共查询到20条相似文献,搜索用时 15 毫秒
1.
《International Journal of Hydrogen Energy》2020,45(32):15869-15877
A novel idea of wind energy based methanol and hydrogen production is proposed in this study. The proposed system utilizes the industrial carbon emissions to produce a useful output of methanol. There are several pros of manufacturing the methanol as it has the capability to be employed as conventional automotive fuel as it carries the advantages of efficient performance, low emissions and low flammability risk. The designed system comprises of the major subsystems of wind turbines, proton exchange membrane fuel cell (PEMFC), methanol production system and distillation unit. The Engineering Equation Solver (EES) and Aspen Plus are utilized for system modeling and comprehensive analysis. The proposed system is also investigated to operate under different wind speeds and different wind turbine efficiencies. The proposed integration covers all the electric power required by the system. The industrial flue gas including CO2 reacts with hydrogen to produce methanol. The designed system produces both methanol and hydrogen simultaneously. For the performance indicator, efficiencies of the overall system are calculated. The exergetic efficiency is found to be 38.2% while energetic efficiency is determined to be 39.8%. Furthermore, some parametric studies are conducted to investigate the distillation column performance, methanol and hydrogen capacities and exergy destruction rates. 相似文献
2.
《International Journal of Hydrogen Energy》2020,45(55):30113-30128
Utilizing renewable energy resources is one of the convenient ways to reduce greenhouse gas emissions. However, the intermittent nature of these resources has led to stochastic characteristics in the generation and load balancing of the microgrid systems. To handle these issues, an energy management optimization for microgrids operation should be done to urge the minimization of total system costs, emissions, and fuel consumption. An optimization program for decreasing the operational cost of a hybrid microgrid consisting of photovoltaic array, wind unit, electrolyzer, hydrogen storage system, reformer, and fuel cell is presented. Two different methods of producing hydrogen are considered in this study to ensure the effectiveness of the developed methodology. In the microgrid system with high penetration of renewable energy resources, using storage technologies to compensate for the intermittency of these resources is necessary. To evaluate the functioning of the microgrid system, a mathematical model for each source is developed to coordinate the system operation involving energy conversion between hydrogen and electricity. Particle Swarm Optimization Algorithm is utilized to determine the optimum size and operational energy management within the system. It is evident from the results that there is about a 10% reduction in the amount of CH4 consumption in reformer when the electrolyzer was employed in the system. It is observed that the CH4 reduction in summer and fall is higher than other seasons (10.6% and 11.5%, respectively). The reason is that the highest RES production occurs in these seasons during a year. It is also worth mentioning that the electrolyzer technology would play a significant role in decreasing the CH4 consumption in the microgrid system. 相似文献
3.
Kodjo Agbossou Mohan Lal Kolhe Jean Hamelin tienne Bernier Tapan K. Bose 《Renewable Energy》2004,29(8):1305-1318
The Hydrogen Research Institute (HRI) has developed a stand-alone renewable energy (RE) system based on energy storage in the form of hydrogen. When the input devices (wind generator and photovoltaic array) produce more energy than is required by the load, the excess energy is converted by an electrolyzer to electrolytic hydrogen, which is then stored after stages of compression, purification and filtration. Conversely, during a time of input energy deficit, this process is reversed and the hydrogen produced earlier is reconverted to electrical energy through a fuel cell. The oxygen which has been produced by the electrolyzer during the hydrogen production is also stored at high pressure, after having gone through a purification and drying process. This stored oxygen can be re-utilized as oxidant in place of compressed air in the fuel cell. The modifications of the electrolyzer for oxygen storage and re-utilization of it as oxidant for the fuel cell are presented. Furthermore, the HRI has designed and developed the control system with power conditioning devices for effective energy management and automatic operation of the RE system. The experimental results show that a reliable autonomous RE system can be realized for such seasonal energy sources, using stored hydrogen as the long-term energy buffer, and that utilizing the electrolyzer oxygen by-product as oxidant in the fuel cell increases system performance significantly. 相似文献
4.
Lingguo Kong Liangyuan Li Guowei Cai Chuang Liu Ping Ma Yudong Bian Tao Ma 《International Journal of Hydrogen Energy》2021,46(3):2847-2861
With the increasing proportion of renewable energy (mainly wind power and photovoltaic) connected to the grid, the fluctuation of renewable energy power brings great challenges to the safe and reliable operation of power grid. As a clean, low-carbon secondary energy, hydrogen energy is applied in renewable energy (mainly wind power and photovoltaic) grid-connected power smoothing, which opens up a new way of coupling hydrogen storage energy with renewable energy. This paper focuses on the optimization of capacity of electrolyzers and fuel cells and the analysis of system economy in the process of power output smoothing of wind/photovoltaic coupled hydrogen energy grid-connected system. Based on the complementary characteristics of particle swarm optimization (PSO) and chemical reaction optimization algorithm (CROA), a particle swarm optimization-chemical reaction optimization algorithm (PSO-CROA) are proposed. Aiming at maximizing system profit, the capacity of electrolyzers and fuel cells are constrained by wind power fluctuation, and considering environmental benefits, government subsidies and time value of funds, the objective function and its constraints are established. According to the simulation analysis, by comparing the calculated results with PSO and CROA, it shows that PSO-CROA effectively evaluates the economy of the system, and optimizes the optimal capacity of the electrolyzers and fuel cells. The conclusion of this paper is of great significance for the application of hydrogen energy storage in the evaluation of power smoothness and economy of renewable energy grid connection and the calculation of economic allocation of hydrogen energy storage capacity. 相似文献
5.
Yunus Emre Yuksel Murat Ozturk Ibrahim Dincer 《International Journal of Hydrogen Energy》2018,43(1):78-90
In this paper, we propose an integrated system aiming for hydrogen production with by-products using geothermal power as a renewable energy source. In analyzing the system, an extensive thermodynamic model of the proposed system is developed and presented accordingly. In addition, the energetic and exergetic efficiencies and exergy destruction rates for the whole system and its parts are defined. Due to the significance of some parameters, the impacts of varying working conditions are also investigated. The results of the energetic and exergetic analyses of the integrated system show that the energy and exergy efficiencies are 39.46% and 44.27%, respectively. Furthermore, the system performance increases with the increasing geothermal source temperature and reference temperature while it decreases with the increasing pinch point temperature and turbine inlet pressure. 相似文献
6.
《International Journal of Hydrogen Energy》2020,45(41):20944-20955
In this paper, a new renewable energy-based cogeneration system for hydrogen and electricity production is developed. Three different methods for hydrogen production are integrated with Rankine cycle for electricity production using solar energy as an energy source. In addition, a simple Rankine cycle is utilized for producing electricity. This integrated system consists of solar steam reforming cycle using molten salt as a heat carrier, solar steam reforming cycle using a volumetric receiver reactor, and electrolysis of water combined with the Rankine cycle. These cycles are simulated numerically using the Engineering Equation Solver (EES) based on the thermodynamic analyses. The overall energetic and exergetic efficiencies of the proposed system are determined, and the exergy destruction and entropy generation rates of all subcomponents are evaluated. A comprehensive parametric study for evaluating various critical parameters on the overall performance of the system is performed. The study results show that both energetic and exergetic efficiencies of the system reach 28.9% and 31.1%, respectively. The highest exergy destruction rates are found for the steam reforming furnace and the volumetric receiver reforming reactor (each with about 20%). Furthermore, the highest entropy generation rates are obtained for the steam reforming furnace and the volumetric receiver reforming reactor, with values of 174.1 kW/K and 169.3 kW/K, respectively. Additional parametric studies are undertaken to investigate how operating conditions affect the overall system performance. The results report that 60.25% and 56.14% appear to be the highest exergy and energy efficiencies at the best operating conditions. 相似文献
7.
《International Journal of Hydrogen Energy》2020,45(53):29110-29122
This paper presents an experimental study of a standalone hybrid microgrid system. The latter is dedicated to remote area applications. The system is a compound that utilizes renewable sources that are Wind Generator (WG), Solar Array (SA), Fuel Cell (FC) and Energy Storage System (ESS) using a battery. The power electronic converters play a very important role in the system; they optimize the control and energy management techniques of the various sources. For wind and solar subsystem, the speed and Single Input Fuzzy Logic (SIFL) controllers are used respectively to harvest the maximum power point tracking (MPPT). To maintain a balance of energy in the hybrid system, an energy management strategy based on the battery state of charge (SOC) has been developed and implemented experimentally. The AC output voltage regulation was achieved using a Proportional Integral (PI) controller to supply a resistive load with constant amplitude and frequency. According to the obtained performances, it was concluded that the proposed system is very promising for potential applications in hybrid renewable energy management systems. 相似文献
8.
《International Journal of Hydrogen Energy》2023,48(57):21531-21543
An integrated energy system coupled with wind turbines and an on-site hydrogen refueling station is proposed to simulate the future scenario, which can meet the demands of cooling, heating, power and hydrogen. The system was modeled to calculate the capacity and annual operation of each equipment with the total annual cost as the optimization objective. This study evaluates the performance of the system based on the results. When the system is configured with 0–10 wind turbines, the economics, energy consumption and carbon emissions improve as the scale of wind turbines increases. Energy utilization and wind power utilization are above 66.79% and 99.73%, respectively. The on-off coefficient of the power generation unit can affect energy efficiency. When the system contains 5 turbines, 91% of the hydrogen can be self-produced with the minimum amount of energy redundancy. 相似文献
9.
A dynamic model for a stand-alone renewable energy system with hydrogen storage (RESHS) is developed. In this system, surplus energy available from a photovoltaic array and a wind turbine generator is stored in the form of hydrogen, produced via an electrolyzer. When the energy production from the wind turbine and the photovoltaic array is not enough to meet the load demand, the stored hydrogen can then be converted by a fuel cell to produce electricity. In this system, batteries are used as energy buffers or for short time storage. To study the behavior of such a system, a complete model is developed by integrating individual sub-models of the fuel cell, the electrolyzer, the power conditioning units, the hydrogen storage system, and the batteries (used as an energy buffer). The sub-models are valid for transient and steady state analysis as a function of voltage, current, and temperature. A comparison between experimental measurements and simulation results is given. The model is useful for building effective algorithms for the management, control and optimization of stand-alone RESHSs. 相似文献
10.
In this study, both concentrated solar power and wind energy systems are integrated with electrolyser, fuel cell and absorption cooling subsystems to supply power, cooling, heating and hydrogen to residential applications in an environmentally benign and efficient manner. These subsystems are integrated in a unique way to manage the excess power through water electrolysis to produce and store hydrogen. Integrated systems are thermodynamically analyzed, and their performance is assessed comparatively. Solar radiation intensity, inlet temperature and wind velocity are taken into account, and hence their effects on the system performance are investigated. The results of this study show that the present system appears to be efficient, environmentally friendly and hence sustainable. 相似文献
11.
《International Journal of Hydrogen Energy》2023,48(42):15817-15830
The current study investigates a holistically developed solar energy system combined with a ground-sourced heat pump system for stand-alone usage to produce power, heat, and cooling along with domestic hot water for residential buildings. An integrated system is proposed where three types of building-integrated photovoltaic plant orientation are considered and integrated with a vertical-oriented ground-sourced heat pump system as well as an anion exchange membrane electrolyser for hydrogen-based energy storage along with proton exchange membrane fuel cells. The ground-sourced heat pump system covers the heating requirements and exploits the available thermal energy under the ground. Hydrogen subsystem enables the integrated system to be used anytime by compensating the peak periods with stored hydrogen via fuel cell and exploiting the excess energy to produce hydrogen via electrolyser. The photovoltaic plant orientations are extensively designed by considering geometries of three different applications, namely, rooftop photovoltaic, building-integrated photovoltaic façade and photovoltaic canopy. The shading and geometrical losses of photovoltaic applications are extensively identified and considered. In addition, the openly available high-rise building load profiles are obtained from the OpenEI network and are modified accordingly to utilize in the current study. The building requirements are considered for 8760 h annually with meteorological data and energy usage characteristics of the selected regions. The integrated system is assessed via thermodynamic-based approach from energy and exergy points of views. In order to increase generality, the proposed building energy system is analyzed for five different cities around the globe. The obtained results show that a 20-floor building with approximately 62,680 m2 residential area needs between 550 kWp and 1550 kWp of a photovoltaic plant in five different cities. For Ottawa, Canada, the overall energy and exergy efficiencies are found as 18.76% and 10.49%, respectively, in a typical meteorological year. For the city of Istanbul in Turkey, a 20-floor building is found to be self-sufficient by only using the building's surface area with a 495 kWp BIPV façade and a 90 kWp rooftop PV. 相似文献
12.
Pegah Mottaghizadeh Mahshid Fardadi Faryar Jabbari Jack Brouwer 《International Journal of Hydrogen Energy》2021,46(49):24891-24908
A solid oxide cell-based energy system is proposed for a solar-powered stand-alone building. The system is comprised of a 5 kWel solid oxide fuel cell (SOFC), a 9.5 kWel solid oxide electrolysis cell (SOEC), and the required balance of plant. The SOFC supplies: 1- building demand in the absence of sufficient solar power, 2- heat for SOEC in endothermic and standby modes. Thermal integration of SOFC and SOEC is implemented through a network of heat exchangers, combined with set of control algorithms. Two control strategies were implemented to actuate the SOFC in response to endothermic heat demands of SOEC by manipulating: 1- electric power, 2- fuel utilization. The results of dynamic simulation of system for two scenarios (sunny day and cloudy day) showed successful compliance of temperature constraints with both methods. Manipulation of fuel utilization, however, resulted in better system performance in terms of efficiency and H2 balance. 相似文献
13.
《International Journal of Hydrogen Energy》2022,47(62):26646-26653
This paper uses the TRNSYS software to investigate the hourly energy generation potential, storage, and consumption via an electrolyzer and a fuel cell in the Canadian city of Saskatoon, which is a region with high solar and wind energy potential. For this purpose, a location with an area of 10,000 m2 was considered, in which the use of solar panels and vertical-axis wind turbines (VAWTs) were simulated. In the simulation, the solar panels were placed at specific distances, and the energy generation capacity, amount of produced hydrogen, and the energy available from the fuel cell were examined hourly and compared to the case with wind turbines placed at standard distances. The results indicated energy generation capacities of 1,966,084 kWh and 75,900 kWh for the solar panels and the wind turbines, respectively, showing the high potential of solar panels compared to wind turbines. Moreover, the fuel cells in the solar and wind systems can produce 733,077 kWh and 22,629 kWh of energy per year, respectively, if they store all of the received energy in the form of hydrogen. Finally, the hourly rates of hydrogen production by the solar and wind systems were reported. 相似文献
14.
In the present study, an integrated system is proposed and thermodynamically analyzed to reduce greenhouse gas (GHG) emissions while improving overall system performance. The integrated system is comprised of a supercritical carbon dioxide (CO2) Rankine cycle cascaded by an Organic (R600) Rankine cycle, an electrolyzer, and a heat recovery system. It is designed to utilize a medium-to-high temperature geothermal energy source for power and hydrogen production, and thermal energy utilization for space heating. Therefore, parametric studies for the supercritical CO2 cycle, the Organic (R600) cycle, and the overall system are conducted. In addition, the effect of various operational conditions, such as geothermal source, ambient and cooling water temperatures on the performance of each cycle and the integrated system, is illustrated. It is found that increasing geothermal source temperature results in slight increases of the exergetic efficiency of the overall system. The energy efficiencies of the CO2 and Organic Rankine cycles do not considerably vary with source temperature changes. The decay of the cooling water temperature leads to a decrease in the overall system exergetic efficiency. The system configuration, which is introduced, is capable of producing about 180 kg/h for the geothermal source of mass flow rate of 40 kg/s and a temperature of 473 K. 相似文献
15.
《International Journal of Hydrogen Energy》2020,45(49):26126-26137
In the examined paper, a solar and wind energy supported integrated cycle is designed to produce clean power and hydrogen with the basis of a sustainable and environmentally benign. The modeled study mainly comprises of four subsystems; a solar collector cycle which operates with Therminol VP1 working fluid, an organic Rankine cycle which runs with R744 fluid, a wind turbine as well as hydrogen generation and compression unit. The main target of this work is to investigate a thermodynamic evaluation of the integrated system based on the 1st and 2 nd laws of thermodynamics. Energetic and exergetic efficiencies, hydrogen and electricity generation rates, and irreversibility for the planned cycle and subsystems are investigated according to different parameters, for example, solar radiation flux, reference temperature, and wind speed. The obtained results demonstration that the whole energy and exergy performances of the modeled plant are 0.21 and 0.16. Additionally, the hydrogen generation rate is found as 0.001457 kg/s, and the highest irreversibility rate is shown in the heat exchanger subcomponents. Also, the net power production rate found to be 195.9 kW and 326.5 kW, respectively, with organic Rankine cycle and wind turbine. The final consequences obtained from this work show that the examined plant is an environmentally friendly option, which in terms of the system's performance and viable, for electrical power and hydrogen production using renewable energy sources. 相似文献
16.
Janusz Kotowicz Michał Jurczyk Daniel Węcel 《International Journal of Hydrogen Energy》2021,46(10):7047-7059
In this paper, a hydrogen generator and a wind farm were taken as the research objects. The H2 generator consisted characteristics of laboratory-tested electrolyzers were determined as a function of the hydrogen mass flow. Determining the auxiliary power index of the device allowed the efficiency of the hydrogen generator to be determined as a function of hydrogen mass flow as well as the hydrogen generator relative power. The dynamic characteristics of a generator were also presented. The possibility of a given wind farm cooperating with hydrogen generators that are characterized by different powers and various efficiencies was simulated. Algorithm enables determination of hydrogen generators efficiency for devices with various performance in nominal operation point is shown. It has been shown that proper selection of the power of the hydrogen generator in relation to the power of the wind farm can ensure a high efficiency for the device. 相似文献
17.
《International Journal of Hydrogen Energy》2019,44(13):6919-6928
In this thermodynamic investigation, an integrated energy system based on hydrogen fuel is developed and studied energetically and exergetically. The liquefied hydrogen fueled solid oxide fuel cell (SOFC) based system is then integrated with a steam producing cycle to supply electricity and potable water to ships. The first heat recovery system, after the fuel cells provide thrust for the ship, is by means of a turbine while the second heat recovery system drives the ship's refrigeration cycle. This study includes energy and exergy performance evaluations of SOFC, refrigeration cycle and ship thrust engine systems. Furthermore, the effectiveness of SOFCs and a hydrogen fueled engine in reducing greenhouse gas emissions are assessed parametrically through a case study. The main propulsion, power generation from the solid oxide fuel cells, absorption chiller, and steam bottoming cycle systems together have the overall energy and exergy efficiencies of 41.53% and 37.13%, respectively. 相似文献
18.
A solar-wind hybrid trigeneration system is proposed and analyzed thermodynamically through energy and exergy approaches in this paper. Hydrogen, electricity and heat are the useful products generated by the hybrid system. The system consists of a solar heliostat field, a wind turbine and a thermochemical copper-chlorine (Cu-Cl) cycle for hydrogen production linked with a hydrogen compression system. A solar heliostat field is employed as a source of thermal energy while the wind turbine is used to generate electricity. Electric power harvested by the wind turbine is supplied to the electrolyzer and compressors and provides an additional excess of electricity. Hydrogen produced by the thermochemical copper-chlorine (Cu-Cl) cycle is compressed in a hydrogen compression system for storage purposes. Both Aspen Plus 9.0 and EES are employed as software tools for the system modeling and simulation. The system is designed to achieve high hydrogen production rate of 455.1 kg/h. The overall energy and exergy efficiencies of the hybrid system are 49% and 48.2%, respectively. Some additional results about the system performance are obtained, presented and discussed in the paper. 相似文献
19.
This study presents an analysis and assessment study of an integrated system which consists of cryogenic air separation unit, polymer electrolyte membrane electrolyzer and reactor to produce ammonia for a selected case study application in Istanbul, Turkey. A thermodynamic analysis of the proposed system illustrates that electricity consumption of PEM electrolyzer is 3410 kW while 585.4 kW heat is released from ammonia reactor. The maximum energy and exergy efficiencies of the ammonia production system which are observed at daily average irradiance of 200 W/m2 are found as 26.08% and 30.17%, respectively. The parametric works are utilized to find out the impacts of inlet air conditions and solar radiation intensity on system performance. An increase in the solar radiation intensity results in a decrease of the efficiencies due to higher potential of solar influx. Moreover, the mass flow rate of inlet air has a substantial effect on ammonia production concerning the variation of generated nitrogen. The system has a capacity of 0.22 kg/s ammonia production which is synthesized by 0.04 kg/s H2 from PEM electrolyzer and 0.18 kg/s N2 from a cryogenic air separation unit. The highest exergy destruction rate belongs to PEM electrolyzer as 736.2 kW while the lowest destruction rate is calculated as 3.4 kW for the separation column. 相似文献
20.
《International Journal of Hydrogen Energy》2019,44(29):14596-14604
A bench-scale stationary hydrogen energy utilization system with renewable energy (RE) that realizes a zero emission building (ZEB) is presented. To facilitate compactness, safety, and mild operation conditions, a polymer electrolyte membrane (PEM) electrolyzer for hydrogen production (5 Nm3/h), PEM fuel cells (FC) for hydrogen use (3.5 kW), and metal hydride (MH) tanks for hydrogen storage (80 Nm3) are incorporated. Each hydrogen apparatus and Li-ion batteries (20 kW/20 kWh) are installed in a 12-ft. container and 20-kW photovoltaic panels provide power. A building energy management system (BEMS) controlled these system components in an integrated manner. The PEM Ely and FC have fast start-up and high efficiency under partial load operations, indicating suitability for daily start-stop operations. An AB-type TiFe-based alloy (520 kg) is used as the MH (not an AB5-type rare earth alloy that has been commonly used in bench-scale hydrogen store) because, in addition to being low-cost, it is non-hazardous material under Japanese regulations. The results of a 24-h operation experiment verify ZEB attainment. PEM FC and TiFe-based tanks thermal integration results indicate that hydrogen use operation is achievable without external heat sources. 相似文献