首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The Hydrogen Research Institute (HRI) has developed a stand-alone renewable energy (RE) system based on energy storage in the form of hydrogen. When the input devices (wind generator and photovoltaic array) produce more energy than is required by the load, the excess energy is converted by an electrolyzer to electrolytic hydrogen, which is then stored after stages of compression, purification and filtration. Conversely, during a time of input energy deficit, this process is reversed and the hydrogen produced earlier is reconverted to electrical energy through a fuel cell. The oxygen which has been produced by the electrolyzer during the hydrogen production is also stored at high pressure, after having gone through a purification and drying process. This stored oxygen can be re-utilized as oxidant in place of compressed air in the fuel cell. The modifications of the electrolyzer for oxygen storage and re-utilization of it as oxidant for the fuel cell are presented. Furthermore, the HRI has designed and developed the control system with power conditioning devices for effective energy management and automatic operation of the RE system. The experimental results show that a reliable autonomous RE system can be realized for such seasonal energy sources, using stored hydrogen as the long-term energy buffer, and that utilizing the electrolyzer oxygen by-product as oxidant in the fuel cell increases system performance significantly.  相似文献   

2.
With the increasing proportion of renewable energy (mainly wind power and photovoltaic) connected to the grid, the fluctuation of renewable energy power brings great challenges to the safe and reliable operation of power grid. As a clean, low-carbon secondary energy, hydrogen energy is applied in renewable energy (mainly wind power and photovoltaic) grid-connected power smoothing, which opens up a new way of coupling hydrogen storage energy with renewable energy. This paper focuses on the optimization of capacity of electrolyzers and fuel cells and the analysis of system economy in the process of power output smoothing of wind/photovoltaic coupled hydrogen energy grid-connected system. Based on the complementary characteristics of particle swarm optimization (PSO) and chemical reaction optimization algorithm (CROA), a particle swarm optimization-chemical reaction optimization algorithm (PSO-CROA) are proposed. Aiming at maximizing system profit, the capacity of electrolyzers and fuel cells are constrained by wind power fluctuation, and considering environmental benefits, government subsidies and time value of funds, the objective function and its constraints are established. According to the simulation analysis, by comparing the calculated results with PSO and CROA, it shows that PSO-CROA effectively evaluates the economy of the system, and optimizes the optimal capacity of the electrolyzers and fuel cells. The conclusion of this paper is of great significance for the application of hydrogen energy storage in the evaluation of power smoothness and economy of renewable energy grid connection and the calculation of economic allocation of hydrogen energy storage capacity.  相似文献   

3.
In this paper, we propose an integrated system aiming for hydrogen production with by-products using geothermal power as a renewable energy source. In analyzing the system, an extensive thermodynamic model of the proposed system is developed and presented accordingly. In addition, the energetic and exergetic efficiencies and exergy destruction rates for the whole system and its parts are defined. Due to the significance of some parameters, the impacts of varying working conditions are also investigated. The results of the energetic and exergetic analyses of the integrated system show that the energy and exergy efficiencies are 39.46% and 44.27%, respectively. Furthermore, the system performance increases with the increasing geothermal source temperature and reference temperature while it decreases with the increasing pinch point temperature and turbine inlet pressure.  相似文献   

4.
A dynamic model for a stand-alone renewable energy system with hydrogen storage (RESHS) is developed. In this system, surplus energy available from a photovoltaic array and a wind turbine generator is stored in the form of hydrogen, produced via an electrolyzer. When the energy production from the wind turbine and the photovoltaic array is not enough to meet the load demand, the stored hydrogen can then be converted by a fuel cell to produce electricity. In this system, batteries are used as energy buffers or for short time storage. To study the behavior of such a system, a complete model is developed by integrating individual sub-models of the fuel cell, the electrolyzer, the power conditioning units, the hydrogen storage system, and the batteries (used as an energy buffer). The sub-models are valid for transient and steady state analysis as a function of voltage, current, and temperature. A comparison between experimental measurements and simulation results is given. The model is useful for building effective algorithms for the management, control and optimization of stand-alone RESHSs.  相似文献   

5.
In this study, both concentrated solar power and wind energy systems are integrated with electrolyser, fuel cell and absorption cooling subsystems to supply power, cooling, heating and hydrogen to residential applications in an environmentally benign and efficient manner. These subsystems are integrated in a unique way to manage the excess power through water electrolysis to produce and store hydrogen. Integrated systems are thermodynamically analyzed, and their performance is assessed comparatively. Solar radiation intensity, inlet temperature and wind velocity are taken into account, and hence their effects on the system performance are investigated. The results of this study show that the present system appears to be efficient, environmentally friendly and hence sustainable.  相似文献   

6.
A solid oxide cell-based energy system is proposed for a solar-powered stand-alone building. The system is comprised of a 5 kWel solid oxide fuel cell (SOFC), a 9.5 kWel solid oxide electrolysis cell (SOEC), and the required balance of plant. The SOFC supplies: 1- building demand in the absence of sufficient solar power, 2- heat for SOEC in endothermic and standby modes. Thermal integration of SOFC and SOEC is implemented through a network of heat exchangers, combined with set of control algorithms. Two control strategies were implemented to actuate the SOFC in response to endothermic heat demands of SOEC by manipulating: 1- electric power, 2- fuel utilization. The results of dynamic simulation of system for two scenarios (sunny day and cloudy day) showed successful compliance of temperature constraints with both methods. Manipulation of fuel utilization, however, resulted in better system performance in terms of efficiency and H2 balance.  相似文献   

7.
In the present study, an integrated system is proposed and thermodynamically analyzed to reduce greenhouse gas (GHG) emissions while improving overall system performance. The integrated system is comprised of a supercritical carbon dioxide (CO2) Rankine cycle cascaded by an Organic (R600) Rankine cycle, an electrolyzer, and a heat recovery system. It is designed to utilize a medium-to-high temperature geothermal energy source for power and hydrogen production, and thermal energy utilization for space heating. Therefore, parametric studies for the supercritical CO2 cycle, the Organic (R600) cycle, and the overall system are conducted. In addition, the effect of various operational conditions, such as geothermal source, ambient and cooling water temperatures on the performance of each cycle and the integrated system, is illustrated. It is found that increasing geothermal source temperature results in slight increases of the exergetic efficiency of the overall system. The energy efficiencies of the CO2 and Organic Rankine cycles do not considerably vary with source temperature changes. The decay of the cooling water temperature leads to a decrease in the overall system exergetic efficiency. The system configuration, which is introduced, is capable of producing about 180 kg/h for the geothermal source of mass flow rate of 40 kg/s and a temperature of 473 K.  相似文献   

8.
In this paper, a hydrogen generator and a wind farm were taken as the research objects. The H2 generator consisted characteristics of laboratory-tested electrolyzers were determined as a function of the hydrogen mass flow. Determining the auxiliary power index of the device allowed the efficiency of the hydrogen generator to be determined as a function of hydrogen mass flow as well as the hydrogen generator relative power. The dynamic characteristics of a generator were also presented. The possibility of a given wind farm cooperating with hydrogen generators that are characterized by different powers and various efficiencies was simulated. Algorithm enables determination of hydrogen generators efficiency for devices with various performance in nominal operation point is shown. It has been shown that proper selection of the power of the hydrogen generator in relation to the power of the wind farm can ensure a high efficiency for the device.  相似文献   

9.
A solar-wind hybrid trigeneration system is proposed and analyzed thermodynamically through energy and exergy approaches in this paper. Hydrogen, electricity and heat are the useful products generated by the hybrid system. The system consists of a solar heliostat field, a wind turbine and a thermochemical copper-chlorine (Cu-Cl) cycle for hydrogen production linked with a hydrogen compression system. A solar heliostat field is employed as a source of thermal energy while the wind turbine is used to generate electricity. Electric power harvested by the wind turbine is supplied to the electrolyzer and compressors and provides an additional excess of electricity. Hydrogen produced by the thermochemical copper-chlorine (Cu-Cl) cycle is compressed in a hydrogen compression system for storage purposes. Both Aspen Plus 9.0 and EES are employed as software tools for the system modeling and simulation. The system is designed to achieve high hydrogen production rate of 455.1 kg/h. The overall energy and exergy efficiencies of the hybrid system are 49% and 48.2%, respectively. Some additional results about the system performance are obtained, presented and discussed in the paper.  相似文献   

10.
This study presents an analysis and assessment study of an integrated system which consists of cryogenic air separation unit, polymer electrolyte membrane electrolyzer and reactor to produce ammonia for a selected case study application in Istanbul, Turkey. A thermodynamic analysis of the proposed system illustrates that electricity consumption of PEM electrolyzer is 3410 kW while 585.4 kW heat is released from ammonia reactor. The maximum energy and exergy efficiencies of the ammonia production system which are observed at daily average irradiance of 200 W/m2 are found as 26.08% and 30.17%, respectively. The parametric works are utilized to find out the impacts of inlet air conditions and solar radiation intensity on system performance. An increase in the solar radiation intensity results in a decrease of the efficiencies due to higher potential of solar influx. Moreover, the mass flow rate of inlet air has a substantial effect on ammonia production concerning the variation of generated nitrogen. The system has a capacity of 0.22 kg/s ammonia production which is synthesized by 0.04 kg/s H2 from PEM electrolyzer and 0.18 kg/s N2 from a cryogenic air separation unit. The highest exergy destruction rate belongs to PEM electrolyzer as 736.2 kW while the lowest destruction rate is calculated as 3.4 kW for the separation column.  相似文献   

11.
In the current study, two different integrated systems for vehicular applications are presented and thermodynamically analyzed. The first system consists of liquefied ammonia tank, dissociation and separation unit (DSC) for decomposition of ammonia and an internal combustion engine (ICE) to power the vehicle. The second system is a hybrid system consisting of liquefied ammonia tank, DSC unit, a small ICE and a fuel cell system. In the second system, the main power unit is fuel cell and a supplementary internal combustion engines is also utilized. The exhaust gasses emitted from the ICE are used to provide the required heat for the thermal decomposition process of ammonia. The ICE is fueled with a mix of ammonia and hydrogen generated from the DSC unit that is installed in the two systems. Hydrogen generated from DSC unit will be utilized to operate fuel cell installed in system 2. The proposed systems are analyzed and assessed both energetically and exergetically. A comprehensive parametric study is carried out for comparative assessments to determine the influence of altering design and operating parameters such as the amount of ammonia fuel supplied to the two systems on the performance of the two systems. The overall energy and exergy efficiencies for system 1 and system 2 are found to be 61.89%, 63.34%, 34.73% and 38.44% respectively. The maximum exergy destruction rate in the two systems occurred in the ICE.  相似文献   

12.
This paper gives a control oriented modeling of an electrolyzer, as well as the ancillary system for the hydrogen production process. A Causal Ordering Graph of all necessary equations has been used to illustrate the global scheme for an easy understanding. The model is capable of characterizing the relations among the different physical quantities and can be used to determine the control system ensuring efficient and reliable operation of the electrolyzer. The proposed control method can manage the power flow and the hydrogen flow. The simulation results have highlighted the variation domains and the relations among the different physical quantities. The model has also been experimentally tested in real time with a Hardware-In-the-Loop Simulation before being integrated in the test bench of the active wind energy conversion system.  相似文献   

13.
In this paper we study an integrated PV/T absorption system for cooling and hydrogen production based on U.A.E weather data. Effect of average solar radiation for different months, operating time of the electrolyzer, air inlet temperature and area of the PV module on power and rate of heat production, energy and exergy efficiencies, hydrogen production and energetic and exergetic COPs are studied. It is found that the overall energy and exergy efficiency varies greatly from month to month because of the variation of solar radiation and the time for which it is available. The highest energy and exergy efficiencies are obtained for the month of March and their value is 15.6% and 7.9%, respectively. However, the hydrogen production is maximum for the month of August and its value is 9.7 kg because in august, the solar radiation is high and is available for almost 13 h daily. The maximum energetic and exergetic COPs are calculated to be 2.28 and 2.145, respectively and they are obtained in the month of June when solar radiation is high for the specified cooling load of 15 kW.  相似文献   

14.
In this study, we utilize some experimental data taken from the literature, especially on the air-blown gasification characteristics of six different biomass fuels, namely almond shell (ASF), walnut pruning (WPF), rice straw (RSF), whole tree wood chips (WWF), sludge (SLF) and non-recyclable waste paper (NPF) in order to study the thermodynamic performance of an integrated gasifier–boiler power system for its hydrogen production. In this regard, both energy and exergy efficiencies of the system are investigated. The exergy contents of different biomass fuels are calculated to be ranging from 15.89 to 22.07 MJ/kg, respectively. The hydrogen concentrations based on the stack gases at the cyclone exit are determined to be between 7 and 18 (%v/v) for NPF and ASF. Also, percentages of combustible vary from 30% to 46%. The stack gas has physical and chemical exergies. The total specific exergy rates are calculated and illustrated. These values change from 3.54 to 6.41 MJ/kg. Then, two types of exergy efficiencies are calculated, such as that exergy efficiency 1 is examined via all system powers, exergy and efficiency 2 is calculated according to specific exergy rates of biomass fuels and product gases. While the exergy efficiencies 1 change between 4.33% and 11.89%, exergy efficiencies 2 vary from 18.33% to 39.64%. Also, irreversibilities range from 9.76 to 18.02 MJ/kg. Finally, we investigate how nitrogen contents of biomass fuels affect on energy and exergy efficiencies. The SLF has the highest amount of nitrogen content as 5.64% db while the NPF has the lowest one as 0.14% db. The minimum and maximum exergetic efficiencies belong to the same fuels. Obviously, the higher the nitrogen content the lower the efficiency based on an inverse ratio between exergy efficiency and nitrogen content.  相似文献   

15.
This article presents and discusses the results of measurements of solar radiation and wind speed obtained during the operation of a test-bed hybrid wind/solar generator with hydrogen support designed and constructed at the Industrial Engineering School at the University of Extremadura, Badajoz (Spain). An energy balance analysis is made of the different components of the system, calculating their conversion efficiencies, and proposing future improvements to increase the efficiency of the use of the surplus energy produced by the wind/solar generator. The continued collection of this data series will make it possible to perform energy and exergy analyses to allow extrapolation of the results to real stand-alone applications providing an uninterrupted power supply to receptors isolated from the grid.  相似文献   

16.
A new configuration of solar energy-driven integrated system for ammonia synthesis and power generation is proposed in this study. A detailed dynamic analysis is conducted on the designed system to investigate its performance under different radiation intensities. The solar heliostat field is integrated to generate steam that is provided to the steam Rankine cycle for power generation. The significant amount of power produced is fed to the PEM electrolyser for hydrogen production after covering the system requirements. A pressure swing adsorption system is integrated with the system that separates nitrogen from the air. The produced hydrogen and nitrogen are employed to the cascaded ammonia production system to establish increased fractional conversions. Numerous parametric studies are conducted to investigate the significant parameters namely; incoming beam irradiance, power production using steam Rankine cycle, hydrogen and ammonia production and power production using TEGs and ORC. The maximum hydrogen and ammonia production flowrates are revealed in June for 17th hour as 5.85 mol/s and 1.38 mol/s and the maximum energetic and exergetic efficiencies are depicted by the month of November as 25.4% and 28.6% respectively. Moreover, the key findings using the comprehensive dynamic analysis are presented and discussed.  相似文献   

17.
This paper presents a complete control scheme to efficiently manage the operation of an autonomous wind based hydrogen production system. This system comprises a wind energy generation module based on a multipolar permanent magnet synchronous generator, a lead-acid battery bank as short term energy storage and an alkaline von Hoerner electrolyzer. The control is developed in two hierarchical levels. The higher control level or supervisor control determines the general operation strategy for the whole system according to the wind conditions and the state of charge of the battery bank. On the other hand, the lower control level includes the individual controllers that regulate the respective module operation assuming the set-points determined by the supervisor control. These last controllers are approached using second-order super-twisting sliding mode techniques. The performance of the closed-loop system is assessed through representative computer simulations.  相似文献   

18.
A solar hydrogen hybrid system has been developed to convert, store and use energy from renewable energy sources. The theoretical model has been implemented in a dynamic model-based software environment and applied to real data. A photovoltaic sub-system drives a residential load and, if a surplus of energy is available, an electrolyzer to produce hydrogen which is stored in a cluster of nitrogen-cooled tanks filled with activated carbons; when needed, hydrogen is used in a fuel cell to supply power to the load. Hydrogen storage is achieved through physisorption at low temperature and low pressures. Physisorption storage provides safer operations along with good gravimetric and volumetric capacities at costs comparable to or smaller than compression or liquefaction storage.  相似文献   

19.
The residential sector accounts for about a third of the total world energy consumption. Energy efficiency, Renewable Energy Sources and Hydrogen can play an important role in reducing the consumptions and the emissions and improving the energy security if integrated (Efficiency, Res, Hydrogen) systems are developed and experimented. The paper analyzes a real residential 100 square meters house, where energy efficiency measures and RES technologies have been applied, sizing a hydrogen system (electrolyzer, metal hydrides and fuel cell) for power backup, taking into consideration its dynamic behavior, experimentally determined. The technologies used are already available in the market and, except hydrogen technologies, sufficiently mature. Through energy efficiency technologies (insulation, absorbers, etc), the maximum electrical and thermal power needed decreases from 4.4 kWe to 1.7 kWe (annual consumption from 5000 kWh to 1200 kWh) and from 5.2 kWt to 1.6 kWt (annual consumption from 14,600 kWh to 4500 kWh) respectively. With these reduced values it has been possible to supply the consumptions entirely by small photovoltaic and solar thermal plants (less than 10 m2 each). The hydrogen backup even if remains the most expensive (versus traditional batteries and gasoline generator), satisfying all the electric needs for one day, increases the security and allows net metering. Moreover the low-pressure hydrogen storage system through metal hydrides guarantees system safety too. Finally the system modularity can also satisfy higher energy production.  相似文献   

20.
In this study, we investigate a solar-assisted biomass gasification system for hydrogen production and assess its performance thermodynamically using actual literature data. We also analyze the entire system both energetically and exergetically and evaluate its performance through both energy and exergy efficiencies. Three feedstocks, namely beech charcoal, sewage sludge and fluff, are considered as samples in the same reactor. While energy efficiencies vary from 14.14% to 27.29%, exergy efficiencies change from 10.43% to 23.92%. We use a sustainability index (SI), as a function of exergy efficiency, to calculate the impacts on sustainable development and environment. This index changes from 1.12 to 1.31 due to intensive utilization of solar energy. Also, environmental impact of these systems is evaluated through calculating the specific greenhouse gas (GHG) emissions. They are determined to be 17.97, 17.51 and 26.74 g CO2/MJ H2 for beech charcoal, sewage sludge and fluff, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号