首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study, it is aimed to meet the annual electricity and heating needs of a house without interruption with the photovoltaic panel, wind turbine, methanol electrolyzer, and high temperature proton exchange membrane fuel cell system. The system results show that the use of the 2 WT with 18 PV was enough to provide the need of the methanol electrolyzer, which provides requirements of the high temperature proton exchange membrane fuel cell. The produced heat by the fuel cell was used to meet the heat requirement of the house with combined heat and power system. Electrical, thermal and total efficiencies of fuel cell system with combined heat and power were obtained as 38.54%, 51.77% and 90%, respectively. Additionally, the levelized cost of energy of the system was calculated as 0.295 $/kWh with combined heat and power application. The results of this study show that H2 is useful for long-term energy storage in off-grid energy systems and that the proposed hybrid system may be the basis for future H2-based alternative energy applications.  相似文献   

2.
《Journal of power sources》2006,162(2):757-764
The combination of an electrolyzer and a fuel cell can provide peak power control in a decentralized/distributed power system. The electrolyzer produces hydrogen and oxygen from off-peak electricity generated by the renewable energy sources (wind turbine and photovoltaic array), for later use in the fuel cell to produce on-peak electricity. An issue related to this system is the control of the hydrogen loop (electrolyzer, tank, fuel cell). A number of control algorithms were developed to decide when to produce hydrogen and when to convert it back to electricity, most of them assuming that the electrolyzer and the fuel cell run alternatively to provide nominal power (full power). This paper presents a complete model of a stand-alone renewable energy system with hydrogen storage controlled by a dynamic fuzzy logic controller (FLC). In this system, batteries are used as energy buffers and for short time storage. To study the behavior of such a system, a complete model is developed by integrating the individual sub-models of the fuel cell, the electrolyzer, the power conditioning units, the hydrogen storage system, and the batteries. An analysis of the performances of the dynamic fuzzy logic controller is then presented. This model is useful for building efficient peak power control.  相似文献   

3.
A solar-wind hybrid trigeneration system is proposed and analyzed thermodynamically through energy and exergy approaches in this paper. Hydrogen, electricity and heat are the useful products generated by the hybrid system. The system consists of a solar heliostat field, a wind turbine and a thermochemical copper-chlorine (Cu-Cl) cycle for hydrogen production linked with a hydrogen compression system. A solar heliostat field is employed as a source of thermal energy while the wind turbine is used to generate electricity. Electric power harvested by the wind turbine is supplied to the electrolyzer and compressors and provides an additional excess of electricity. Hydrogen produced by the thermochemical copper-chlorine (Cu-Cl) cycle is compressed in a hydrogen compression system for storage purposes. Both Aspen Plus 9.0 and EES are employed as software tools for the system modeling and simulation. The system is designed to achieve high hydrogen production rate of 455.1 kg/h. The overall energy and exergy efficiencies of the hybrid system are 49% and 48.2%, respectively. Some additional results about the system performance are obtained, presented and discussed in the paper.  相似文献   

4.
One of the main advantages of fuel cell based mobility over other sustainable mobility concepts is the flexible production of hydrogen via electrolysis. To date, it is unclear how electrolysis at hydrogen refueling stations should be operated in order to achieve the lowest possible costs despite the constraints of hydrogen demand. This study proposes and evaluates an intelligent operating strategy for electrolysis capable of exploiting times of low electricity prices while participating in the spot market and maximizing wind energy utilization when combined with a wind farm. This strategy is based on a simulation model considering imperfect forecasts (e.g. of wind availability or energy prices) and non-linear electrolyzer behavior. Results show that this approach reduces hydrogen production costs by up to 9.2% and increases wind energy utilization by up to 19%, respectively.  相似文献   

5.
The Balmorel model has been used to calculate the economic optimal energy system configuration for the Scandinavian countries and Germany in 2060 assuming a nearly 100% coverage of the energy demands in the power, heat and transport sector with renewable energy sources. Different assumptions about the future success of fuel cell technologies have been investigated as well as different electricity and heat demand assumptions. The variability of wind power production was handled by varying the hydropower production and the production on CHP plants using biomass, by power transmission, by varying the heat production in heat pumps and electric heat boilers, and by varying the production of hydrogen in electrolysis plants in combination with hydrogen storage. Investment in hydrogen storage capacity corresponded to 1.2% of annual wind power production in the scenarios without a hydrogen demand from the transport sector, and approximately 4% in the scenarios with a hydrogen demand from the transport sector. Even the scenarios without a demand for hydrogen from the transport sector saw investments in hydrogen storage due to the need for flexibility provided by the ability to store hydrogen. The storage capacities of the electricity storages provided by plug-in hybrid electric vehicles were too small to make hydrogen storage superfluous.  相似文献   

6.
A dynamic model for a stand-alone renewable energy system with hydrogen storage (RESHS) is developed. In this system, surplus energy available from a photovoltaic array and a wind turbine generator is stored in the form of hydrogen, produced via an electrolyzer. When the energy production from the wind turbine and the photovoltaic array is not enough to meet the load demand, the stored hydrogen can then be converted by a fuel cell to produce electricity. In this system, batteries are used as energy buffers or for short time storage. To study the behavior of such a system, a complete model is developed by integrating individual sub-models of the fuel cell, the electrolyzer, the power conditioning units, the hydrogen storage system, and the batteries (used as an energy buffer). The sub-models are valid for transient and steady state analysis as a function of voltage, current, and temperature. A comparison between experimental measurements and simulation results is given. The model is useful for building effective algorithms for the management, control and optimization of stand-alone RESHSs.  相似文献   

7.
The Hydrogen Research Institute (HRI) has developed a stand-alone renewable energy (RE) system based on energy storage in the form of hydrogen. When the input devices (wind generator and photovoltaic array) produce more energy than is required by the load, the excess energy is converted by an electrolyzer to electrolytic hydrogen, which is then stored after stages of compression, purification and filtration. Conversely, during a time of input energy deficit, this process is reversed and the hydrogen produced earlier is reconverted to electrical energy through a fuel cell. The oxygen which has been produced by the electrolyzer during the hydrogen production is also stored at high pressure, after having gone through a purification and drying process. This stored oxygen can be re-utilized as oxidant in place of compressed air in the fuel cell. The modifications of the electrolyzer for oxygen storage and re-utilization of it as oxidant for the fuel cell are presented. Furthermore, the HRI has designed and developed the control system with power conditioning devices for effective energy management and automatic operation of the RE system. The experimental results show that a reliable autonomous RE system can be realized for such seasonal energy sources, using stored hydrogen as the long-term energy buffer, and that utilizing the electrolyzer oxygen by-product as oxidant in the fuel cell increases system performance significantly.  相似文献   

8.
A hybrid renewable energy system is proposed and analyzed for electricity, heated air, purified water and hydrogen production. Energy, exergy and economic analyses are performed to analyze and determine the performance of the system under different operating conditions. The photovoltaic/thermal (PV/T) system produces heat and electricity for residential applications. Excess power is used to operate electrolyser which produces hydrogen to be fed directly to a fuel cell. Fuel cell is operated during high power demand, and it produces electricity, heat and water for residential applications. The water produced as a by-product by the fuel cell is used for drinking water supply. The parametric studies are conducted to determine the efficiencies of the system with and without fuel cell network for hot air, power and purified water. When fuel cell heat is used, the overall system efficiency increases to 5.65% for energy and 19.8% for exergy. Up to 80 L of drinkable water can be collected from the fuel cell when operated for extended periods. The present study confirms a significant economic gain when fuel cell heat and water are utilized as useful outputs.  相似文献   

9.
This paper investigates the economics of a fuel cell bus fleet powered by hydrogen produced from electricity generated by a wind park in Austria. The main research question is to simultaneously identify the most economical hydrogen generation business model for the electric utility owning wind power plants and to evaluate the economics of operating a fuel cell bus fleet, with the core objective to minimize the total costs of the overall fuel supply (hydrogen production) and use (bus and operation) system. For that, three possible operation modes of the electrolyzer have been identified and the resulting hydrogen production costs calculated. Furthermore, an in-depth economic analysis of the fuel cell buses as well as the electrolyzer technology has been conducted. Results show that investment costs are the largest cost factor for both technologies. Thus, continuous hydrogen production with the smallest possible electrolyzer is the economically most favorable option. In such an operation mode (power grid), the costs of production per kg/H2 were the lowest. However, this means that the electrolyzer cannot be solely operated with electricity from the wind park, but is also dependent on the electricity mix from the grid. For fuel cell buses, the future cost development will depend very much on the respective policies and funding programs for the market uptake, as to date, the total cost of use for the fuel cell bus is more than two times higher than the diesel bus. The major final conclusion of this paper is that to make fuel cell electric busses competitive in the next years today severe policy interferences, such as subsidies for these busses as well as electrolyzers and bans for fossil energy, along with investments in the setup of a hydrogen infrastructure, are necessary.  相似文献   

10.
This paper describes dynamic modeling and simulation results of a small wind–fuel cell hybrid energy system. The system consists of a 400 W wind turbine, a proton exchange membrane fuel cell (PEMFC), ultracapacitors, an electrolyzer, and a power converter. The output fluctuation of the wind turbine due to wind speed variation is reduced using a fuel cell stack. The load is supplied from the wind turbine with a fuel cell working in parallel. Excess wind energy when available is converted to hydrogen using an electrolyzer for later use in the fuel cell. Ultracapacitors and a power converter unit are proposed to minimize voltage fluctuations in the system and generate AC voltage. Dynamic modeling of various components of this small isolated system is presented. Dynamic aspects of temperature variation and double layer capacitance of the fuel cell are also included. PID type controllers are used to control the fuel cell system. SIMULINKTM is used for the simulation of this highly nonlinear hybrid energy system. System dynamics are studied to determine the voltage variation throughout the system. Transient responses of the system to step changes in the load current and wind speed in a number of possible situations are presented. Analysis of simulation results and limitations of the wind–fuel cell hybrid energy system are discussed. The voltage variation at the output was found to be within the acceptable range. The proposed system does not need conventional battery storage. It may be used for off-grid power generation in remote communities.  相似文献   

11.
This paper investigates the performance of a high temperature Polymer Electrolyte Membrane (PEM) electrolyzer integrated with concentrating solar power (CSP) plant and thermal energy storage (TES) to produce hydrogen and electricity, concurrently. A finite-time-thermodynamic analysis is conducted to evaluate the performance of a PEM system integrated with a Rankine cycle based on the concept of exergy. The effects of solar intensity, electrolyzer current density and working temperature on the performance of the overall system are identified. A TES subsystem is utilized to facilitate continuous generation of hydrogen and electricity. The hydrogen and electricity generation efficiency and the exergy efficiency of the integrated system are 20.1% and 41.25%, respectively. When TES system supplies the required energy, the overall energy and exergy efficiencies decrease to 23.1% and 45%, respectively. The integration of PEM electrolyzer enhances the exergy efficiency of the Rankine cycle, considerably. However, it causes almost 5% exergy destruction in the integrated system due to conversion of electrical energy to hydrogen energy. Also, it is concluded that increase of working pressure and membrane thickness leads to higher cell voltage and lower electrolyzer efficiency. The results indicate that the integrated system is a promising technology to enhance the performance of concentrating solar power plants.  相似文献   

12.
Producing green hydrogen from wind energy is one potential method to mitigate curtailment. This study develops a general approach to examine the economic benefit of adding hydrogen production capacity through water electrolysis along with the fuel cell and storage facilities in a wind farm in north Texas. The study also investigates different day ahead market bidding strategies in the existence of these technologies. The results show that adding hydrogen capacity to the wind farm is profitable when hydrogen price is greater than $3.58/kg, and that the optimal day ahead market bidding strategy changes as hydrogen price changes. The results also suggest that both the addition of a fuel cell to reconvert stored hydrogen to electricity and the addition of a battery to smooth the electricity input to the electrolyzer are suboptimal for the system in the case of this study. The profit of a particular bidding scenario is most sensitive to the selling price of hydrogen, and then the input parameters of the electrolyzer. This study also provides policy implications by investigating the impact of different policy schemes on the optimal hydrogen production level.  相似文献   

13.
Renewable energy sources such as wind turbines and solar photovoltaic are energy sources that cannot generate continuous electric power. The seasonal storage of solar or wind energy in the form of hydrogen can provide the basis for a completely renewable energy system. In this way, water electrolysis is a convenient method for converting electrical energy into a chemical form. The power required for hydrogen generation can be supplied through a photovoltaic array. Hydrogen can be stored as metal hydrides and can be converted back into electricity using a fuel cell. The elements of these systems, i.e. the photovoltaic array, electrolyzer, fuel cell and hydrogen storage system in the form of metal hydrides, need a control and monitoring system for optimal operation. This work has been performed within a Research and Development contract on Hydrogen Production granted by Solar Iniciativas Tecnológicas, S.L. (SITEC), to the Politechnic University of Valencia and to the AIJU, and deals with the development of a system to control and monitor the operation parameters of an electrolyzer and a metal hydride storage system that allow to get a continuous production of hydrogen.  相似文献   

14.
An experimental solar-hydrogen powered residence simulator was built and tested. The system consisted of a solar photovoltaic array connected to an electrolyzer which produced hydrogen as a means of energy storage. The hydrogen was used to produce electricity in a fuel cell that operated in parallel with a battery to meet dynamic power demand similar to that found in residential applications. The study demonstrated the technical feasibility of operating such a system under the simultaneous dynamics of solar input and load. Limitations of current fuel cell and electrolyzer designs, as they pertain to both power delivery and energy storage, were identified. The study also established the need to understand and address dynamic performance in the design and application of solar-hydrogen reversible fuel cell hybrid systems. An economic analysis found that major cost reductions would need to be achieved for such systems to compete with conventional energy storage devices.  相似文献   

15.
Experimental results for hydrogen storage tanks with metal hydrides used for load leveling of electricity in commercial buildings are described. Variability in electricity demand due to air conditioning of commercial buildings necessitates installation of on-site energy storage. Here, we propose a totalized hydrogen energy utilization system (THEUS) as an on-site energy storage system, present feasibility test results for this system with a metal hydride tank, and discuss the energy efficiency of the system. This system uses a water electrolyzer to store electricity energy via hydrogen at night and uses fuel cells to generate power during the day. The system also utilizes the cold heat of reaction heat during the hydrogen desorption process for air conditioning. The storage tank has a shell-like structure and tube heat exchangers and contains 50 kg of metal hydride. Experimental conditions were specifically designed to regulate the pressure and temperature range. Absorption and desorption of 5,400 NL of hydrogen was successfully attained when the absorption rate was 10 NL/min and desorption rate was 6.9 NL/min. A 24-h cycle experiment emulating hydrogen generation at night and power generation during the day revealed that the system achieved a ratio of recovered thermal energy to the entire reaction heat of the hydrogen storage system of 43.2% without heat loss.  相似文献   

16.
In this study, zero energy building (ZEB) with four occupants in the capital and most populated city of Iran as one of the biggest greenhouse gas producers is simulated and designed to reduce Iran's greenhouse emissions. Due to the benefits of hydrogen energy and its usages, it is used as the primary energy storage of this building. Also, the thermal comfort of occupants is evaluated using the Fanger model, and domestic hot water consumption is supplied. Using hydrogen energy as energy storage of an off-grid zero energy building in Iran by considering occupant thermal comfort using the fanger model has been presented for the first time in this study. The contribution of electrolyzer and fuel cell in supplying domestic hot water is shown. For this simulation, Trnsys software is used. Using Trnsys software, the transient performance of mentioned ZEB is evaluated in a year. PV panels are used for supplying electricity consumption of the building. Excess produced electricity is converted to hydrogen and stored in the hydrogen tank when a lack of sunrays exists and electricity is required. An evacuated tube solar collector is used to produce hot water. The produced hot water will be stored in the hot water tank. For supplying the cooling load, hot water fired water-cooled absorption chiller is used. Also, a fan coil with hot water circulation and humidifier are used for heating and humidifying the building. Domestic hot water consumption of the occupants is supplied using stored hot water and rejected heat of fuel cell and the electrolyzer. The thermal comfort of occupants is evaluated using the Fanger model with MATLAB software. Results show that using 64 m2 PV panel power consumption of the building is supplied without a power outage, and final hydrogen pressure tank will be higher than its initial and building will be zero energy. Required hot water of the building is provided with 75 m2 evacuated tube solar collector. The HVAC system of the building provided thermal comfort during a year. The monthly average of occupant predicted mean vote (PMV) is between ?0.4 and 0.4. Their predicted percentage of dissatisfaction (PPD) is lower than 13%. Also, supplied domestic hot water (DHW) always has a temperature of 50 °C, which is a setpoint temperature of DHW. Finally, it can be concluded that using the building's rooftop area can be transformed to ZEB and reduce a significant amount of greenhouse emissions of Iran. Also, it can be concluded that fuel cell rejected heat, unlike electrolyzer, can significantly contribute to supplying domestic hot water requirements. Rejected heat of electrolyzer for heating domestic water can be ignored.  相似文献   

17.
Utilizing renewable energy resources is one of the convenient ways to reduce greenhouse gas emissions. However, the intermittent nature of these resources has led to stochastic characteristics in the generation and load balancing of the microgrid systems. To handle these issues, an energy management optimization for microgrids operation should be done to urge the minimization of total system costs, emissions, and fuel consumption. An optimization program for decreasing the operational cost of a hybrid microgrid consisting of photovoltaic array, wind unit, electrolyzer, hydrogen storage system, reformer, and fuel cell is presented. Two different methods of producing hydrogen are considered in this study to ensure the effectiveness of the developed methodology. In the microgrid system with high penetration of renewable energy resources, using storage technologies to compensate for the intermittency of these resources is necessary. To evaluate the functioning of the microgrid system, a mathematical model for each source is developed to coordinate the system operation involving energy conversion between hydrogen and electricity. Particle Swarm Optimization Algorithm is utilized to determine the optimum size and operational energy management within the system. It is evident from the results that there is about a 10% reduction in the amount of CH4 consumption in reformer when the electrolyzer was employed in the system. It is observed that the CH4 reduction in summer and fall is higher than other seasons (10.6% and 11.5%, respectively). The reason is that the highest RES production occurs in these seasons during a year. It is also worth mentioning that the electrolyzer technology would play a significant role in decreasing the CH4 consumption in the microgrid system.  相似文献   

18.
A real-time energy management system for an off-grid smart home is presented in this paper. The primary energy sources for the system are wind turbine and photovoltaics, with a fuel cell serving as a supporting energy source. Surplus power is used to generate hydrogen through an electrolyzer. Data on renewable energy and load demand is gathered from a real smart home located in the Yildiz Technical University Smart Home Laboratory. The aim of the study is to reduce hydrogen consumption and effectively utilize surplus renewable energy by managing controllable loads with fuzzy logic controller, all while maintaining the user's comfort level. Load shifting and tuning are used to increase the demand supplied by renewable energy sources by 10.8% and 13.65% from wind turbines and photovoltaics, respectively. As a result, annual hydrogen consumption is reduced by 7.03%, and the average annual efficiency of the fuel cell increases by 4.6%  相似文献   

19.
The world's largest class hydrogen energy carrier production, storage, and utilization system has been operated in order to obtain basic data for practical use of the system using renewable energy. In this system, an alkaline water electrolyzer is combined with hydrogenation reactors to produce methylcyclohexane (MCH). Since electrolyzer behavior directly affects hydrogenation reaction, behaviors of the 150 kW class water electrolyzer against fluctuating electricity inputs were experimentally investigated. The cell stack voltage and hydrogen flow rate changed following temporal changes of the input current, whereas the temperature response was slow due to the large heat capacity of the system. Hydrogenation reactors performance using the hydrogen from the electrolyzer are reported. Then, based on the experiment data, a numerical simulation model for the electrolyzer was developed, which predicts the experimental result using fluctuating electricity very well. Furthermore, using the simulator, the heat utilization from the hydrogenation reaction for the electrolyzer warm-up process was investigated.  相似文献   

20.
The renewable energy source like wind energy generates electric power with intermittent nature. Hydrogen energy system can help to solve the fluctuation problem of the wind power. Totalized Hydrogen Energy Utilization System (THEUS) consists of a Unitized Reversible Fuel Cell (URFC), a hydrogen storage tank, and other auxiliary components. Wind power is inherently variable; the URFC will be subjected to a dynamic input power profile in water electrolyzer mode operation. This paper describes the THEUS operation and performance at different variations in intermittent wind power. The performance of the THEUS was evaluated in water electrolyzer and fuel cell mode operation. The stack efficiency, system efficiency, and system efficiency including heat output from the URFC were presented at each operation. The total efficiency of the URFC and THEUS were also investigated. The maximum total efficiency of the URFC and THEUS were 53% and 66%, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号