpiece combination. A method is proposed for the determination of the coefficients using the inclined plane milling data. The geometry for chip thickness is considered based on inclined surface machining with overlapping of previous pass. The average and maximum cutting forces are considered. These two forces have been observed to be more dominating force-based parameters or features with high correlation with tool wear. The developed cutting force model is verified for various cutting conditions.  相似文献   

18.
在曲面模具拼接区域球头铣刀铣削过程中,刀具载荷变化大,瞬态铣削力有突变现象,影响模具拼接区域的加工精度和表面质量。为了预测拼接区域球头铣刀的瞬态铣削力,首先,建立考虑冲击振动的球头铣刀三维次摆线轨迹方程,得到瞬时未变形切屑厚度模型;然后,基于铣削微元的思想,建立凸曲面双硬度拼接模具球头铣刀的瞬态铣削力模型,该模型能够综合考虑拼接区冲击振动、硬度变化、刀具工件切触角度变化对瞬态铣削力的影响;最后,进行凸曲面拼接区域球头铣刀铣削加工实验。实验结果表明,预报的瞬态铣削力和实验测量结果在幅值上和变化趋势上具有一致性,在平稳切削时最大铣削力预测误差值基本在15%以内,验证了该模型能有效地预报凸曲面模具拼接区域球头铣刀的瞬态铣削力。  相似文献   

19.
Influence of size effect on burr formation in micro cutting   总被引:3,自引:1,他引:2  
Burr is an important character of the surface quality for machined parts, and it is even more severe in micro cutting. Due to the uncut chip thickness and the cutting edge radius at the same range in micro cutting process, the tool extrudes the workpiece with negative rake angle. The workpiece flows along the direction of minimum resistance, and Poisson burr is formed. Based on the deformation analysis and experiment observations of micro cutting process, the factor for Poisson burr formation is analyzed. It is demonstrated that the ratio of the uncut chip thickness to the cutting edge radius plays an important role on the height of Poisson burr. Increasing the uncut chip thickness or decreasing the cutting edge radius makes the height of exit burr reduce. A new model of micro exit burr is established in this paper. Due to the size effect of specific cutting energy, the exit burr height increases. The minimum exit burr height will be obtained when the ratio of uncut the chip thickness to the cutting edge radius reaches 1. It is found that the curled radius of the exit burr plays an important role on the burr height.  相似文献   

20.
A system for geometric and physical simulation of the ball-end milling process using solid modeling is presented in this paper. A commercially available geometric engine is used to represent the cutting edge, cutter and updated part. The ball-end mill cutter modeled in this study is an insert type ball-end mill and the cutting edge is generated by intersecting an inclined plane with the cutter ball nose. The contact face between cutter and updated part is determined from the solid model of the updated part and cutter solid model. To determine cutting edge engagement for each tool rotational step, the intersections between the cutting edge with boundary of the contact face are determined. The engaged portion of the cutting edge for each tool rotational step is divided into small differential oblique cutting edge segments. Friction, shear angles and shear stresses are identified from orthogonal cutting data base available in the open literature. For each tool rotational position, the cutting force components are calculated by summing up the differential cutting forces. The instantaneous dynamic chip thickness is computed by summing up the rigid chip thickness, the tool deflection and the undulations left from the previous tooth, and then the dynamic cutting forces are obtained. For calculating the ploughing forces, Wu's model is extended to the ball-end milling process [21]. The total forces, including the cutting and ploughing forces, are applied to the structural vibratory model of the system and the dynamic deflections at the tool tip are predicted. The developed system is verified experimentally for various up-hill and down-hill angles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号