共查询到20条相似文献,搜索用时 15 毫秒
1.
Salvador M. Aceves Francisco Espinosa-Loza Elias Ledesma-Orozco Timothy O. Ross Andrew H. Weisberg Tobias C. Brunner Oliver Kircher 《International Journal of Hydrogen Energy》2010
LLNL is developing cryogenic capable pressure vessels with thermal endurance 5–10 times greater than conventional liquid hydrogen (LH2) tanks that can eliminate evaporative losses in routine usage of (L)H2 automobiles. In a joint effort BMW is working on a proof of concept for a first automotive cryo-compressed hydrogen storage system that can fulfill automotive requirements on system performance, life cycle, safety and cost. Cryogenic pressure vessels can be fueled with ambient temperature compressed gaseous hydrogen (CGH2), LH2 or cryogenic hydrogen at elevated supercritical pressure (cryo-compressed hydrogen, CcH2). When filled with LH2 or CcH2, these vessels contain 2–3 times more fuel than conventional ambient temperature compressed H2 vessels. LLNL has demonstrated fueling with LH2 onboard two vehicles. The generation 2 vessel, installed onboard an H2-powered Toyota Prius and fueled with LH2 demonstrated the longest unrefueled driving distance and the longest cryogenic H2 hold time without evaporative losses. A third generation vessel will be installed, reducing weight and volume by minimizing insulation thickness while still providing acceptable thermal endurance. Based on its long experience with cryogenic hydrogen storage, BMW has developed its cryo-compressed hydrogen storage concept, which is now undergoing a thorough system and component validation to prove compliance with automotive requirements before it can be demonstrated in a BMW test vehicle. 相似文献
2.
A dynamic model is used to characterize cryogenic H2 storage in an insulated pressure vessel that can flexibly hold liquid H2 and compressed H2 at 350 bar. A double-flow refueling device is needed to ensure that the tank can be consistently refueled to its theoretical capacity regardless of the initial conditions. Liquid H2 charged into the tank is stored as supercritical fluid if the initial tank temperature is >120 K and as a subcooled liquid if it is <100 K. An in-tank heater is needed to maintain the tank pressure above the minimum delivery pressure. Even if H2 is stored as a supercritical fluid, liquid H2 will form as H2 is withdrawn and will further transform to a two-phase mixture and ultimately to a superheated gas. The recoverable fraction of the total stored inventory depends on the minimum H2 delivery pressure and the power rating of the heater. The dormancy of cryogenic H2 is a function of the maximum allowable pressure and the pressure of stored H2; the evaporative losses cannot deplete H2 from the tank beyond 64% of the theoretical storage capacity. 相似文献
3.
R.K. Ahluwalia T.Q. Hua J.-K. Peng S. Lasher K. McKenney J. Sinha M. Gardiner 《International Journal of Hydrogen Energy》2010
On-board and off-board performance and cost of cryo-compressed hydrogen storage are assessed and compared to the targets for automotive applications. The on-board performance of the system and high-volume manufacturing cost were determined for liquid hydrogen refueling with a single-flow nozzle and a pump that delivers liquid H2 to the insulated cryogenic tank capable of being pressurized to 272 atm. The off-board performance and cost of delivering liquid hydrogen were determined for two scenarios in which hydrogen is produced by central steam methane reforming (SMR) or by central electrolysis. The main conclusions are that the cryo-compressed storage system has the potential of meeting the ultimate target for system gravimetric capacity, mid-term target for system volumetric capacity, and the target for hydrogen loss during dormancy under certain conditions of minimum daily driving. However, the high-volume manufacturing cost and the fuel cost for the SMR hydrogen production scenario are, respectively, 2–4 and 1.6–2.4 times the current targets, and the well-to-tank efficiency is well short of the 60% target specified for off-board regenerable materials. 相似文献
4.
A dynamic model has been developed to characterize dormancy and hydrogen loss from an insulated cryogenic pressure vessel that is filled with 99.79%-para liquid hydrogen to reach supercritical conditions. The model considers the thermodynamics and kinetics of the endothermic para-to-ortho conversion that occurs when the stored H2 heats after the vessel is exposed to ambient conditions for an extended time. The thermal, thermodynamic, and kinetic aspects of the model were validated against experimental data obtained on a 151-L tank designed for service at nominal pressures up to 350 bar. Depending on the initial pressure, temperature, amount of H2, and the rate of heat gain from the ambient, the endothermic para-to-ortho conversion can extend the loss-free dormancy time by up to 85%. Under conditions in which the endothermic conversion does not materially affect dormancy, it can still significantly reduce the H2 loss rate and it can even introduce a secondary dormancy period. 相似文献
5.
We have modeled sudden hydrogen expansion from a cryogenic pressure vessel. This model considers real gas equations of state, single and two-phase flow, and the specific “vessel within vessel” geometry of cryogenic vessels. The model can solve sudden hydrogen expansion for initial pressures up to 1210 bar and for initial temperatures ranging from 27 to 400 K. For practical reasons, our study focuses on hydrogen release from 345 bar, with temperatures between 62 K and 300 K. The pressure vessel internal volume is 151 L. The results indicate that cryogenic pressure vessels may offer a safety advantage with respect to compressed hydrogen vessels because i) the vacuum jacket protects the pressure vessel from environmental damage, ii) hydrogen, when released, discharges first into an intermediate chamber before reaching the outside environment, and iii) working temperature is typically much lower and thus the hydrogen has less energy. Results indicate that key expansion parameters such as pressure, rate of energy release, and thrust are all considerably lower for a cryogenic vessel within vessel geometry as compared to ambient temperature compressed gas vessels. Future work will focus on taking advantage of these favorable conditions to attempt fail-safe cryogenic vessel designs that do not harm people or property even after catastrophic failure of the inner pressure vessel. 相似文献
6.
At the DIMNP (Department of Mechanical, Nuclear and Production Engineering) laboratories of University of Pisa (Italy) a pilot plant called HPBT (Hydrogen Pipe Break Test) was built in cooperation with the Italian Fire Brigade Department. The apparatus consists of a 12 m3 tank connected with a 50 m long pipe. At the far end of the pipeline a couple of flanges have been used to house a disc with a hole of the defined diameter. The plant has been used to carry out experiments of hydrogen release. During the experimental activity, data have been acquired about the gas concentration and the length of release as function of internal pressure and release hole diameter. The information obtained by the experimental activity will be the basis for the development of a new specific normative framework arranged to prevent fire and applied to hydrogen. This study is focused on hydrogen concentration as function of wind velocity and direction. Experimental data have been compared with theoretical and computer models (such as CFD simulations). 相似文献
7.
Safe,long range,inexpensive and rapidly refuelable hydrogen vehicles with cryogenic pressure vessels
Salvador M. Aceves Guillaume Petitpas Francisco Espinosa-Loza Manyalibo J. Matthews Elias Ledesma-Orozco 《International Journal of Hydrogen Energy》2013
Hydrogen storage is often cited as the greatest obstacle to achieving a hydrogen economy free of environmental pollution and dependence on foreign oil. A compact high-pressure cryogenic storage system has promising features to the storage challenge associated with hydrogen-powered vehicles. Cryogenic pressure vessels consist of an inner vessel designed for high pressure (350 bar) insulated with reflective sheets of metalized plastic and enclosed within an outer metallic vacuum jacket. When filled with pressurized liquid hydrogen, cryogenic pressure vessels become the most compact form of hydrogen storage available. A recent prototype is the only automotive hydrogen vessel meeting both Department of Energy's 2017 weight and volume targets. When installed onboard an experimental vehicle, a cryogenic pressure vessel demonstrated the longest driving distance with a single H2 tank (1050 km). In a subsequent experiment, the vessel demonstrated unprecedented thermal endurance: 8 days parking with no evaporative losses, extending to a month if the vehicle is driven as little as 8 km per day. Calculations indicate that cryogenic vessels offer compelling safety advantages and the lowest total ownership cost of hydrogen storage technologies. Long-term (∼10 years) vacuum stability (necessary for high performance thermal insulation) is the key outstanding technical challenge. Testing continues to establish technical feasibility and safety. 相似文献
8.
Salvador M. Aceves Gene D. Berry Joel Martinez-Frias Francisco Espinosa-Loza 《International Journal of Hydrogen Energy》2006,31(15):2274-2283
This paper describes an alternative technology for storing hydrogen fuel onboard vehicles. Insulated pressure vessels are cryogenic capable vessels that can accept cryogenic liquid hydrogen, cryogenic compressed gas or compressed hydrogen gas at ambient temperature. Insulated pressure vessels offer advantages over conventional storage approaches. Insulated pressure vessels are more compact and require less carbon fiber than compressed hydrogen vessels. They have lower evaporative losses than liquid hydrogen tanks, and are lighter than metal hydrides.
The paper outlines the advantages of insulated pressure vessels and describes the experimental and analytical work conducted to verify that insulated pressure vessels can be safely used for vehicular hydrogen storage. Insulated pressure vessels have successfully completed a series of certification tests. A series of tests have been selected as a starting point toward developing a certification procedure. An insulated pressure vessel has been installed in a hydrogen fueled truck and tested over a six month period. 相似文献
9.
H.G. Hussein S. Brennan V. Shentsov D. Makarov V. Molkov 《International Journal of Hydrogen Energy》2018,43(37):17954-17968
This work focuses on the overpressures arising from the rapid ignited release of hydrogen in an enclosure, specifically the peak in overpressure that may result in the initial period of the release, dependent on the level of ventilation. Two volumes are considered: a 1 m3 laboratory scale enclosure for which experimental data exists, and a real scale residential garage. Various vent configurations are considered for each scenario for leak rates typical of those from a fuel cell (laboratory scale enclosure) and from onboard hydrogen storage tanks through a thermally activated pressure relief device (TPRD) in the garage-like enclosure. A validation study has been performed for the laboratory scale enclosure and the modelling approach which gives optimum results has been identified. The influence of heat transfer on the pressure peak has been highlighted, particularly, the importance of radiation in predicting the pressure peak. The validated modelling approach has been applied to a range of experiments and garage scenarios. Both the laboratory and real scale simulations demonstrate the complex relationship between vent size and release rate and indicate the significant overpressures that can result through pressure peaking following an ignited release in an enclosure. The magnitude of the pressure peak as a result of an ignited release has been found to be two orders of magnitude greater than that for the corresponding unignited release. The work indicates that TPRDs currently available for hydrogen-powered vehicles may result in a dangerous situation for the specific scenario considered which should be accounted for in regulations, codes and standards. The application of this work extends beyond TPRDs and is relevant where there is a rapid, ignited release of hydrogen in an enclosure with ventilation. 相似文献
10.
A buoyant round vertical hydrogen jet is investigated using Large Eddy Simulations at low Mach number (M = 0.3). The influence of the transient concentration fields on the extent of the gas envelope with concentrations within the flammability limits is analyzed and their structure are characterized. The transient flammable region has a complex structure that extends up to 30% beyond the time-averaged flammable volume, with high concentration pockets that persist sufficiently long for potential ignition. Safety envelopes devised on the basis of simplified time-averaged simulations would need to include a correction factor that accounts for transient incursions of high flammability concentrations. 相似文献
11.
Although nowadays hydrogen is distributed mainly by trailers, in the future distribution by means of pipelines will be more suitable if larger amounts of hydrogen are produced on industrial scale. Therefore from the safety point of view it is essential to compare hydrogen pipelines to natural gas pipelines, whose use is well established today. Within the paper we compare safety implications in accidental situations. In the analysis we do not consider technological aspects such as compressors or seals. 相似文献
12.
Alkyl chain effect (ethyl, propyl and butyl) on the dehydrogenation mechanism of H12-N-alkylcarbazoles has been investigated theoretically under various different conditions. Gibbs energies of activation of about 107.88 kcal mol?1 have been determined as the least energy barriers among the studied dehydrogenation processes for dehydrogenation of H12-N-ethylcarbazole to H4-N-ethylcarbazole in decalin and 57.44 kcal mol?1 for dehydrogenation of H12-N-propylcarbazole to H8-N-propylcarbazole under the experimental conditions. Kinetic and thermodynamic studies have shown that the route of H4-N-alkylcarbazoles formation passes through a higher barrier than that of the H8-N-alkylcarbazoles. Natural bond orbital (NBO) analysis showed a decrease in electron transfer between πC–C and σ*C–H at the center of the reaction. The electron density of the C–H bonds of the transition states was evaluated as evidence of hydrogen release via quantum theory of atoms in the molecules (QTAIM) procedure. Based on this analysis, a change in the nature of C–H bonds was confirmed from covalence to electrostatic interactions during the reaction. 相似文献
13.
Cryogenic compressed hydrogen tank may open new possibilities for onboard storage due to its high energy density and acceptable thermal endurance. As promising hydrogen storage for commercial use, its hazards need comprehensive investigation. This paper studies the consequences of accidental hydrogen releases from cryo-compressed storage and evaluates the cold effects, thermal effects, and overpressure and missile effects. Two typical storage conditions for a fuel cell car are considered, including driving condition and quasi-venting condition after a long-term of parking. Results show that flash fire and vapor cloud explosion can be considered as the leading consequences. Without ignition, catastrophic rupture may be more dangerous than leakages but with ignition the results may vary for different release diameters. For leakages, quasi-venting condition may be more dangerous than driving condition. However, for catastrophic rupture, the results may be not uniformed but depend on whether and when the hydrogen is ignited. Moreover, the influences of wind velocity and atmospheric pressure are also investigated. 相似文献
14.
The dynamic blow-down process of a high pressure gaseous hydrogen (GH2) reservoir in case of a small leak is a complex process involving a chain of distinct flow regimes and gas states. This paper presents models to predict the hydrogen concentration and velocity field in the vicinity of a postulated small leak. An isentropic expansion model with a real gas equation of state for normal hydrogen is used to calculate the time dependent gas state in the reservoir and at the leak. The subsequent gas expansion to 0.1 MPa is predicted with a zero-dimensional model. The gas conditions after expansion serve as input to a newly developed integral model for a round free turbulent H2-jet into ambient air. Predictions are made for the blow-down of hydrogen reservoirs with 10, 30 and 100 MPa initial pressure. A normalized hydrogen concentration field in the free jet is presented which allows for a given leak scenario the prediction of the axial and radial range of flammable H2-air mixtures. 相似文献
15.
Hydrogen is a promising alternative for current energy carriers. Compressed gas cylinders are the storage systems closest to the commercialization of hydrogen in vehicles. The safety factors in current standards are seen as restrictive for further growth and competitiveness of hydrogen infrastructure. A probabilistic approach can be employed in order to give a rational background to the safety factors. However, an acceptable probability of failure needs to be estimated before calculating the safety factors. The discussion of determining the acceptable probability must include the mass of hydrogen since this determines the consequences of an accident. It is concluded that an annual probability of failure of 10−7 would be appropriate for small pressure vessels containing a few kilograms of hydrogen. Larger pressure vessels of a few hundred kilograms or more should be designed for an annual probability 10−8. 相似文献
16.
The most common gas phase hydrogen sorption measurement techniques used for the characterisation of potential hydrogen storage materials are the volumetric, or manometric, and gravimetric methods and temperature-programmed desorption (TPD), also known as thermal desorption spectroscopy (TDS). In this article previous work relating to the accuracy of these measurements, including some comparative studies, is reviewed, together with some relevant standards and related guidelines. The potential sources of error in hydrogen sorption measurements performed volumetrically and gravimetrically are also discussed, together with some of those related to TPD. The issues covered include sample degassing procedures, hydrogen compressibility, gas purity and differences in helium and hydrogen leak rates. 相似文献
17.
18.
In order to simulate an accidental hydrogen release from the high pressure pipe system of a hydrogen facility a systematic study on the nature of transient hydrogen jets into air and their combustion behavior was performed at the KIT hydrogen test site HYKA. Horizontal unsteady hydrogen jets from a reservoir of 0.37 dm3 with initial pressures of up to 200 bar have been investigated. The hydrogen jets released via round nozzles 3, 4, and 10 mm were ignited with different ignition times and positions. The experiments provide new experimental data on pressure loads and heat releases resulting from the deflagration of hydrogen–air clouds formed by unsteady turbulent hydrogen jets released into a free environment. It is shown that the maximum pressure loads occur for ignition in a narrow position and time window. The possible hazard potential arising from an ignited free transient hydrogen jet is described. 相似文献
19.
Diffraction-based methods offer unique advantages for elucidating the pathways by which materials absorb and desorb hydrogen, especially when a phase change or the formation of new compounds is involved. In this case, the hydriding reaction may be followed via the changing crystallography of the phases involved in response to a change in temperature or hydrogen pressure. By using a fast diffractometer, the reaction kinetics may also be correlated to environmental conditions and the degree of completion of the reaction. In this paper we consider and model quantitatively the essential elements of a successful in-situ diffraction experiment with neutrons or X-rays under hydrogen pressures up to several kilobars: a gas manifold to accurately measure hydrogen uptake; a pressure cell designed for maximum detected intensity; means to exclude scattering arising in the cell as much as possible; methodology to correct for attenuation and subtract background intensity from the cell and environment. 相似文献
20.
Elisabeth Klindtworth Irina Delidovich Regina Palkovits 《International Journal of Hydrogen Energy》2018,43(45):20772-20782
H2 as an environmentally benign energy carrier could answer the world's continuously increasing demand for sustainable energy sources, especially in portable fuel cell applications. Thereby, H2 storage is the key issue. In the present work, we developed a liquid H2 storage material based on BH4? and ionic liquids for tailored H2 release under ambient conditions using various catalysts as releasing agents. Thereto, we synthesized four BH4? ionic liquids via ionic exchange. The most promising BH4? based ionic liquids are 1-Ethyl-3-methylimidazolium BH4? and 1-Propyl-3-methylimidazolium BH4?, containing up to 3 wt% releasable hydrogen and the latter being liquid at standard temperature. The hydrolysis of 1-Ethyl-3-methylimidazolium BH4? with various supported metal catalysts (Pt/C, Pt/CNT, Ru/CNT, Pd/CNT, 5 wt% metal) and H2O (8, 16, 24 eq.) was assayed. The highest yield was obtained with 24 eq. H2O and Pt/CNT. The catalysts were characterized via X-ray photoelectron spectroscopy and transmission electron microscopy/energy-dispersive X-ray spectroscopy. To calculate the catalyst activities, the dispersion and size distribution of the metal particles were determined. Recycling of Pt/CNT showed a reasonable stability of the catalyst activity over four recycling runs. In order to avoid spontaneous crystallization of 1-Ethyl-3-methylimidazolium BH4? as a storage material, 1-Propyl-3-methylimidazolium BH4? was introduced. The hydrolysis yield was significantly increased by the use of acidic catalysts, such as HCl and Amberlyst 36. Further enhancement of the H2 yield was achieved by adopting a semi batch process, continuously adding 1 M HCl to 1-Propyl-3-methylimidazolium BH4?. The H2 release correlated approximately linearly with the acid addition rate, excluding liquid-liquid mass transfer limitations during the hydrolysis. Based on 11B NMR analysis, a reaction mechanism of the hydrolysis of BH4? ionic liquid with HCl as catalyst is proposed. 相似文献