首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Porous graphene (P-rGO) was synthesized from graphene oxide (GO) via a one-pot calcination method with CO2 as an activation agent at 800 °C. Due to the special porous structure, the surface area of P-rGO can be increased to ~759 m2/g. The P-rGO was then used as a support to incorporate with chemical exfoliated molybdenum disulfide (MoS2) for the fabrication of MoS2/P-rGO composite. Compared to bulk MoS2, the exfoliated MoS2 is in the 1T phase with a metallic property and smaller charge transfer resistance, thus has a better activity in electrochemical hydrogen evolution reaction (HER). The HER activity of 1T MoS2 could be further increased after the combination with P-rGO. The overpotential of 1T MoS2/P-rGO was only ~130 mV vs. RHE, and the corresponding Tafel slope was ~75 mV Dec?1. The special porous structure and good electric conductivity of P-rGO decrease the charge transfer resistance of the composite without sheltering too many active sites of MoS2, thus leading to the enhanced HER activity. As an efficient noble metal free HER catalyst, the 1T MoS2/P-rGO has great potential for large-scale hydrogen production.  相似文献   

2.
Solar driven semiconductor photocatalytic water splitting to produce hydrogen is an extremely charming process by storing photon energy in chemical bonds. In the present study, composite semiconductor TiO2/CdS was structured into uniform and porous double-shelled hollow sphere with cocatalyst platinum selectively loaded onto the internal wall. The SEM, TEM, STEM, XRD, BET and EDS elemental distribution etc. were employed to evidence the formation of the targeted photocatalyst. It was demonstrated that the material has a high efficiency of visible-light-driven hydrogen evolution (296 μmol·h−1/10 mg) with an apparent quantum efficiency (QE) of 14.5% at wavelength of 420 nm. Comparative experiment analysis and time-resolved infrared absorption study suggested that the high photocatalytic activity of the catalyst is attributed to the vectorial electron transfer (CdS → TiO2 → Pt) and the spatial separation of reduction and oxidation active surfaces achieved by the special morphology.  相似文献   

3.
The development of excellent photocatalysts for hydrogen evolution is of great significance to solving the global energy crisis. In this work, a novel 3D hierarchical CdS/NiAl-LDH photocatalyst was fabricated by a facile electrostatic assembly strategy, which was composed of 1D CdS nanorods and 3D flower-like NiAl-LDH microspheres. Under the visible irradiation, the CNA-20 hierarchical photocatalyst presents the optimum hydrogen evolution rate achieved to 3.24 mmol g?1 h?1, which is improved 6.23-fold in comparison with the pure CdS. Through the analysis of energy band structures and first-principles calculation, the type-Ⅱ charge transfer mechanism was proposed. Driven by the built-in electric field, as well as the effect of intimate interface contact of CdS and NiAl-LDH, the photogenerated charge could be achieved rapidly separate and migrate, which effectively promotes the H2 evolution. This well-designed synergistic 1D/3D interface interaction and provides an economic approach to rationally developing metal-free photocatalysts for hydrogen production.  相似文献   

4.
Highly dispersed CuO was introduced into TiO2 nanotube (TNT) made by hydrothermal method via adsorption-calcination process or wet impregnation process, to fabricate CuO incorporated TNT photocatalysts (CuO-TNT) for hydrogen production. It was found that CuO-TNT possessed excellent hydrogen generation activity, which was constantly vigorous throughout 5 h reaction. Depending on the preparation method, hydrogen evolution rates over CuO-TNT were founded in the range of 64.2-71.6 mmol h−1 g−1catalyst, which was much higher than the benchmark P25 based photocatalysts, and even superior to some Pt/Ni incorporated TNT. This high photocatalytic activity of CuO-TNT was mainly attributed to the unique 1-D tubular structure, large BET surface area and high dispersion of copper component. Compared to wet impregnation, adsorption-calcination process was superior to produce active photocatalyst, since it was prone to produce photocatalyst with more highly dispersed CuO.  相似文献   

5.
In this work, the porous carbon polyhedra were firstly obtained by carbonizing the zeolite imidazole framework (ZIF-8). Then the carbon polyhedra and precursors of MoS2 were successfully combined by a hydrothermal reaction, forming the C-MoS2 composites with different carbon contents. The well-tuned C-MoS2 sample possesses a core-shell morphology, in which the carbon substrate is well decorated by vertically aligned MoS2 ultrathin nanosheets. The resulting composites can be used as electrocatalysts of hydrogen evolution reaction (HER), displaying significantly superior activities to pure MoS2 and carbon. It's found that the carbon content largely affects the architectures and HER behaviors of catalysts. In particular, the optimized catalyst yields the best catalytic activity with the lowest onset potential (35 mV), smallest Tafel slope (53 mv dec?1), lowest overpotential (200 mV at 10 mA cm?2), as well as extraordinary long-term stability in H2SO4. The enhanced HER activity can be attributed to the unique core-shell structure, where abundant active edge sites of MoS2 are exposed and the underlying carbon substrate effectively improves the conductivity of the electrode.  相似文献   

6.
Defect-rich MoS2 nanosheets are vertically grown on graphene-protected Ni foam by a facial hydrothermal route. The vertically aligned MoS2 nanosheets with defects such as cracks, amorphousness and oxygen-incorporated disorders endow these as-synthesized catalysts with rich active sites, high conductivity and good stability. The graphene deposited on Ni foam increases its stability in acid. The optimized catalyst exhibits high activity for hydrogen evolution with a quite low overpotential of 140 mV at 10 mA cm?2, a small Tafel slope of 42 mV decade?1, and a large exchange current density of 63 μA/cm2, as well as excellent stability. This performance is superior to most of its analogue MoS2 and many transition metal sulfides. This work will broaden the vision to improve the activity of self-supported electrocatalysts by carefully designing the anchored catalysts.  相似文献   

7.
Cobalt sulfide quantum dots (CoSx QDs) modified TiO2 nanoparticles are prepared with a precipitation-deposition method using TiO2, cobalt acetate and sodium sulfide as the precursors. CoSx QD acts as an effective cocatalyst, which accelerates the transfer of the photo-generated electrons and serves as the active site for the reaction between electrons and H2O, thus enhancing the separation of the e/h+ pairs and the photocatalytic H2 production activity of TiO2. The amount of CoSx exhibits an optimum value at about 5% (mole ratio to TiO2), at which the H2 production rate achieves 838 μmol h−1 g−1 using ethanol as the sacrificial reagent. This exceeds that of the pure TiO2 by more than 35 times.  相似文献   

8.
AgIn5S8 and AgIn5S8/TiO2 heterojunction nanocomposite with efficient photoactivity for H2 production were prepared by a low-temperature water bath deposition process. The resultant AgIn5S8 shows an absorption edge at ∼720 nm, corresponding to a bandgap of ∼1.72 eV, and its visible-light-driven photoactivity (100.1 μmol h−1) for H2 evolution is 9 times higher than that (11 μmol h−1) of the product derived from a hydrothermal process, while the obtained AgIn5S8/TiO2 heterojunction nanocomposites prepared by using commercially available TiO2 nanoparticles (P25) as TiO2 source exhibit remarkably improved photoactivity as compared to the pristine AgIn5S8, and the AgIn5S8/TiO2 nanocomposite with molar ratio of 1:10 shows a maximum photocatalytic H2 evolution rate (371.1 μmol h−1), which is 4.3 times higher than that (85 μmol h−1) of the corresponding AgIn5S8/TiO2 nanocomposite derived from a hydrothermal method. This significant enhancement in the photocatativity of the present AgIn5S8/TiO2 nanocomposite can be ascribed to the better dispersion of the AgIn5S8 formed on TiO2 nanoparticle surfaces and the more intimate AgIn5S8/TiO2 heterojunction structure during the water bath deposition process under continuously stirring as compared to the corresponding nanocomposite derived from a hydrothermal method. This configuration of nanocomposite results in fast diffusion of the photogenerated carriers in AgIn5S8 towards TiO2, which is beneficial for separating spatially the photogenerated carriers and improving the photoactivity. The present findings shed light on the tuning strategy of spectral responsive region and photoactivity of photocatalysts for efficient light-to-energy conversion.  相似文献   

9.
TiO2/MoS2 composites are synthesized by means of a novel and environmentally friendly electrodeposition technique. MoS2 is prepared via the hydrothermal process from Na2MoO4 and CH4N2S with the use of different surfactants such as Pluronic, SDBS, CTAB, and PEG-1000. TiO2 in the form of nanotubes grows on Ti foil via anodization. The physicochemical properties of the obtained materials are studied by means of XRD, Raman spectroscopy, and SEM. MoS2 forms a layered structure, while TiO2 features well-defined and highly crystallized nanotubes. The deposition of MoS2 on the surface of TiO2 via the electrochemical method is conducted in a three-electrode cell with the use of a water-based suspension of MoS2 at a pH close to neutral. The morphology and photoelectrochemical properties of the MoS2-modified TiO2 photoanodes are studied. The stability of TiO2/MoS2 composites is successfully investigated by repeating photocurrent-time characteristics in the period of 8 months. A shift in flat-band potential accompanied by increased photocurrent and hydrogen production indicate a type II heterostructure.  相似文献   

10.
A highly stable photoelectrocatalytic electrode made of CdS-modified short, robust, and highly-ordered TiO2 nanotube array for efficient visible-light hydrogen generation was prepared via sonoelectrochemical anodization and sonoelectrochemical deposition method. The short nanotube electrode possesses excellent charge separation and transfer properties, while the sonoelectrochemical deposition method improves the combination between CdS and TiO2 nanotubes, as well as the dispersion of CdS nanoparticles. Different characterization techniques were used to study the nanocomposite electrode. UV-vis absorption and photoelectrochemical measurements proved that the CdS coating extends the visible spectrum absorption and the solar spectrum-induced photocurrent response. Comparing the photoactivity of the CdS/TiO2 electrode obtained using sonoelectrochemical deposition method with others that synthesized using plain electrochemical deposition, the current density of the former electrode is ∼1.2 times higher that of the latter when biased at 0.5 V. A ∼7-fold enhancement in photocurrent response is obtained using the sonoelectrochemically fabricated CdS/TiO2 electrode in comparison with the pure TiO2 nanotube electrode. Under AM1.5 illumination the composite photoelectrode generate hydrogen at a rate of 30.3 μmol h−1 cm−2, nearly 13 times higher than that of pure titania nanotube electrode. Recycle experiments demonstrated the excellent stability and reliability of CdS/TiO2 electrode prepared by sonoelectrochemical deposition. This composite electrode, with its strong mechanical stability and excellent combination of CdS and TiO2 nanotubes, offers promising applications in visible-light-driven renewable energy generation.  相似文献   

11.
This study presents a novel approach for synthesizing C–ZnO/CdS graded nanorods derived from metal–organic frameworks (MOFs) that can be applied as a catalyst for photocatalytic hydrogen evolution from pure water. Porous C-doped ZnO was prepared by a self-template method using imidazole-like metal–organic backbone (ZIF-L) as a precursor through a two-step calcination method. CdS nanoparticles were deposited on ZIF-L surface by chemical deposition. The two-step calcination method introduced elemental C, and the unique architecture of ZIF-L played an essential role in forming the hierarchical structure of the porous ZnO nanorods. Compared with other ZnO/CdS catalysts, the C-doped ZnO/CdS graded nanorods exhibited remarkable photocatalytic activity for hydrogen production. The highest hydrogen production rate of 20.25 mmol g?1 h?1 with an apparent quantum yield (AQY) of 24.7% at 365 nm obtained over C–ZnO/CdS with Pt as co-catalyst, which was 24.4 and 65.3 times higher than that over CdS (0.83 mmol g?1 h?1) and ZnO (0.31 mmol g?1 h?1), respectively. This outcome was attributed to (i) the formation of Z-scheme heterojunction that significantly promoted the separation and migration of photogenerated electron–hole pairs; (ii) C doping that reduced the bandgap of ZnO and broadened its spectral response range; and (iii) the ordered arrangement of porous nanorods that effectively reduced the recombination rate of the electron–hole pairs.  相似文献   

12.
NiS2 nanoparticles as noble metal-free co-catalysts were deposited onto the CdLa2S4 nanocrystals through a hydrothermal process. The loading of NiS2 co-catalyst resulted in remarkable enhancement for H2 production over the CdLa2S4 photocatalyst under visible light irradiation. The optimal hybrid photocatalyst with 2 wt% NiS2 loading exhibited a H2 production rate of 2.5 mmol h−1 g−1, which was more than 3 times higher than that of the pristine CdLa2S4 photocatalyst. The promoted photocatalytic H2 production by NiS2-loading is attributed to the enhanced separation of photogenerated electrons and holes as well as the activation effect of NiS2 for H2 evolution.  相似文献   

13.
An ultrathin MoS2 was grown on CdS nanorod by a solid state method using sulfur powder as sulfur source for photocatalytic H2 production. The characterization result reveals that the ultrathin MoS2 nanosheets loaded on CdS has a good contact state. The photoelectrochemical result shows that MoS2 not only are beneficial for charge separation, but also works as active sites, thus enhancing photocatalytic activity. Compared with pure CdS, the photocatalytic activity of MoS2 loaded CdS was significantly improved. The hydrogen evolution rate on m(MoS2): m(CdS) = 1: 50 (m is mass) reaches 542 μmol/h, which is 6 times of that on pure CdS (92 μmol/h). This work provides a new design for photocatalysts with high photocatalytic activities and provides a deeper understanding of the effect of MoS2 on enhancing photocatalytic activity.  相似文献   

14.
A novel three-dimensional (3D) hybrid consisting of molybdenum disulfide nanosheets (MoS2) uniformly bound at N-doped macro-mesoporous carbon (N-MMC) surface was fabricated by the solvothermal method. The resulting MoS2/N-MMC hybrid possesses few-layer MoS2 nanosheets structure with abundant edges of MoS2 exposed as active sites for hydrogen evolution reaction (HER), in sharp contrast to large aggregated MoS2 nanoflowers without N-MMC. The high electric conductivity of N-MMC and an abundance of exposed edges on the MoS2 nanosheets make the hybrid excellent electrocatalytic performance with a low onset potential of 98 mV, a small Tafel slope of 52 mV/decade, and a current density of 10 mA cm?2 at the overpotential of 150 mV. Moreover, the MoS2/N-MMC hybrid exhibits outstanding electrochemical stability and structural integrity owing to the strong bonding between MoS2 nanosheets and N-MMC.  相似文献   

15.
1-D mesoporous TiO2 nanotube (TNT) with large BET surface area was successfully synthesized by a hydrothermal-calcination process, and employed for simultaneous photocatalytic H2 production and Cu2+ removal from water. Cu2+, across a wide concentration range of 8-800 ppm, was removed rapidly from water under irradiation. The removed Cu2+ then combined with TNT to produce efficient Cu incorporated TNT (Cu-TNT) photocatalyst for H2 production. Average H2 generation rate recorded across a 4 h reaction was between 15.7 and 40.2 mmol h−1 g−1catalyst, depending on initial Cu2+/Ti ratio in solution, which was optimized at 10 atom%. In addition, reduction process of Cu2+ was also a critical factor in governing H2 evolution. In comparison with P25, its large surface area and 1-D tubular structure endowed TNT with higher photocatalytic activity in both Cu2+ removal and H2 production.  相似文献   

16.
In this study, layered perovskite HSr2Nb3O10 ultrathin nanosheets (HSNO-ns) was successfully exfoliated within 2 h by a facile microwave-assisted method. Then, HSNO-ns/CdS heterojunction was fabricated through a facile hydrothermal route for deposition of CdS nanoparticles on HSNO-ns. The photocatalytic performances of composites were systematically investigated and discussed by varying the CdS content. The results illustrated that the photocatalytic hydrogen production rate of HSNO-ns were significantly increased by coupled CdS nanoparticles on the HSNO-ns. The optimized HSNO-ns/CdS3 composites without noble metal showed highest photocatalytic activity, which was about 8.38 times and 330 times higher than that of pristine CdS and HSNO-ns, respectively, under the visible light irradiation (≥420 nm) using triethanolamine as sacrificial agent. The enhanced photocatalytic H2 production activity was predominantly attributed to the strong optical absorption capacity, high specific surface area and improved charge carrier separation efficiency. Our present work provides a new pathway into the design of two-dimension nanosheets-based photocatalysts and promotes their practical application in various environmental and energy issues.  相似文献   

17.
Designing an efficient heterojunction interface is an effective way to promote the electrons' transfer and improve the photocatalytic H2 evolution performance. In this work, a novel hollow hybrid system of Co@NC/CdS has been fabricated and constructed. CdS nanospheres are anchored on the hollow-structured cobalt incorporated nitrogen-doped carbon (Co@NC) through a one-pot in-situ chemical deposition approach, forming an intimate interface and establishing an excellent channel to improve the electrons transfer and charge carriers separation between CdS and Co@NC cocatalyst, which immensely promotes the photocatalytic activity. The rate of photocatalytic H2 evolution over hollow structured Co@NC/CdS heterojunction can be achieved 8.2 mmol g?1 h?1, which is about 45 times of pristine CdS nanospheres. The photocatalytic H2 evolution mechanism has been investigated by the techniques of photoluminescence (PL) spectra, photocurrent-time (i-t) curves, electrochemical impedance spectroscopy (EIS) etc. This work aims to provide a new way in developing of high-performance advanced 3D heterojunction for photocatalytic hydrogen evolution.  相似文献   

18.
CuCr2O4/TiO2 heterojunction has been successfully synthesized via a facile citric acid (CA)-assisted sol-gel method. Techniques of X-ray diffraction (XRD), transmission electron microscopy (TEM), and UV-vis diffuse reflectance spectrum (UV-vis DRS) have been employed to characterize the as-synthesized nanocomposites. Furthermore, photocatalytic activities of the as-obtained nanocomposites have been evaluated based on the H2 evolution from oxalic acid solution under simulated sunlight irradiation. Factors such as CuCr2O4 to TiO2 molar ratio in the composites, calcination temperature, photocatalyst mass concentration, and initial oxalic acid concentration affecting the photocatalytic hydrogen producing have been studied in detail. The results showed that the nanocomposite of CuCr2O4/TiO2 is more efficient than their single part of CuCr2O4 or TiO2 in producing hydrogen. The optimized composition of the nanocomposites has been found to be CuCr2O4·0.7TiO2. And the optimized calcination temperature and photocatalyst mass concentration are 500 °C and 0.8 g l−1, respectively. The influence of initial oxalic acid concentration is consistent with the Langmuir model.  相似文献   

19.
The novel in situ Z-scheme heterostructure materials Y-doped Bi4NbO8Cl@Nb2O5 (Bi4-xYxNbO8Cl, x = 0, 1, 1.33, 2, 2.67, 3) have been synthesized successfully via a solid-state method. The as-prepared samples were characterized by XRD, Raman spectrum, SEM, EDS, element mapping, HRTEM, XPS and UV–vis spectrum to explore the structures, morphologies and optical properties. Photocatalytic activities were evaluated for hydrogen generation using the Pt as the co-catalysts. HRTEM results indicated the Pt particles were deposited on the surface of the Bi4NbO8Cl. Photocatalytic activities were evaluated by hydrogen generation. While photocatalytic results showed that BiY3NbO8Cl composites exhibited the best performance of hydrogen production under the full-range irradiation (λ > 300 nm) while the Y-doped Bi4NbO8Cl@Nb2O5 with Y:Bi molar ratio 1:1 obtained the highest efficiency with ultraviolet light eliminated. The H2 production was 1.35 mmol and 0.9 mmol in 8 h, respectively. Furthermore, a direct Z-scheme mechanism with enhanced hydrogen evolution competent for accelerating the separation of photogenerated carries has been presented and proved by electrochemical impedance spectroscopy (EIS). Finally, considering the conclusions of the electron spin-resonance spectroscopy (EPR), ·OH radicals served as an active species played an important role in the hydrogen production. Mechanisms about the action of the ·OH radicals were also proposed.  相似文献   

20.
An efficient visible-light active photocatalyst of multilayer-Eosin Y-sensitized TiO2 is prepared through linkage of Fe3+ between not only TiO2 and Eosin Y but also different Eosin Y molecules to form three-dimensional polymeric dye structure. The multilayer-dye-sensitized photocatalyst is found to have high light harvesting efficiency and photocatalytic activity for hydrogen evolution under visible light irradiation (λ > 420 nm). On the optimum conditions (1:1 initial molar ratio of Eosin Y to Fe(NO3)3, initial 10 × 10−3 M Eosin Y, and 1.0 wt% Pt deposited by in situ photoreduction), its maximal apparent quantum yield for hydrogen evolution is 19.1% from aqueous triethanolamine solution (TEOA aq). The present study highlights linking between dye molecules via metal ions as a general way to develop efficient visible-light photocatalyst.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号